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Assembly lines are manufacturing systems in which a product is assembled progressively in workstations
by different workers or machines, each executing a subset of the needed assembly operations (or tasks).
We consider the case in which task execution times are worker-dependent and uncertain, being
expressed as intervals of possible values. Our goal is to find an assignment of tasks and workers to a min-
imal number of stations such that the resulting productivity level respects a desired robust measure. We
propose two mixed-integer programming formulations for this problem and explain how these formula-
tions can be adapted to handle the special case in which one must integrate a particular set of workers in
the assembly line. We also present a fast construction heuristic that yields high quality solutions in just a
fraction of the time needed to solve the problem to optimality. Computational results show the benefits
of solving the robust optimization problem instead of its deterministic counterpart.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Assembly lines are flow-oriented systems that rely on the divi-
sion of work. The operations needed to assemble a given product
are assigned to different workstations, and this assignment must
respect technical constraints, such as precedence relations
between tasks. In its basic form, the resulting optimization prob-
lem is known as the simple assembly line balancing problem
(SALBP) and its two most common variants consist in minimizing
the number of workstations needed while ensuring a given pro-
ductivity level (problem of type I) or maximizing productivity with
a fixed number of workstations (problem of type II). The reader
interested in the SALBP is referred to Baybars (1986), Scholl
(1999), Scholl and Becker (2006), Becker and Scholl (2006),
Boysen, Fliedner, and Scholl (2007, 2008), Battaïa and Dolgui
(2013), and Sivasankaran and Shahabudeen (2014).

One of the main assumptions of the SALBP is that task execution
times are worker-independent. This assumption is relaxed in the
assembly line worker assignment and balancing problem (ALWABP),
where one must simultaneously assign both tasks and workers to
stations. Our interest in the ALWABP is motivated by its applica-
tion to the management of assembly lines in sheltered work
centers for the disabled (SWDs) (Miralles, García-Sabater, Andrés,
& Cardos, 2007). Since the original study of Miralles et al. (2007),
the ALWABP has received a considerable amount of attention.
The problem has been tackled by means of heuristics (Blum &
Miralles, 2011; Chaves, Lorena, & Miralles, 2009; Moreira &
Costa, 2009; Moreira, Ritt, Costa, & Chaves, 2012; Mutlu, Polat, &
Supciller, 2013) and exact algorithms (Borba & Ritt, 2014;
Miralles, García-Sabater, Andrés, & Cardos, 2008; Vilà & Pereira,
2014). In addition, several authors have studied variants of the
problem with features such as job rotation schedules,
mixed-model production, parallel stations or worker collaboration
(Araújo, Costa, & Miralles, 2012, 2015; Cortez & Costa, 2015; Costa
& Miralles, 2009; Moreira & Costa, 2013). It is worth noting that
most of these studies have considered problems of type II, which
are relevant in the context of SWDs which usually aim to provide
work experience to as many workers with disabilities as possible.

In many types of decision problems, deterministic models are
inadequate and uncertainty should be taken into account explicitly
in the optimization model so as to properly represent real-life sit-
uations. In the case of assembly lines, uncertainty is often present
in task execution times and arises from a series of factors such as
the unpredictability and variability in work rates, as well as in skill
and motivation levels (Becker & Scholl, 2006). In the management
of SWDs, these variations can be very significant due to the high
heterogeneity of the workers and to their lack of prior work expe-
rience. Learning effects or successive improvements to the line are
sometimes modeled by means of dynamic task times, which use
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fuzzy numbers with known membership functions (e.g. Boucher,
1987; Toksarı, _Is�leyen, Güner, & Baykoç, 2010; Zacharia &
Nearchou, 2012). Other studies consider stochastic task execution
times under some probability distributions. For more details, see
Suresh and Sahu (1994), Nkasu and Leung (1995), Sotskov,
Dolgui, and Portmann (2006), Özcan (2010), Fazlollahtabar,
Hajmohammadi, and Es’aghzadeh (2011), Özcan, Kellegöz, and
Toklu (2011), Gurevsky, Battaïa, and Dolgui (2012, 2013).

Robust optimization (Gabrel, Murat, & Thiele, 2014) is a popular
approach for the handling of uncertainty when the probability dis-
tribution of the uncertain parameters is unknown. Here we assume
that only an interval of possible values for each task execution time
is available. We adopt a budget-of-uncertainty robustness
approach as proposed by Bertsimas and Sim (2003, 2004), which
has been successfully applied to a large variety of problems
(Alem & Morabito, 2011; Bertsimas & Thiele, 2006; Hazır, Erel, &
Günalay, 2011; Lu, Ying, & Lin, 2014; Moon & Yao, 2011; Solyalı,
Cordeau, & Laporte, 2012). According to this paradigm, the com-
bined scaled increase of uncertain parameters from their nominal
values is limited by a budget, as will be seen in the following sec-
tion. Hazır and Dolgui (2013) have proposed a robust approach for
the SALBP of type II by including an uncertainty budget on each
station, and have solved the resulting problem by means of a
Benders decomposition algorithm. Gurevsky, Hazir, Battaïa, and
Dolgui (2013) have considered a robust SALBP of type I which
was solved by branch-and-bound.

In this paper, we extend the approaches for the SALBP devel-
oped by Hazır and Dolgui (2013) and Gurevsky, Hazir et al.
(2013) to the ALWABP. We focus on the problem of type I, follow-
ing the framework proposed by Moreira, Miralles, and Costa (2015)
in which the ALWABP is extended beyond the context of SWDs to
that of conventional assembly lines. There, the goal is to integrate a
set of workers with disabilities in a conventional assembly line
while minimizing the number of extra stations needed, resulting
in the assembly line worker integration and balancing problem
(ALWIBP).

This paper makes four main scientific contributions. We first
introduce the robust assembly line worker assignment and balancing
problem with the objective of minimizing the number of worksta-
tions (RALWABP-1). We then describe two formulations for the
general problem and we explain how these formulations can be
adapted to handle the integration of a set of heterogeneous work-
ers (RALWIBP-1). Thirdly, we propose a fast heuristic for the
RALWIBP-1 which yields high quality solutions within short com-
puting times. Finally, we show that solving the robust problem
leads to much better solutions compared to solving its determinis-
tic counterpart.

The remainder of the paper is organized as follows. In Section 2,
we provide a formal definition of the problem and we introduce
our two mathematical models. This is followed by a description
of the heuristic in Section 3, and by the results of computational
experiments in Section 4. Finally, Section 5 ends the paper with
some conclusions and avenues for future research.
2. Problem description and formulations

Let S ¼ f1; . . . ;mg be a an ordered set of workstations,
W ¼ f1; . . . ; og a set of workers, with jWj ¼ jSj, and N ¼ f1; . . . ;ng
a partially ordered set of tasks. The partial order on the tasks can
be defined by an acyclic precedence graph G ¼ ðN; EÞ, where arc
ði; jÞ 2 E indicates that task i is an immediate predecessor of task
j. We also define the graph G� ¼ ðN; E�Þ as the transitive closure
of G, i.e., there exists an arc ði; jÞ 2 E� whenever there is a path from
i to j in G. In addition to the above definitions, we use the following
notation:
twi 2 N� [ f1g
 time of task i 2 N when executed by
worker w 2W;
Wi ¼ fw 2W : twi –1g
 set of workers who are able to
execute task i 2 N;
Nw ¼ fi 2 N : w 2Wig
 set of tasks that worker w 2W is
able to execute;
Di ¼ fj 2 N : ðj; iÞ 2 Eg
 set of immediate predecessors of
task i 2 N;
D�i ¼ fj 2 N : ðj; iÞ 2 E�g
 set of all predecessors of task i 2 N;

Fi ¼ fj 2 N : ði; jÞ 2 Eg
 set of immediate successors of task

i 2 N;

F�i ¼ fj 2 N : ði; jÞ 2 E�g
 set of all successors of task i 2 N.
Given a fixed productivity rate, associated with a cycle time c,
the aim of the ALWABP-1 is to determine an assignment of tasks
to workers minimizing the number of stations required while
respecting precedence relationships. In this study, we assume that
the task execution times are uncertain and have unknown proba-
bility distributions. We consider, however, that the execution
times are independent of each other and that the execution time
of task i by worker w belongs to the interval ½twi; twi þ t̂wi�, where
twi is the nominal value and t̂wi is the maximum deviation from twi.

Sections 2.1 and 2.2 present two RALWABP-1 formulations
adapted from Borba and Ritt (2014) and Moreira et al. (2015),
respectively. Although the model of Miralles et al. (2007) can also
be adapted to handle uncertainty, preliminary tests have shown
that finding feasible solutions to its robust counterpart is extre-
mely hard, even for moderate size instances. For this reason, we
do not consider it in this study. Section 2.3 considers the special
case of the RALWIBP-1.

2.1. A robust model based on the formulation of Borba and Ritt (2014)

Borba and Ritt (2014) introduced an ALWABP-2 formulation
that considers the assignment of tasks to workers and the relative
position of the workers in the assembly line. Let xwi be a binary
variable equal to one if and only if task i 2 N is assigned to worker
w 2W , and dvw be a binary variable equal to one if and only if
worker v precedes worker w. In order to modify their model for
the type-I problem, we introduce binary variables zw equal to
one if and only if worker w is assigned to the assembly line. We
also define parameter c as the maximum allowed cycle time in
the line. The modified model is the following:

M1 : minimize
X
w2W

zw ð1Þ

subject toX
w2Wi

xwi ¼ 1 i 2 N ð2Þ
X
i2Nw

twixwi 6 c w 2W ð3Þ

dvw P xvi þ xwj � 1 ði; jÞ 2 E; v 2Wi; w 2Wj n fvg ð4Þ
duw P duv þ dvw � 1 fu; v;wg# W; jfu;v ;wgj ¼ 3 ð5Þ
dvw þ dwv 6 1 v 2W; w 2W n fvg ð6ÞX
i2Nw

xwi 6 jNwjzw w 2W ð7Þ

xwi 2 f0;1g w 2W; i 2 Nw ð8Þ
dvw 2 f0;1g v 2W; w 2W n fvg ð9Þ
zw 2 f0;1g w 2W: ð10Þ

The objective function (1) minimizes the number of stations by
minimizing the number of workers assigned to the assembly line.
Constraints (2) ensure that each task is executed by one worker.
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Constraints (3) guarantee that the resulting workload at each sta-
tion does not exceed the desired cycle time. Precedence relations
are enforced by constraints (4): if task i is assigned to worker v,
task j is assigned to worker w and ði; jÞ 2 E, then worker v must pre-
cede worker w. Constraints (5) and (6) impose the transitivity and
the anti-symmetry of the precedence relationships, respectively.
Constraints (7) force a worker to be assigned to the assembly line
if there are tasks assigned to him.

Borba and Ritt (2014) have shown that the above model can be
strengthened through the following task continuity constraints:

xwj P xwiþxwq�1 i2N; j2 F�i ; q2 F�j ; w2Wi\Wj\Wq ð11Þ
xwqþxwi61 i2N; j2 F�i ; q2 F�j ; w2Wi\ðW nWjÞ\Wq: ð12Þ

Constraints (11) force task j to be executed by worker w whenever
both a preceding task i and a following task q are executed by the
same worker. Constraints (12) state that if a task i is assigned to
worker w and its successor (predecessor) j is infeasible for w
(twj ¼ 1), then no successor (predecessor) of j can be assigned to
w. We denote by M1� the augmented model M1 containing these
strengthening constraints.

To define the robust counterpart of model M1�, we use contin-
uous variables uwi measuring the scaled deviation of the processing
time of task i 2 Nw when executed by worker w 2W . We also
define a budget of uncertainty Cw for each worker w 2W . Using
this notation, we can write the following non-linear robust
model R1�:

R1� : minimize
X
w2W

zw ð13Þ

subject to

ð2Þ; ð4Þ—ð12Þ and

X
i2Nw

twixwi þmax
X
i2Nw

t̂wixwiuwi :
X
i2Nw

uwi 6 Cwuwi 2 ½0;1� i 2 Nw

( )
6 c

w 2W: ð14Þ

By associating dual variables hw and awi with the constraints in
the inner maximization problems in the left-hand-side of
constraints (14), the model can be linearized as follows (see
Bertsimas & Sim (2003, 2004)):

RL1� : minimize
X
w2W

zw ð15Þ

subject to

ð2Þ; ð4Þ—ð12Þ and

X
i2Nw

twixwi þ Cwhw þ
X
i2Nw

awi 6 c w 2W ð16Þ

hw þ awi P t̂wixwi w 2W; i 2 Nw ð17Þ
hw 2 Rþ w 2W ð18Þ
awi 2 Rþ w 2W; i 2 Nw: ð19Þ
2.2. A robust model based on the formulation of Moreira et al. (2015)

We now consider binary variables xsi taking value 1 if and only
if task i 2 N is assigned to station s 2 S, and binary variables ysw tak-
ing value 1 if and only if worker w 2W is assigned to station s 2 S.
Then, taking lw 2 R as a positive constant, the type I version of the
model proposed by Moreira et al. (2015) can be written as

M2 : minimize
X
s2S

X
w2W

ysw ð20Þ
subject toX
s2S

xsi ¼ 1 i 2 N ð21Þ

X
s2S

ysw 6 1 w 2W ð22Þ

X
w2W

ysw 6 1 s 2 S ð23Þ

X
s2S
sPk

xsi 6
X

s2S
sPk

xsj ði; jÞ 2 E; k 2 S n f1g ð24Þ

X
i2Nw

twixsi 6 c þ lwð1� yswÞ s 2 S; w 2W ð25Þ

xsi þ ysw 6 1 s 2 S; i 2 N; w 2W nWi ð26ÞX
i2Nw

xsi 6
X
w2W

jNwjysw s 2 S ð27Þ

X
w2W

ysþ1;w 6
X
w2W

ysw; s 2 S ð28Þ

xsi 2 f0;1g; s 2 S; i 2 N ð29Þ

ysw 2 f0;1g; s 2 S; w 2W: ð30Þ

The objective function (20) minimizes the number of stations,
while constraints (22) and (23) require that each worker be
assigned to a single station, and each station have at most one
worker, respectively. Constraints (21) force the assignment of all
tasks. Precedence relationships are imposed by constraints (24).
Note that we are using an adaptation of the inequalities proposed
by Ritt and Costa (2011) because these dominate the other forms of
precedence constraints. Constraints (25) ensure that the cycle time
is respected. Constant lw must be sufficiently large to make the
associated constraint redundant if ysw ¼ 0. Therefore, we take
lw ¼

P
i2Nw

twi � ti, where ti ¼ minw2Wi
ftwig. Constraints (26) take

care of incompatibilities between tasks and workers. Constraints
(27) imply that a worker must be assigned to a station if at least
one task is assigned to that station. Finally, the
symmetry-breaking constraints (28) establish an order in the use
of the ysw variables. The purpose of these constraints is to avoid
the presence of multiple equivalent solutions that would differ
only by the numbering of stations.

Analogously to the case of M1�, continuity constraints can be
written as:

xsj P xsi þ xsq � 1 s 2 S; i 2 N; j 2 F�i ; q 2 F�j ð31Þ
ysw þ xsi þ xsq 6 2 s 2 S; i 2 N; j 2 F�i ; q 2 F�j ;

w 2Wi \ ðW nWjÞ \Wq: ð32Þ

We denote by M2� the model obtained by adding constraints
(31) and (32) to M2. As before, we define uswi as a continuous vari-
able that measures the scaled deviation of the processing time of
task i 2 N when it is executed by worker w 2W in station s. Take
l0w as a positive constant such that l0w ¼

P
i2Nw
½ðtwi þ t̂wiÞ � ðti þ t̂iÞ�,

where t̂i ¼minw2Wi
ft̂wig. Model R2� can be defined as follows:

R2� : minimize
X
s2S

X
w2W

ysw ð33Þ

subject to

ð21Þ—ð24Þ; ð26Þ—ð32Þ and

X
i2Nw

twixsi þmax
X
i2Nw

t̂wixsiuswi :
X
i2Nw

uswi 6 Cwuswi 2 ½0;1� i 2 Nw

( )

6 c þ l0wð1� yswÞ s 2 S; w 2W: ð34Þ
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Let hsw and aswi be the dual variables associated with the constraints
in the inner maximization problem on the left-hand side of con-
straints (34). As before, using strong duality, a linear version of
model R2� can be written as

RL2� : minimize
X
s2S

X
w2W

ysw ð35Þ

subject to

ð21Þ—ð24Þ; ð26Þ—ð32Þ and

X
i2Nw

twixsiþCwhswþ
X
i2Nw

aswi6 cþ l0wð1�yswÞ s2 S; w2W ð36Þ

hswþaswi P t̂wixsi s2 S; w2W; i2Nw ð37Þ

hsw 2Rþ s2 S; w2W ð38Þ

aswi 2Rþ s2 S; w2W; i2Nw: ð39Þ
2.3. ALWIBP-1: a particular case

The assembly line worker integration and balancing problem of
type I (ALWIBP-1) is a particular case of the ALWABP-1 requiring
that a given subset of the workers be inserted in the assembly line.
Let H # W denote this set of workers. We propose two formula-
tions for the RALWIBP-1:

� BR: obtained from the RL1� model by adding constraints (40):
X
i2Nw

xwi P 1 w 2 H: ð40Þ
� MMC: composed by model RL2� with constraints (41):
X
s2S

ysw ¼ 1 w 2 H: ð41Þ

This problem arises, for example, in conventional assembly
lines when one must integrate workers with disabilities in the con-
text of corporate social responsibility policies. As in Moreira et al.
(2015), we assume that workers belonging to the set W n H have
homogeneous task execution times (denoted by ti) while those in
set H correspond to the workers with disabilities and have different
execution times for the same task. Moreover, these workers may
be unable to execute some tasks. Both models can be strengthened
by taking advantage of these characteristics. By defining
H ¼ f1; . . . ;xg and W ¼ f1; . . . ;x; . . . ; og, we can add the following
constraints to BR:

zwþ1 6 zw w 2W: ð42Þ

Constraints (42) are symmetry-breaking constraints and follow
from the fact that workers with disabilities must be assigned to the
line; these are defined as the first workers in the set W. We can also
eliminate redundant constraints in model MMC and reduce the
number of variables since it is not necessary to determine to which
workstations the homogeneous workers are assigned. To this end,
we follow the ideas proposed by Patterson and Albracht (1975). Let
� be an artificial task with t� ¼ tw� ¼ 0, and D� ¼ fi 2 N : Fi ¼£g be
a set of tasks that are the predecessors of �. Define the extended
sets N0 ¼ N [ f�g, W� ¼ H, Nw ¼ fi 2 N0 : w 2Wi \ Hg and
E0 ¼ E [ fði; �Þ : i 2 D�g. We first present an alternative M2�

formulation:

M2a� : minimize
X
s2S

sxs� ð43Þ

subject to

ð41Þ and
X
w2H

ysw 6 1 s 2 S ð44Þ
X
i2Nw

twixsi 6 c þ lwð1� yswÞ s 2 S; w 2 H ð45Þ
X
s2S

xsi ¼ 1 i 2 N0 ð46Þ
X

s2S
sPk

xsi 6
X

s2S
sPk

xsj ði; jÞ 2 E0; k 2 S n f1g ð47Þ

X
i2N0

tixsi 6 c s 2 S ð48Þ

xsi þ ysw 6 1 s 2 S; i 2 N0; w 2 H nWi ð49Þ
ysw 6

X
i2N

xsi s 2 S; w 2 H ð50Þ

xsi 2 f0;1g s 2 S; i 2 N0: ð51Þ

The objective function (43) minimizes the index related to the
last workstation, i.e., the one that executes the dummy task �.
Constraints (48) are the cycle time inequalities when a homoge-
neous worker is assigned to a station. Constraints (49) guarantee
that a worker from H is not assigned to tasks which he is not able
to execute. Constraints (50) guarantee that no worker from H is
assigned to a station with no tasks.

Following the steps described to obtain a linear robust formula-
tion described in Section 2.2, we redefine the robust MMC formu-
lation, where t̂� ¼ t̂w� ¼ 0, and qs and ksi are dual variables
analogous to variables hsw and aswi defined earlier. We also consider
C as the budget of uncertainty for all homogeneous workers. We
obtain the following model:

MMC : minimize
X
s2S

sxs� ð52Þ

subject to

ð41Þ; ð44Þ; ð46Þ; ð47Þ; ð49Þ; ð50Þ; ð51Þ and
X
i2N0

tixsi þ Cqs þ
X
i2N0

ksi 6 c s 2 S ð53Þ

qs þ ksi P t̂ixsi s 2 S; i 2 N0 ð54ÞX
i2Nw

twixsi þ Cwhsw þ
X
i2Nw

aswi 6 c þ l0wð1� yswÞ; s 2 S; w 2 H ð55Þ

hsw þ aswi P t̂wixsi; s 2 S; w 2 H; i 2 Nw ð56Þ
qs 2 Rþ s 2 S ð57Þ
ksi 2 Rþ s 2 S; i 2 N0 ð58Þ
hsw 2 Rþ; s 2 S; w 2 H ð59Þ
aswi 2 Rþ; s 2 S; w 2 H; i 2 Nw: ð60Þ
3. Constructive heuristic

Models BR and MMC can be solved by means of a
branch-and-cut algorithm implemented in a general-purpose MIP
solver such as CPLEX. In this section, we introduce a constructive
heuristic that is much faster than branch-and-cut and yields high
quality solutions.

The Robust Insertion Constructive Heuristic (RICH) procedure
relies on the constructive heuristic proposed by Moreira et al.
(2015) for theALWIBP-1. Given a starting solution, this heuristic
attempts to incorporate a set of workers by minimizing the num-
ber of additional stations needed. The RICH is made up of four
mains phases: (i) construction of an initial solution; (ii) segmenta-
tion of the assembly line; (iii) task assignment; and (iv) update of
the current solution. We describe each step in Sections 3.1–3.4,
respectively, and present a pseudo-code in Section 3.4.1.



Table 1
Elementary priority rules.

T Maximum task time over all workers and tasks
PW Maximum sum of twi and task times of all its available successors
TdL Maximum ratio of task time twi and identifier Li of the latest station

available for the assignment of task i
TdS Maximum ratio of task time twi and slack Li � Ei � �, where Ei is the

identifier of the earliest station available for the assignment of task i
and � � 0

F Maximum number of successors over all tasks

Table 2
Number of instances, out of 1600 instances tested, for which the solution obtained by
the ALWIBP-1 model was feasible for the RALWIBP-1.

C t̂wi (%)

1 5 10 50

1 606 97 16 0
2.5 406 11 0 0
5 260 2 0 0
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3.1. Step 1: initial solution

We consider as a starting point the solution obtained by an
adaptation of the heuristic of Scholl and Voss (1996). This is a
station-based method that sorts available tasks according to some
priority rules, and assigns them to the current station as long as the
cycle time constraints are respected. The modification of the
method to deal with the robust case requires changing the defini-
tion of the availability of a task. Let w0 be a candidate worker and
Us be the set of tasks that have already been assigned to station
s. A task i whose predecessors have already been assigned is avail-
able to be inserted in station s when operated by worker w0 if:

X
j2Us[fig

tw0 jþmax
X

j2Us[fig
t̂w0juj :

X
j2Us[fig

uj6Cw0uj2½0;1� j2Us[fig
( )

6c:

ð61Þ

Among the available tasks, that with best priority criterion is
selected. Table 1 presents the elementary priority rules used in this
phase. When no additional task can be added to the current station
without violating the cycle time constraint, the method moves to
the new empty station and the process is repeated until all tasks
have been assigned.
3.2. Step 2: segmentation of the assembly line

Let Wa # H be a set of workers that have not yet been assigned.
Consider the set Sc of candidate stations for the assignment of
worker w 2Wa. Define sb as the last processed station (in terms
of tasks and workers) and mc as the total number of stations in
the current solution. Then we define Sc as

Sc ¼ sb þ 1; . . . ; sb þ 1þ mc � sb

jWaj

� �� �
: ð62Þ

In words, we use a sequential procedure in which only a frac-
tion of the available stations are considered for the assignment of
a candidate worker, at each step. The size of this fragment is given
by the ratio between the remaining stations in the line and the
number of workers not yet assigned. This conservative approach
enhances the probability of being able to assign all workers since
a considerable part of the line is always ‘‘protected’’ for future
assignments. It also has the beneficial side-effect of distributing
the heterogeneous workers along the line, which is associated with
a better integration of these workers.
3.3. Step 3: task assignment

In this step, we obtain a solution by considering all assignments
of workers in Wa to stations in Sc , one at a time. When a station
s 2 Sc is considered for the assignment of worker w 2Wa, we fix
the allocation of tasks and workers in stations prior to s. For station
s and those that follow, the solution is reconstructed with a mod-
ification of the Scholl and Voss (1996) heuristic to take robustness
into account (see Section 3.1).

We adopt the elementary priority rules shown in Table 1, based
on their good performance on similar problems, as verified in Otto
and Otto (2014). In order to obtain diversified solutions, we apply
the principle of aggregation, prioritizing the maximum value of the

following rules: T1%c , T3:3%c , PW1%c , PW3:3%c , TdL1%c , TdL3:3%c , TdS1%c ,

TdS3:3%c , F5%n and F10%n. For those rules that consider the task times
(resp. number of successors), this strategy rounds the priority cri-
terion to a multiple of a percentage of cycle time (resp. number of
tasks), with the goal of preserving or even reducing some portion

of ‘‘noise’’ in its value. For example, consider rule T1%c , which is
evaluated as ti

0:01c

� �
0:01c. Taking c ¼ 1000, t1 ¼ 185 and t2 ¼ 512,

task aggregated at 1%c-level will be t1%c
1 ¼ 180 and t1%c

1 ¼ 510. In
both elementary and aggregated rules, we consider the task index
as a tie break. Motivated by the insights reported in Otto and Otto
(2014) concerning composite rules, we combine the five elemen-
tary rules in pairs such that the first rule can receive weights 1, 2
and 0.5 (the weight of the second rule is fixed to 1). Changing
the roles of the primary and secondary rules, we arrive at a total
of 3 � 5 � 4 = 60 combinations. Overall, 75 different pairs of rules
were considered.

3.4. Step 4: selection of the best assignment

In each step, the best solution x� obtained among all combina-
tions of w 2Wa and s 2 Sc is chosen. Suppose that x1 and x2 are
solutions obtained by different assignments of w and s. We state
that x1 is better than x2 (x1 < x2) if the number of stations in x1

is smaller than in x2. If a tie occurs, we select the solution with
the smaller value of the smoothness index, which measures the
imbalance level of the assembly line (Scholl, 1999).

3.4.1. Formal pseudo-code
Let x be a solution to the original SALBP problem, possibly

already modified with the inclusion of workers in H in stations
prior to a given station s. We define genSol(x; s) as a function that
takes a solution x as an input, assigns tasks to workers in stations
prior to s, and uses the method described in Section 3.3 for the
assignment of the remaining stations. We also define stsðxÞ as a
function returning the number of stations in solution x.
Algorithm 1 provides the pseudo-code of the RICH procedure.

Line 1 creates an initial solution as explained in Section 3.1. The
division of the assembly line into segments of candidate stations is
performed in lines 4 and 17. Lines 6–19 correspond to the main
loop of the procedure, where lines 7–14 are related to Step 3 and
lines 15–18 are related to Step 4.

Note that one can use the same strategy in a backward fashion,
by first assigning workers at the end of the line and then moving to
the beginning. In this case, the updates in lines 4 and 17 become

Sc  mc
jWa j

l m
; . . . ;mc

n o
and Sc  sb�1

jWa j

j k
; . . . ; sb � 1

n o
, respectively.

Since the tasks and workers assigned to the end of the line are kept
fixed, the algorithm may need to insert intermediate stations. The
tie breaker is the same as the one described in Section 3.4.

In addition to assigning workers in a forward or backward man-
ner, we can reverse the direction of the precedence arcs. This way,
an assignment of workers and tasks will still be valid but, due to
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the heuristic nature of the approach, different solutions can be
obtained. Combining the two possible precedence directions (for-
ward – normal or backward – reversed) with the direction of
assignment of workers, we have four possible variants of the
algorithm.

4. Computational results

The models and algorithms were coded in C++. We used the
branch-and-cut framework of IBM CPLEX 12.6 as MIP solver. The
tests were carried out on an Intel Xeon X550 2.67 GHz processor
with 12 GB of memory and running under Linux. Four threads were
used for each example. Finally, we imposed limits of time and
search space of 1 h and 6 GB, respectively.

Algorithm 1. Robust Insertion Constructive Heuristic (RICH).
1: Let xi be an initial SALBP solution;
2: mc  stsðxiÞ;
3: Wa  H;

4: Sc  1; . . . ; mc
jWa j

l mn o
;

5: Let x� be the incumbent solution;
6: while Wa – £ do
7: for all w 2Wa do
8: for all s 2 Sc do
9: xc  genSol(xi, s);

10: if xc < x� then
11: wb  w; sb  s; x�  xc;
12: end if
13: end for
14: end for
15: Wa  Wa n fwbg;
16: mc  stsðx�Þ;
17: Sc  sb þ 1; . . . ; sb þ 1þ mc�sb

jWa j

j kn o
;

18: xi  x�;
19: end while
20: return x� (best solution found).

We have performed computational experiments using the
benchmark of Moreira et al. (2015) for the ALWIBP-1. These
authors have selected 100 SALBP instances from Otto, Otto, and
Scholl (2013) from which the base task precedence graph and
the task execution times (ti) were extracted. ALWIBP-1 instances
were then generated by introducing task time variations for one
of the workers (in the ranges U½ti;2ti� and U½ti;5ti�) and task/worker
incompatibilities (set at 10% or 20% of the tasks). They used the
same scheme to generate examples with two, three and four
Table 3
Number of solutions per status.

C Status BR
t̂wi (%)

1 5 10

1 Optimal 918 794 677
Feasible 678 798 905
Unavailable 4 8 18

2.5 Optimal 873 649 476
Feasible 720 935 1091
Unavailable 7 16 33

5 Optimal 518 486 450
Feasible 1015 1022 1060
Unavailable 67 92 90
heterogeneous workers. In this study, we consider the group of
1600 mid-size instances with 50 tasks, since preliminary tests
showed that the models BR and MMC had difficulty in identifying
feasible solutions for larger instances. We determined the addi-
tional task times t̂wi;w 2W and i 2 N, as 1%, 5%, 10% and 50% of
their nominal values twi. Also, we set the budget of uncertainty
parameter Cw equal to C for each w 2 H, where C can take values
of 1, 2.5 and 5. These values are chosen to represent situations with
low total uncertainty, in which the combined scaled change in the
execution times is limited by one, to situations where this param-
eter can reach 5, which was the average number of tasks executed
by a worker in the tested instances. In Section 4.1, we give the
results for the robust formulations, while the heuristic approaches
are analyzed in Section 4.2.
4.1. Experiment 1: formulations

For the execution of both models, an upper bound on the num-
ber of stations is computed as the number of stations obtained by
the adaptation of the Scholl and Voss (1996) heuristic for the
robust case increased by jHj. Concerning the priority rule, we con-
sider the combination (TdL, Id, 1), the best elementary one accord-
ing to Otto and Otto (2014). The first set of experiments, presented
in Table 2, evaluates the number of best solutions obtained by the
ALWIBP-1 model (Moreira et al., 2015) that are acceptable for the
RALWIBP-1. In this table, we show the percentage of acceptable
ALWIBP-1 solutions for each combination of the parameter C
and the percentage of additional time t̂wi (recall that for each com-
bination of budget and percentage of additional time, we have
tested 1600 instances). One can see that in most cases, a solution
to the deterministic problem is in fact infeasible for the robust
counterpart, even when considering low levels of task time vari-
ability and budget of uncertainty. This justified the need to explic-
itly solve the robust problem.

Table 3 summarizes the overall performance of the RALWIBP-1
models concerning the number of instances solved. Columns 1 and
2 indicate the values of ‘‘Budget’’ and the ‘‘Status’’ of the solutions,
respectively. Columns ‘‘1’’, ‘‘5’’, ‘‘10’’ and ‘‘50’’ represent the num-
ber of instances whose best solutions obtained within the time
limit of 1 h were ‘‘Optimal’’, ‘‘Feasible’’ or ‘‘Unavailable’’ during
the time limit for additional task times t̂wi of 1%, 5%, 10% and 50%
of the nominal task times twi. The MMC formulation outperforms
the BR model taking into account the number of optimal solutions
and the unsolved problems in all scenarios. This superiority is con-
firmed by the following tests, in which we consider solutions that
are at least feasible for both models.

We now look at the price of robustness, defined in this context
as the percentage of additional stations needed in the robust solu-
tion with respect to its deterministic counterpart. Table 3 presents
MMC
t̂wi (%)

50 1 5 10 50

273 1311 1278 1192 915
1248 288 322 408 684

79 1 0 0 1

13 1277 1177 1024 746
1361 323 423 576 852

226 0 0 0 2

383 1175 1086 953 780
1129 425 514 647 813

88 0 0 0 7



Table 4
Average price of robustness (%) considering the best solution of BR and MMC.

C t̂wi (%)

1 5 10 50

1 0.48 1.81 3.76 19.74
2.5 0.72 3.49 6.73 36.69
5 0.97 4.56 9.06 46.91

Table 5
Average gap (%) of BR and MMC models obtained by the MIP solver.

C BR MMC
t̂wi (%) t̂wi (%)

1 5 10 50 1 5 10 50

1 10.49 12.01 12.38 22.62 1.77 1.99 2.64 7.75
2.5 12.05 13.95 16.23 33.67 2.03 2.71 4.13 13.09
5 11.79 15.13 18.73 38.06 2.12 3.27 5.00 14.73

Table 6
Average computational time (s) of BR and MMC models obtained by the MIP solver.

C BR MMC
t̂wi(%) t̂wi(%)

1 5 10 50 1 5 10 50

1 1929 2147 2340 3066 868 948 1119 1632
2.5 2024 2410 2712 3538 970 1181 1458 1947
5 2073 2496 2948 3545 1001 1327 1677 2190

Table A.8
Price of robustness (%) considering the best solution of BR and MMC.

C jW j Var Inc t̂wi (%)

1 5 10 50

1 1 2 10 0.28 1.38 3.69 20.10
20 0.56 1.41 3.65 19.89

5 10 0.57 2.14 3.43 19.13
20 0.24 1.71 3.27 18.90

2 2 10 0.64 1.82 3.28 19.29
20 0.78 2.20 3.73 20.25

5 10 0.53 2.19 4.02 19.61
20 0.11 2.04 4.44 20.41

3 2 10 0.71 1.58 3.82 20.71
20 0.37 1.41 3.69 20.00

5 10 0.56 1.85 3.69 19.38
20 0.65 1.56 3.40 18.70

4 2 10 0.38 2.15 4.45 20.89
20 0.33 1.49 3.82 19.42

5 10 0.50 2.24 3.47 19.54
20 0.39 1.86 4.32 19.55

Average 0.48 1.81 3.76 19.74

2.5 1 2 10 0.63 3.72 6.52 37.28
20 0.65 3.70 6.47 37.14

5 10 0.69 3.21 6.26 37.88
20 0.45 2.96 6.37 36.97

2 2 10 1.06 3.18 6.19 37.61
20 0.78 3.45 7.15 37.42

5 10 0.67 3.77 7.15 36.51
20 0.34 3.43 6.98 37.13

3 2 10 0.79 3.64 7.51 37.90
20 0.55 3.34 7.37 37.48

5 10 0.41 3.73 6.30 35.60
20 0.87 3.05 5.47 34.22

4 2 10 0.96 4.13 7.49 37.34
20 0.84 3.56 6.91 36.93

5 10 1.06 3.06 6.49 34.90
20 0.74 3.98 6.97 34.76

Average 0.72 3.49 6.73 36.69

5 1 2 10 0.64 4.47 9.80 49.71
20 0.65 4.30 9.38 48.66

5 10 1.49 4.04 8.86 48.45
20 0.80 4.21 9.53 47.67

2 2 10 1.06 4.18 8.88 48.35
20 1.20 4.68 9.62 48.20

5 10 0.74 4.94 9.13 46.28
20 0.86 5.26 8.64 46.87

3 2 10 1.04 4.48 9.20 48.09
20 0.63 5.35 9.59 47.03

5 10 0.61 4.18 8.49 44.84
20 1.12 3.77 7.96 43.33

4 2 10 1.10 5.60 9.48 48.24
20 1.19 4.39 8.70 46.45

5 10 1.48 4.55 9.02 44.87
20 0.86 4.56 8.60 43.48

Average 0.97 4.56 9.06 46.91
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these figures for different values of C and t̂wi. The higher the addi-
tional task times or the safety parameter C, the higher the price to
pay (in terms of additional stations) in order to guarantee robust
solutions (these results are more detailed in Table A.8 of
Appendix A). In a practical context, the manager can use this infor-
mation to decide the appropriate level of robustness desired
(expressed as the parameter C) as a trade-off between the increase
in the line cost in the robust solution versus the cost of stopping
the line and reprocessing products in the case the deterministic
solution is chosen (see Table 4).

In Tables 5 and 6, with respect to the average gap obtained by
CPLEX and the computational effort to solve the models, we
observe that large values of C and t̂wi increase the computing
times. The MMC model is faster than BR, requiring approximately
half of the time, on average, to solve the instances. The good per-
formance of the MMC is due to the way it considers the presence
of homogeneous workers, avoiding the redundancy of constraints.
Complete results can be seen in Tables A.9 and A.10 of Appendix A.
Table 7
Results obtained by the RICH.

C t̂wi (%) Gap� (%) (Pr. rule) Gap+ (%) (Pr. rule) Gap (%) Ties (%) Impr (%) (#inst)

1 1 3.97 (F, TdS, 1) 4.69 (F10%n , Id, 1) 4.37 58.20 �13.33 (1)

5 4.14 (F, PW, 2) 4.85 (F10%n , Id, 1) 4.47 56.56 �6.67 (1)

10 3.97 (PW, TdS, 1) 4.69 (F10%n , Id, 1) 4.40 56.65 �11.76 (1)

50 3.21 (PW3:3%c , Id, 1) 4.21 (F10%n , Id, 1) 3.52 60.85 �5.69 (34)

2.5 1 4.06 (F, PW, 2) 4.73 (T, TdL, 1) 4.44 57.26 – (0)
5 3.99 (F, PW, 1) 4.74 (F10%n , Id, 1) 4.37 57.02 – (0)

10 3.98 (F, PW, 2) 4.74 (F, Id, 1) 4.28 56.73 �5.56 (1)
50 2.54 (PW, T, 2) 3.85 (F10%n , Id, 1) 2.76 62.45 �5.89 (98)

5 1 4.00 (F, PW, 2) 4.76 (T, F, 1) 4.45 57.11 – (0)
5 6.45 (F, PW, 1) 7.19 (F10%n , Id, 1) 6.78 36.20 �6.67 (1)

10 3.56 (F, PW, 2) 4.41 (F10%n , ID, 1) 3.89 59.13 �6.11 (2)

50 2.03 (PW3:3%c , Id, 1) 3.58 (F10%n , Id, 1) 2.33 62.59 �6.51 (128)



Table A.9
Gap (%) of BR and MMC models obtained by the MIP solver.

C jWj Var Inc BR MMC
t̂wi (%) t̂wi (%)

1 5 10 50 1 5 10 50

1 1 2 10 8.52 10.71 13.93 22.30 0.33 0.67 0.93 5.43
20 10.16 12.48 13.54 23.86 0.23 0.39 1.00 5.02

5 10 10.91 7.66 9.26 19.25 0.74 0.46 0.79 5.23
20 8.37 9.70 9.65 21.20 0.47 0.49 1.26 4.86

2 2 10 12.12 14.77 14.34 21.68 0.97 1.02 1.24 5.14
20 10.31 13.45 13.61 24.10 0.86 1.25 1.31 6.48

5 10 7.90 11.42 8.98 19.73 1.07 1.45 2.38 6.68
20 7.68 11.09 10.42 20.44 1.07 1.98 2.66 7.55

3 2 10 11.22 14.61 14.75 25.97 1.16 1.17 2.11 8.23
20 11.92 13.80 13.26 25.15 1.43 1.28 2.35 7.99

5 10 11.43 11.50 10.75 22.23 2.23 2.76 3.72 9.52
20 7.99 9.46 10.84 20.88 2.54 2.60 3.16 8.49

4 2 10 14.99 15.46 17.06 26.98 2.44 2.83 3.38 9.21
20 12.40 13.48 13.63 24.63 2.26 2.48 3.25 9.00

5 10 11.14 12.61 12.84 22.56 5.46 4.92 5.93 12.42
20 10.82 9.89 11.28 20.95 5.06 6.10 6.82 12.80

Average 10.49 12.01 12.38 22.62 1.77 1.99 2.64 7.75

2.5 1 2 10 11.35 13.32 16.52 36.79 0.58 1.05 1.79 10.42
20 11.28 13.18 15.86 33.96 0.52 1.03 1.81 10.44

5 10 12.70 12.90 15.00 34.01 0.72 1.04 2.19 11.20
20 10.58 11.98 12.67 31.41 0.48 1.04 2.95 11.73

2 2 10 14.62 12.85 18.83 36.59 1.11 1.38 2.98 11.51
20 12.26 13.25 16.16 34.17 0.88 1.23 3.33 12.28

5 10 10.36 12.70 13.68 31.99 1.21 1.93 3.46 11.97
20 8.58 12.05 13.71 30.72 1.45 2.03 3.42 13.10

3 2 10 12.71 17.17 19.30 37.55 1.62 2.80 4.61 12.29
20 11.87 14.37 18.76 37.22 1.46 2.52 3.92 12.84

5 10 12.23 12.72 15.28 31.95 2.86 3.75 5.43 14.23
20 10.98 13.11 14.18 29.84 3.02 3.31 4.79 14.89

4 2 10 14.00 17.37 17.87 36.78 2.40 3.62 4.89 13.53
20 14.82 17.67 18.59 35.07 2.27 3.81 5.20 13.94

5 10 13.43 14.21 17.01 30.37 6.08 6.03 7.81 17.96
20 11.00 14.35 16.19 30.30 5.77 6.81 7.48 17.03

Average 12.05 13.95 16.23 33.67 2.03 2.71 4.13 13.09

5 1 2 10 10.73 16.38 21.99 40.66 0.58 1.15 3.32 11.63
20 10.00 14.83 22.93 41.76 0.56 1.07 3.07 10.88

5 10 13.04 11.13 17.61 40.03 1.23 1.33 2.94 12.25
20 11.23 12.30 16.85 37.77 0.59 1.67 3.30 11.76

2 2 10 11.96 17.18 19.43 39.39 1.24 1.91 3.83 12.91
20 11.98 15.79 19.33 40.24 0.99 1.67 3.62 13.00

5 10 10.83 13.98 18.17 34.79 1.35 2.64 4.20 14.99
20 9.03 11.84 15.44 36.14 1.54 2.87 3.84 13.72

3 2 10 13.83 17.57 21.13 39.96 1.39 3.17 4.61 14.10
20 11.17 16.17 18.91 39.49 1.60 3.54 4.72 13.44

5 10 11.83 15.76 16.92 35.36 2.91 4.43 6.21 16.83
20 9.26 13.15 15.93 35.32 3.07 4.32 6.31 16.63

4 2 10 15.86 19.52 20.87 41.81 2.58 3.98 6.08 15.43
20 15.35 16.54 19.72 39.93 3.03 3.58 6.10 15.93

5 10 12.58 15.44 19.38 33.09 5.50 7.28 8.79 21.44
20 9.92 14.49 15.00 33.25 5.82 7.71 9.02 20.70

Average 11.79 15.13 18.73 38.06 2.12 3.27 5.00 14.73
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4.2. Experiment 2: constructive heuristic

Table 7 presents the results of the RICH algorithm for the
RALWIBP-1. Columns 1 and 2 provide averages for each combina-
tion of budget and additional task time. Columns ‘‘Gap� (%) (Pr.
Rule)’’ and ‘‘Gap+ (%) (Pr. Rule)’’ show the deviations obtained by
the priority rule which had the best and worst performance,
respectively. Column ‘‘Gap (%)’’ presents the average deviation con-
sidering the best result over all priority rules. Note that in these
three columns, we have compared the heuristic solution with the
best solutions obtained by the BR and MMC models. Column ‘‘Tie
(%)’’ represents the percentage of instances for which we obtained
the same value of objective function as in the best known solu-
tions. Column ‘‘Impr (%) (#inst)’’ presents the percentage of
improvement and the number of instances in which the RICH
was the best, since in some cases none of the formulations could
prove optimality.

On average, the heuristic runs within less than one second. By
analyzing Tables 3 and 7, we find that the quality of the gap is inver-
sely proportional to the number of optimal solutions. Composite
rules involving priority rules F and PW yield the best results. On
the other hand, aggregated rules did not work well, as one can see
in Column ‘‘Gap+ (%) (Pr. Rule)’’. Nevertheless, the algorithm appears
to be robust, since the difference between the best and worst gaps is
small. The percentage of ties (about 60%) demonstrates the accuracy
of the RICH. Concerning the improvements found by the heuristic,
we can note that they coincide with the scenarios whose number
of optimal solutions are lower. This can be explained by the fact that
the feasible solutions obtained by the models in these cases are
mostly equal to the pre-defined upper bound.



Table A.10
Computational time (s) of BR and MMC models obtained by the MIP solver.

C jW j Var Inc BR MMC
t̂wi (%) t̂wi (%)

1 5 10 50 1 5 10 50

1 1 2 10 1652 1844 2203 2833 169 437 463 1165
20 1581 1903 2186 3018 142 270 488 1252

5 10 1797 1810 1957 2976 346 331 504 976
20 1611 1910 1958 2853 246 283 566 932

2 2 10 1941 2173 2111 2923 470 495 653 1419
20 1810 2089 2298 2977 460 587 630 1440

5 10 1813 2077 2223 3012 660 804 1020 1462
20 1698 2246 2447 3219 629 958 1100 1356

3 2 10 1969 2191 2534 3072 664 780 1086 1832
20 1974 2112 2477 3114 745 735 1062 1726

5 10 2041 2269 2358 3140 1285 1426 1583 1983
20 2039 2009 2299 3136 1405 1347 1370 1815

4 2 10 2253 2520 2722 3258 1227 1444 1596 1934
20 2235 2295 2653 3249 1238 1307 1604 1976

5 10 2270 2534 2511 3120 2147 2002 2150 2533
20 2174 2373 2500 3150 2050 1970 2026 2305

Average 1929 2147 2340 3066 868 948 1119 1632

2.5 1 2 10 1816 2223 2449 3504 249 496 828 1710
20 1648 2360 2456 3483 242 569 834 1815

5 10 1933 1985 2485 3501 409 554 980 1523
20 1729 2055 2591 3482 268 557 1228 1558

2 2 10 2056 2156 2757 3517 543 668 1132 1644
20 1882 2171 2769 3518 450 654 1342 1742

5 10 1879 2418 2691 3560 748 969 1367 1732
20 1734 2448 2621 3567 795 1045 1258 1844

3 2 10 1997 2513 2933 3568 830 1290 1654 1677
20 2005 2546 2901 3535 816 1216 1534 1947

5 10 2173 2509 2689 3566 1484 1689 1764 2327
20 2157 2331 2702 3513 1470 1525 1528 1842

4 2 10 2403 2749 2749 3588 1377 1725 1771 2137
20 2325 2688 2792 3587 1321 1637 1890 2287

5 10 2431 2667 2836 3571 2310 2168 2119 2773
20 2213 2738 2975 3554 2213 2129 2099 2593

Average 2024 2410 2712 3538 970 1181 1458 1947

5 1 2 10 1746 2297 2973 3546 263 524 1312 1634
20 1685 2191 3005 3551 283 529 1267 1496

5 10 1950 2182 2858 3483 527 630 1276 1460
20 1778 2276 3017 3484 309 775 1235 1629

2 2 10 2053 2453 2961 3542 599 844 1453 2050
20 1988 2378 3043 3540 535 886 1430 1809

5 10 1924 2617 2927 3503 786 1264 1522 2235
20 1807 2375 2745 3519 855 1282 1505 1796

3 2 10 2135 2572 2918 3578 779 1432 1723 2210
20 1944 2657 2820 3550 828 1551 1802 2322

5 10 2234 2629 2913 3576 1483 1879 1903 2410
20 2181 2443 2981 3594 1525 1712 1696 2680

4 2 10 2561 2809 2914 3600 1310 1726 1939 2521
20 2373 2637 2918 3535 1409 1693 1984 2613

5 10 2509 2731 3223 3576 2288 2259 2475 2997
20 2300 2687 2957 3551 2243 2242 2316 3185

Average 2073 2496 2948 3545 1001 1327 1677 2190
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To measure the modification of the initial solution by the RICH,
we use the Solution Similarity Index (SSI) proposed in Otto and
Otto (2014). This metric computes the percentage of pairs of tasks
assigned together in two solutions. We observe in our tests that
approximately 23% of these keep their same relative position when
considering 1%, 5% and 10% time deviations. For the higher value of
deviation, this average increases to 47%. Finally, we observe that
the forward allocation of workers with a backward graph yielded
the best results, followed by the forward–forward scheme.

5. Conclusions

The consideration of uncertainty in assembly lines has recently
gained attention in the scientific literature. It is also an important
preoccupation in practice since variations in task execution times
can significantly affect performance. This study introduces a robust
assembly line balancing problem with heterogeneous workers
under task time uncertainty, and focusing on the special case of
the problem requiring the integration of a given set of workers.
Two models and a constructive heuristic were designed.
Computational experiments taking into account a range of different
instances have shown the difficulty of solving the RALWIBP-1 to
optimality, even though feasible solutions were obtained in most
cases. We have developed an efficient heuristic procedure called
robust insertion constructive heuristic (RICH). This heuristic yields
high quality solutions (with an average gap of 4%) within comput-
ing times that do not exceed one second on the tested cases. It also
identified the best known solution for many of the instances.

The results indicate that the proposed approach can provide
solutions that are considerably more robust to task time variation
at relatively low increase in the number of stations and workers
needed. This provides an effective tool for line assembly managers
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when designing more stable lines. From this practical point of
view, further research might investigate this topic from a cost per-
spective, computing the added value of robustness as a trade-off
between the savings obtained with less line interruption and pro-
duct reprocessing versus the added cost of a larger line.
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Appendix A

The extended Tables A.8–A.10 show the average values of price
of robustness, optimality gap and computational times obtained by
the RALWIBP-1 models. The results are grouped according to the
characteristics of the instances: jWj (number of workers to be
inserted in the assembly line), ‘‘Var’’ (variability of task execution
times) and ‘‘Inc’’ (percentage of incompatible tasks). The remaining
columns, namely ‘‘1’’, ‘‘5’’, ‘‘10’’ and ‘‘50’’, represent the results for
each variation of percentage of additional nominal task time.
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