Can we “program” fish by modifying their environment during early development to improve performance?

Salmon farmers want fish to be healthier, faster growing and to produce flesh of the highest quality at harvest. Unlike livestock, fish spawn eggs into the water, so that eggs, alevin and other stages of early development are fully exposed to a range of different factors which occur in the natural or aquaculture environment. A number of important processes and systems develop and become functional during these early stages of development (eg. the immune system, musculature, stress response axis etc).

We know that some external factors, like water temperature, can affect these developmental processes (for instance, higher temperatures resulting in higher incidences of spinal and jaw deformities). Some such factors are known to change the “epigenome”, areas outside of the genome that can have lasting affects throughout development on the rate of gene transcription. But what if we could manipulate the environment in which the animal is immersed to optimise and tailor development to produce a faster growing, healthier fish of exceptional quality?

In a new paper published in Scientific Reports, a team of Scientists from Nofima in Norway, including Associate Professor Nick Robinson from Melbourne University, have investigated how low temperatures and oxygen deprivation can program the Atlantic salmon embryo and post-hatch larvae to affect performance of the fish in later life. Low temperature and oxygen deprivation during these developmental phases were found to modify the epigenome, so that gene expression was regulated in a way that affected the subsequent growth performance of fish for 35 days after they were put out to the sea in cages. Fish that were treated with such mild chronic stresses both during embryonic and post-hatch larvae stages grew faster than unstressed fish, or fish that were treated at just the embryonic or just the post-hatch larvae stage.

The findings support the general notion that tighter regulation of factors in the water surrounding the fish during these early developmental phases could be utilised in a way to program the animal for improved performance in the aquaculture environment.


Leave a Reply

Your email address will not be published. Required fields are marked *