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ABSTRACT

Public investment in river restoration through environmental watering has increased substantially in
recent years. To sustain public support for such investment, management of environmental water must
achieve the best possible outcomes in a transparent and defensible manner. The current management of
environmental water relies on the ability of managers to estimate the impacts of their decisions under
complex scenarios, often with multiple interdependent decisions that span over different spatial and
temporal scales. Optimization modeling has been widely used in other forms of conservation manage-
ment and an increasing body of literature documents the development of optimization models that could
be used to improve environmental water decisions. This paper reviews this disparate research, showing
that there are a range of different questions addressed using this modeling approach and that the
representation of environmental outcomes varies. Future work must focus on improved adoption
through engagement with end users and stakeholders during model development.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The growing human demand for water is placing increasing
pressures on the worlds’ water resources and ecosystems
(Vorosmarty et al. (2010), with projected growth in food demand
and irrigation likely to further stress water resources in many re-
gions. There is wide recognition and growing political will to balance
requirements for human water use with conservation of instream
environments (Richter, 2014; Pegram et al., 2013; Hart, 2015),
resulting in increased public investment in providing environmental
flows (PC, 2010). To justify and protect this public investment, it is
important that environmental flows are managed to achieve the best
possible outcomes in a transparent and defensible manner.

Many methods have been developed to determine ‘environ-
mental flow’ requirements (Tharme, 2003; Arthington, 2012).
However, translating ecological principles and knowledge into
operational decisions for environmental flow delivery remains a
formidable challenge (Harman and Stewardson, 2005). Environ-
mental water managers all over the world are being asked to
achieve the best outcome with limited resources, and so methods
that can trade off and balance competing environmental water-
ing objectives are urgently needed (Acreman et al., 2014; Richter,
2014; Poff et al.,, 2015). The most common decision-making
approach for environmental water delivery is based upon the
accumulated experience of managers — so-called ‘experience-
based practice’ (Cook et al., 2010). Decisions rely on the ability of
managers to analyze complex scenarios, often with decisions
nested within spatial and temporal dimensions (Turak and Linke,
2011). If considering even a single storage release, then an allo-
cation may be delivered as one of an infinite number of potential
sequential releases, all of which influence flow event magnitude,
duration, seasonality, inter-annual variation and rates of change
of flow at multiple downstream locations. The decisions are
further complicated by the presence of: multiple points at which
flows might be manipulated by dams, weirs or diversions; in-
teractions with releases for consumptive users; and uncertain
tributary inflows. Assessing the ecological consequences of these
complex environmental flow decisions should ideally recognize
that river “macrosystems” are hierarchical dynamic networks,
influenced by strong directional connectivity that integrates
processes across multiple scales and broad distances through
space and time (McCluney et al., 2014). The complex interactions
of these dynamic river macrosystems make environmental water
decisions particularly difficult to undertake with informal,
experience-based, approaches to decision-making. The increase
in the number of countries that hold environmental water rights
or reserves that require active ongoing management of water has
highlighted these challenges (Le Quesne et al., 2010; O'Donnell,
2013). For example, in Australia, there are environmental water
managers with a legal responsibility to manage environmental
water rights in a transparent and accountable way
(Commonwealth of Australia, 2007). They are looking to decision
frameworks and support tools to improve the consistency and
transparency of their decisions. The complexity of the decision
space lends itself to the use of decision support tools. Such tools
build on available data and expert opinion to model the link
between the available management decisions and the environ-
mental objectives. In this review, we examine existing optimi-
zation based decision support tools that focus on environmental
water release decisions, using a range of optimization techniques.
There are a number of other modeling tools that are used to
assist in water planning decisions (for example, Multi Criteria
Decision Analysis used in Ryu et al., 2009) however this paper
focuses on the increasing use of optimization to address envi-
ronmental watering decision making.

The use of analytical capabilities, data and tools to help tackle
complex environmental problems has greatly increased (Gomes,
2009). One method is optimization modeling, which has been
widely used to share water resources across multiple and
competing consumptive users (Labadie, 2004) and in conservation
management (Sarkar et al., 2006). Optimization modeling has the
potential to support and inform the more informal decision making
approaches, improving both the efficiency and transparency of
decisions (Liebman, 1976; Maier et al., 2014). Even though the
complexity of environmental systems is sometimes raised as
limiting the usefulness of decision support tools (Rizzoli and Young,
1997), many of the challenges involved in representing environ-
mental systems (e.g. dynamics, spatial coverage, complexity of in-
teractions, randomness, periodicity, heterogeneity, scale and
paucity of information; Guariso and Werthner, 1989) also exist in
other fields where optimization has been readily adopted. There is a
growing body of literature examining optimization as a tool for
improving environmental water management. This paper (Section
2—5) synthesizes this existing effort, identifying common ap-
proaches, strengths, weaknesses and gaps. Importantly, this review
focuses attention on literature that has viewed environmental
water releases as a decision, not as a constraint. Chief among our
conclusions (Section 6) is that almost none of this research has yet
been used to inform actual environmental flow management de-
cisions. This research therefore remains at the proof-of-concept
phase and awaits the transition to uptake by water management
practitioners. A future focus on adoption is vital if such research is
to make this shift and have practical impacts on the way environ-
mental water is managed.

2. Review of existing optimization models - literature search

We used a combination of search terms “environmental flow” or
“environmental water” with “optimization” or “optimisation” in
Thomson ISI web of science, Science Direct, JSTOR and Google
scholar. Additional papers were located by searching bibliographies
of papers found during the search — a ‘snowball search’, and
through the professional knowledge and peer networks of the
authors (Greenhalgh and Peacock, 2005). We only considered
studies with an active decision variable concerning the volume of
water released from storage for environmental purposes. This ex-
cludes studies that include legislated environmental water re-
quirements modelled as constraints rather than decision variables.
For example, in a review of storage models for hydropower gen-
eration, Jager and Smith (2008) found that nearly half of the models
included environmental flows as a constraint on minimum flow
releases. Where environmental flows are included as a fuzzy
constraint, (i.e., there is still a decision around the quantity of
release, albeit not through a decision variable), the study was
included in this review. We excluded a number of studies that
consider other aspects of managing environmental water, such as
management of infrastructure associated with environmental wa-
tering (e.g. Higgins et al., 2011), or the least cost approach to
acquiring environmental water (e.g. Hollinshead and Lund, 2006).
Overall, 42 studies fulfilled the inclusion criteria, with more than
half published since 2012 (Fig. 1).

3. What questions and timescales do the studies address?

With the broad challenge of “improving environmental water
delivery”, there is a suite of questions that an optimization model
could answer. Broadly, models have targeted the following ques-
tions (not necessarily in isolation).
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Fig. 1.

1. Given existing consumptive (or human) water demands, how
can releases be managed to improve downstream ecological
outcomes? This question has been addressed in two ways:

a) the decisions can allow conjunctive outcomes, with changes
to the way consumptive demands are met (so long as they
remain met), or

b) the decisions can allow management of the remaining water
after meeting consumptive demands (or water specifically
allocated to the environment) and assume that consumptive
water decisions are exogenous (i.e. they cannot be altered
through management decisions).

2. What is the optimal allocation between consumptive water uses
and the environment?

3. How can infrastructure be used in combination with releases to
improve environmental outcomes?

Fig. 2 categorizes all studies according to which question they
address, by color. Environmental water management issues must
consider a range of spatial and temporal scales. Operational de-
cisions tend to focus on sub-daily or daily timeframes and single
locations, whereas long-term planning employs a wider spatial
scale (usually a basin-wide scale) and uses coarser time-steps,
which may extend to multiple years (Fig. 2). Many of the studies
are primarily focused on hydropower dams, and investigate oper-
ational decisions concerning storage releases, where sub-daily or
daily time-steps are important due to the nature of hydropower
operation in response to variations in power demand. These studies
have tended to ask how environmental releases can be managed to
improve downstream outcomes given existing consumptive out-
comes (question 1a). A number of the studies that address seasonal
planning are located in Australia where significant volumes of
environmental water rights are held and managed by an organi-
zations established for that task. These studies address the de-
cisions available to an environmental water manager, assuming
that the environmental water manager must not impact other
water users’ decisions (question 1b).

3.1. Different temporal scales of decisions - linking operational and
long term planning decisions

Environmental water management decisions can be considered at
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a variety of temporal and spatial scales. A key remaining challenge
exists in the delineation of these temporal and spatial scales of de-
cisions. Existing studies broadly investigated either short-term
operational decisions (e.g. Cioffi and Gallerano, 2012), or longer-
term planning decisions (e.g. Grafton et al, 2011; Szemis et al.,
2013). However in practice, there is a link between the two. The
operational decision to release at one time-step depends on the
longer term planning objectives and ability to meet other flow re-
quirements (potentially of more importance) later in the year. For
example, consider an environmental water manager making a deci-
sion to release a flow pulse (or fresh) in autumn to trigger a fish
spawning event. This is a short term decision and an optimization
model could assist in determining the best release pattern from
storage to make use of any downstream flow that might occur due to
rainfall events in the system. However, the decision to provide this
event is also linked to seasonal planning decisions. The benefit of a
spawning fresh may be significantly limited if there is no subsequent
spring pulse available for fish to promote upstream migration to the
river from the estuary (Shenton et al., 2014). An environmental water
manager is therefore making short term decisions with a mind to the
likely flow events later in the seasonal planning process. The link
between these planning horizons in environmental water delivery
has received little discussion in the literature, but has implications for
the structure and implementation of decision support tools. A clear
modeling challenge will be the need to incorporate different temporal
and spatial scales within the one optimization model. Indeed, many
other optimization problems rely on an appropriate linking between
decisions in different temporal scales, including situations where
operational, tactical and strategic decisions are closely linked (for
example logistics networks, Schmidt and Wilhelm, 2000). There are a
number of strategies to deal with this matter, including the use of
nested models, stochastic programing (see Section 5) or the use of
optimization-simulation approaches (Figueira and Almada-Lobo,
2014). In the context of broader reservoir operations, Georgakakos
et al. (2012), for example, refer to the use of a hierarchy of simula-
tion and decision models that relate to multiple temporal resolutions.
The longer term decisions thus relate to the monthly release de-
cisions, and in turn sub daily flood control objectives. There is po-
tential to explore these types of approaches to better link the
operational and planning decision processes of environmental water
management.
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Fig. 2. Temporal and spatial scale addressed by existing optimization models. Many of the operational models were developed for optimizing environmental releases from hy-

dropower dams.

4. How are environmental outcomes represented?

The concept of optimization hinges on understanding the rela-
tive benefit of providing water to the environment at one time-step
or location over another, or between environment and other water
users (Horne et al., 2010). This requires that environmental out-
comes be represented in a manner that quantifies the benefit of
different flow regimes. Environmental flow studies provide flow
recommendations predicted to provide the ecological needs of
target species of ecosystem processes (Horne et al., 2010). The
majority of studies in this review rely heavily on existing envi-
ronmental flows studies and related data, and the approach to
representing environmental outcomes is therefore often dictated
by the information available for the study catchment. Out of the 42
studies reviewed, 27 used hydrological indices to represent envi-
ronmental outcome, 13 used habitat based methods (4 of these
using complex relationships to link different habitat requirements)
and 2 used population based methods.!

There are also clear geographical differences in how environ-
mental water requirements are represented (Fig. 3). The majority of
studies are based in Asia, and have adopted hydrological indices as
a surrogate measure of environmental outcome (e.g. Chang et al.,
2010; Han et al.,, 2012; Ringler and Cai, 2006; Shiau and Wu,
2013). These studies often measure alteration in a component of
the flow regime from the natural or pre-regulation state. The
advantage of hydrological methods is that they do not require
detailed understanding of the ecological processes in the river, and
are less data intensive than habitat or population methods (Han
et al, 2012). The difficulty with this approach is that the

1 Tharme (2003) provides a good overview of hydrological alteration, habitat
(including water quality) or population based approaches.

relationship between flow and environmental outcome does not
relate directly to environmental objectives, which may therefore
limit the models’ relevance to actual environmental outcomes. It
also assumes a linear relationship between discharge and ecolog-
ical outcome (e.g. half the water provides half the benefit). In
addition to this, the natural flow paradigm, upon which these
indices of hydrological alteration are based, may not be the optimal
target downstream of a storage where the entire flow regime has
been significantly altered for an extended period (Jager, 2014).

Stream biota and ecosystem functions respond to patch-scale
hydraulic variables and the effect of flow metrics is indirect, via
the influence of flow on stream hydraulics. Indeed, hydrological
indices may not always be well-correlated with physical habitat
responses to altered flow regimes (Turner and Stewardson, 2014).
Recognizing this, a number of studies in the review used habitat
based methods to evaluate environmental outcomes (e.g. Chen,
2011; Cioffi and Gallerano, 2012; Horne, 2009). Physical habitat
response is more proximate to the targeted ecosystems responses
than hydrological indices. These models can vary in complexity and
can include a conceptual model that links habitat curves together to
predict species outcomes (Szemis et al, 2014). Habitat based
methods can explicitly represent non-linearity and thresholds in
the response of habitat to discharge resulting from the interaction
of flow with channel geometry. Examples include diminishing
marginal gains in wetted channel area with increasing discharge
(Gippel and Stewardson, 1998) and the range of low flows within
which increases in discharge increase availability of slackwater
(Vietz et al., 2013). Habitat based methods generally require some
site-specific river surveys and hydraulic model development.

The most direct approach to representing environmental out-
comes are population based methods for selected taxa (fish, trees
etc.). These use models that try to predict the actual ecological
response from the flow regime (e.g. Jager, 2014; Jager and Rose,
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Fig. 3. Map of location of identified studies and the way that environmental water requirements have been represented.

2003). Population models are readily applicable in North America
due to the focus of environmental flows on fish species protected by
the Endangered Species Act (1973). A population model focusing on
the relevant fish species is likely to align with the objectives of an
environmental water manager. A clear advantage of population
models is the ability to evaluate the interactions and sequencing
between individual flow releases and their ultimate environmental
effect. However, these models are more complex than hydrological
or habitat methods, which has implications for successful solution
of optimization model. Moreover, it has been shown that more
complex approaches to representing environmental outcomes do
not necessarily improve predictions (Lester et al., 2011).

Many disciplines quantify societal benefits in terms of dollar
value. Within the reviewed literature there is only one study that
adopts this approach (Grafton et al., 2011), most likely due to the
difficulties in placing a defensible economic value on environ-
mental outcomes (Horne, 2009). There are other studies that use
simulation rather than optimization and adopt similar economic
measures for the environmental (e.g. Akter et al., 2014). Other
reviewed studies instead use some measure of “environmental
outcome” often scaled between zero and one (e.g. Szemis et al.,
2013).

Regardless of how environmental response is represented, the
difficulty is increased if environmental targets include more than
one response. The consideration of multiple, often conflicting, ob-
jectives can be achieved by weighting the different goals in a single
scalar measure (for example, Horne, 2009) or by explicitly search-
ing for ‘Pareto-optimal’ solutions, in which one objective cannot be
improved without degrading others (Shiau and Wu, 2008). In the
first case, the difficulty remains in finding appropriate weighting
functions, while the latter method usually increases the complexity
of the problem to be solved and interpretation of the output.

4.1. How is the objective function designed?

Similar to many multi-objective problems arising in water
resource management such as rainfall-runoff calibration and long-
term groundwater monitoring (Reed et al., 2013), the problem of
optimizing reservoir releases is often considered (1) with con-
flicting ecological objectives (Horne, 2009; Szemis et al., 2012,
2013), or (2) with ecological objectives conflicting with other ob-
jectives of meeting human demands which include domestic,
agricultural and power supply demands (Chang et al., 2010; Han

et al,, 2012; Suen and Eheart, 2006). The conflicting nature of the
objectives leads to trade-offs between them, where one objective
cannot be improved without degrading one or more other
objectives.

Figs. 4 and 5 categorize literature reviewed in this paper based
on how the objective function represents the combined ecological
objectives (or ecological and consumptive objectives where appli-
cable). Fig. 4 refers to papers that include only ecological objectives
in the objective function(s) with other non-ecological objectives
(for example, agricultural or hydropower demands), where rele-
vant, included as constraints. Fig. 5 refers to papers that include
both ecological and non-ecological objectives in the objective
function(s).

Most studies (32 out of 42) reviewed here consider multiple
conflicting objectives. The majority of studies (16 studies) represent
the multiple conflicting objectives as a single mathematical objec-
tive by taking the weighted sum of the objectives (12 studies) or the
weighted distance to the ideal solution (4 studies). Different com-
binations of weights are then used to study the trade-offs between
conflicting objectives (e.g. Szemis et al., 2012; Yin et al., 2010). Five
out of the remaining 16 studies include the ecological objective as a
soft or fuzzy constraint in the model with most adding penalties in
the objective function if ecological requirements are not met (e.g.
Chang et al,, 2010; Rheinheimer et al., 2015). The remainder (11
studies) employed multi-objective optimization. When analysing
trade-offs between ecological and non-ecological objectives, devi-
ation of hydrological indices from the target values is primarily used
as a measure to evaluate the ecological outcomes (Fig. 2). On the
other hand, population models, perhaps due to their inherent
complexity, are limited to studies where optimizing ecological
outcome(s) is (are) the only objective(s) (Fig. 1).

Reservoir or dam operations are often managed using fixed
reservoir operating rules. Reservoir operating rules were tradi-
tionally developed to meet the non-ecological water requirements
including agricultural and human needs without considering the
ecological water requirements (Shiau and Wu, 2010; Yang and
Yang, 2012). Consequently, there is an increasing effort to incor-
porate ecological benefits into these operating rules (Suen and
Eheart, 2006; Wang et al., 2015). Thus, a number of studies have
designed their objectives with the aim of improving these rules
through a balance between socio-economic benefits and ecological
benefits. It is noted that hydrological alteration is used as a proxy to
evaluate total ecological benefits in these studies.
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Fig. 4. Formulation of objective function for studies with environmental outcomes alone.

4.2. What is the appropriate level of complexity?

It is noteworthy that the most common approaches to repre-
senting environmental outcomes are the simplest to implement,
but also the least realistic. It is likely the case that this is a
reflection of the information available on environmental objec-
tives and outcomes at those locations. For example, Horne et al.
(2010) specifically states that the form of the environmental
response curves adopted is driven by the information and
approach taken in existing environmental flows studies for the
region. Information on how environmental outcomes relate to
changes in flow is not readily available in a format suited to
optimization. While there is significant science around the impact
of altered flow regimes on ecological condition (Arthington, 2012),
this general understanding is often not sufficiently specific to
represent marginal benefit of water at different times and loca-
tions required for optimization.

Beven and Alcock (2012) distinguish two types of uncertainty
that exist in representing environmental systems (i) fundamental
randomness and variation in nature (Aleatory or random errors)
and (ii) lack of knowledge about how the system behaves

(Epistemic errors). Aleatory errors can be addressed through
statistical analysis methods or sensitivity testing (such as applied
in Jager, 2014). Optimization modeling provides a means to
explicitly assess the implications of uncertainty and incorporate it
into the decision process (Sahinidis, 2004), allowing for the
investigation into which elements of uncertainty (and which as-
sumptions) are most crucial to a given decision. This can be done
systematically through a modeling framework that tests the
robustness of the solution (Kasprzyk et al., 2012). There will
continue to be uncertainty around the exact nature of flow-
ecology responses. Identifying those areas of uncertainty that
have the greatest impact on management decisions would help
environmental water managers focus effort in refining their
knowledge of flow-ecology relationships. This can be used to
identify specific elements of the environmental model that
require field observations to either support or refine the existing
hypothesis (Beven, 2002). In this way, a structured optimization
model could provide a means to a transparent adaptive envi-
ronmental water management approach, which would require
consideration of how the tool and inputs are maintained and
reviewed to support such an approach.
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Average degree of alteration for

requirements not met
Chang etal. (2010)
Rheinheimer at al. (2013)
Steinschneideret al.(2013)

under current and natural conditions
Homa et al. (2005) — equalweights for objectives

Han etal. (2012) - added

as fuzzy constraint with lower
and upper boundsetsdefined
by percentage of annual flow

damage coefficients for flows
Ringer and Cai (2006) — equalweightsfor objectives

Index based on piecewise linear function of annual
proportional flow deviation at given river location

damaging drought
Grafton et al. (2011) - equal weights for objectives

environmental water requirements

Per period shortage to the minimum base flow

shortage periods in a year added over all years
Ngoc et al. (2014) —fixed weight combination analysed

Area between the annual average flow duration curves

Total wetland yield discounted by a quadratic function of
per period flow deviations from natural and per period

Yin etal. (2010) - different weight combinations analysed

Drought cost defined as a piecewise function of length of

Relative difference between the netinflows and ideal

Yang and Yang (2013) - different weight combinations analysed

requirements each raised to number of continuous water

Shiau and Wu(2010) hydrological indicators (derived

quadratic form distance between pre
and post impact histograms weighted
by a specified similarity matrix)
Shiau and Wu (2008)

Deviation of flow from
natural using a range of
indexes including Richards-
Baker flashiness for floods,
Daily Hydrograph
Dissimilarity index

Shiau and Wu (2013)

Shannon Index to optimize fish
diversity

Yang andCai(2011) - derivedfrom a
fractional linear function of key
hydrological indicators
Tsaiatal.(2015) - using ANN model to
estimateShannon Indexfromkey
hydrological indices

Total absolute value of
deviation of estimated lake
water level from natural
level

Yang andYang (2014)

Spearman’s rank correlation
coefficient describing relation
between ranks of unregulated flows
with regulated flows

Rheinheimer at al. (2016)

Total number of times observed
hydrological indicator value falls
outside the target range (based on
indicators of hydrological alterations)
Wang etal. (2015)

Fig. 5. Formulation of objective function for studies with environmental and other outcomes optimized.

Epistemic errors are more challenging to identify as they are
related to the underlying knowledge gaps or systemic issues
within the system representation. This is an inherent part of
modeling environmental systems (Beven and Alcock, 2012). The
choice between hydrological indicators, habitat based methods
or population methods, and the approach to combining these in
the objective function, are concerned with the representation of
the system and will result in differing levels of realism and
associated uncertainty. Ultimately a model of the decisions faced
by an environmental water manager can only use our current
best available information. This is the same information available
to make decisions in the absence of an optimization model. The
only difference is the way that this information is synthesized
to inform the decision-making process. Importantly, the
known assumptions, limitations and uncertainties should be
explicitly stated and considered when making use of the model
outputs.

So is a model worth having with simplified or uncertain rep-
resentations of ecological outcomes? Those in favor of decision
support systems for complex problems advocate that the modeling
process remains beneficial in helping distil the essential elements
of the problem and the links between decisions and management
outcomes (McIntosh et al., 2011; van Delden et al., 2011). The

model can then be seen as representing a hypothesis of how the
system behaves, which is tested and refined over time, as new
knowledge becomes available (Beven and Alcock, 2012).

While in theory these benefits of a formal support model exist
despite the uncertainties and challenges of modeling ecological
outcomes, their real potential to the application of environmental
flows will only be determined through the process of application
within management organizations and the testing of real on-
ground environmental water release decisions.

5. What solution technique is used?

We categorized the studies in this review by their modeling and
solution techniques, and found that they were dominated by the
use of evolutionary algorithms, including all forms of genetic al-
gorithms (22 out of 42 studies). Other solution approaches included
(i) metaheuristic methods other than evolutionary algorithms (5
out of 42 studies), (ii) methods based on linear and mixed integer
linear programming models (8 out of 42 studies), and non-linear
programming models (5 out of 42 studies), dynamic program-
ming (2 out of 42 studies), and (iii) complete enumeration of so-
lutions (1 out of 42 studies). The boxed text provides a brief
description of each of these modeling techniques.
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Introduction to solution techniques

An optimization model is a mathematical representation of a decision problem. The model aims to find the decisions (defined as a
set of decision variables), that lead collectively to an optimal solution. An objective function defines this solution, and a series of
constraints define boundaries around the problem.

There is a variety of techniques available to solve these optimization problems, and researchers are constantly developing new
methods (Boussaid et al., 2013; Burer and Letchford, 2012; Junger et al., 2010). Tractability of these problems strongly depend on
characteristics of the constraints and objective function, and solution techniques have usually been developed so as to exploit
specific characteristics. Characteristics that are particularly importantinclude: (i) the number of variables and/or constraints and {(ii)
mathematical properties of the constraints and objective function, for example, whether the constraints define a convex set, or not.

Solution techniques, which are computational algorithms, may be broadly grouped into heuristic methods, that do not guarantee
that the solution they find will be optimal (or even feasible, in some cases), and exact methods, which guarantee that if
computation is continued for long enough, an optimal solution will be found (or within an approximate bound). We now describe
some of the major categories of these techniques, focusing on problems with a finite number of decision variables and con-
straints, as it is these that are prevalent in conservation and environmental water management optimization modeling.

m Metaheuristics is a term used to describe a general class of optimization techniques that seek an optimal, or near-optimal,
solution to a problem, but that cannot guarantee that the solution they find will be optimal. They can either be used to build
an initial solution to the problem (construction method) or to iteratively modify an existing solution, with the goal of improving
on it (improvement method). Many of these methods use greedy strategies, that is, at each modeling step they aim to get the
best possible outcome for that point in time, and they do this by making “local” changes to solutions, that affect only a small
part of the solution. They exploit the power of computers to explore the effects of many such changes, in sequence, and use
randomization in how the solutions are built, or changed, to ensure a diversity of solutions are considered. Metaheuristics are
vital for solving problems where obtaining the objective function value requires a simulation procedure (Figueira and Almada-
Lobo, 2014). They can also be the most attractive procedure when the mathematical functions involved do not have “nice”
properties and therefore, more tailored methods (such as linear programming, discussed below) can not be used. Meta-
heuristics describe high-level, guiding, principles for how optimization can occur, and can be tailored to solve a specific
optimization problem, often in many possible, alternative ways. Metaheuristics can operate on a single solution, or simulta-
neously on a set of solutions. Well-known examples of the former include greedy randomized adaptive search (for construc-
tion), simulated annealing, tabu search and ant colony optimization. Well-known examples of the latter include genetic
algorithms (discussed next), memetic algorithms and, in general, evolutionary algorithms. However there are many more
metaheuristics; this is a vigorous, and active area of current optimization research.

m Genetic algorithms (a particular form of metaheuristics) are metaheuristics inspired by the concepts of natural evolution, based
on iterative modification of a set of solutions (a population of solutions), in a manner analogous to how biological populations
change. Solutions “evolve” from an initial population using mechanisms inspired by genetic recombination, mutation and
natural selection, in which the individuals of one generation (iteration) compete to form the next one. The “fitness” of an in-
dividual in the population (so of one solution with in the population of solutions) dictates—where fitness is the feasibility and
quality of the solution—determine its chances of survival through to the next iteration, Genetic algorithms are particularly useful
for addressing problems in which there are multiple, conflicting objectives, and a set of solutions is sought to approximate the
Pareto frontier (i.e. solutions where one objective cannot be improved without diminishing the others).

= Linear and mixed integer linear programming algorithms are optimization methods that can find proven optimal solutions for
problems in which both objective function and constraints are explicit, linear functions of the decision variables. In the case of
mixed integer linear programming, some variables may be constrained to be integer, or whole-numbered values. The use of
integer variables expands the modeling range of linear programs enormously, permitting even highly nonlinear structures to
be represented. This arises primarily through the use of binary variables, which are variables that must take a value of either
zero or one. Both linear and mixed integer linear programming algorithms are highly effective, and can often solve problems
with thousands of variables and constraints, to optimality. They can also be used heuristically to find near-optimal solutions,
simply by limiting their run time, and accepting the best solution found at the end of that time. If used in this way, they provide a
bound on how far the obtained solution is from optimal.

= Nonlinear programming algorithms are used to solve optimization problems in which either the objective function or the
constraints are modelled using nonlinear functions of the decision variables, and all are given as explicit mathematical func-
tions. The term is usually reserved for methods that seek /ocally optimal solutions. The importance of this is that, depending on
the mathematical characteristics of the problem, a locally optimal solution may be a true optimum (if the constraints and
objective are convex, in which case the problem is convex), or may be just be a good feasible solution. For nonconvex, nonlinear
problems, the term global optimization is used to describe a method that will guarantee an optimal solution. The current state-
of-the-art in nonlinear programming algorithms are quite effective, and can usually solve problems with hundreds, or possibly,
thousands, of variables and constraints. However, global optimization solvers struggle with problems of this size.

» Dynamic programming algorithms are techniques that solve optimization problems expressed recursively, in principal solving
to optimality. They do this by solving nested subproblems, finding solutions for a smaller problem and feeding this into the
larger problem iteratively. The methods are particularly efficient when many of the generated subproblems are effectively the
same, avoiding exponential growth in the number of subproblems to be solved.

m Complete enumeration of solutions solves an optimization problem by explicitly evaluating all possible solutions and choosing
the best one.




334 A. Horne et al. / Environmental Modelling & Software 84 (2016) 326—338

5.1. Selection of solution method

It is expected and necessary that different solution methods are
used to solve models with different problem formulations. Problem
formulation is dependent on the selection of decisions variables,
objectives and constraints, which determines the size of the search
space and characteristics of the fitness landscape (Maier et al.,
2014). Ultimately, this should determine the solution method
used, as well as the need for a near-optimal or optimal solution and
computational efficiency of the approach. Ideally this would be
discussed between the analysts and stakeholders who are involved
in the development of the optimization model (Maier et al., 2014).

While the majority of studies used evolutionary algorithms as
the solution method (see Section 5.1), there was wide range of
adopted approaches. The literature varied widely in the level of
justification provided for selecting one solution method over
another. By way of example, some studies provided a detail reason
to the selection (e.g. Chen, 2011; Szemis et al., 2013), others selected
the solution method based on its popularity and wide use (e.g.
Shiau and Wu, 2007; Suen and Eheart, 2006), while some studies
provided no reason as to the method chosen (e.g. Jager, 2014; Null
and Lund, 2012; Ringler and Cai, 2006). It should be noted that we
are not suggesting that these studies did not select the solution
method without consideration, but rather, this consideration was
not documented to allow for analysis.

Of the papers that selected the optimization technique based on
popularity and wide spread use, the majority used genetic algo-
rithms. This was expected given their generality allowing them to
be easily adapted to the problem in hand (Labadie, 2004). The main
consideration was their ability to incorporate additional complexity
into the problem, such as considering multiple objectives (e.g.
Chang et al.,, 2010; Suen and Eheart, 2006), incorporating un-
certainties (e.g. Han et al., 2012), or improving the representations
of ecological outcomes (e.g. Yin et al.,, 2015). Alternatively, studies
that gave justification, selected alternative metaheuristics that
suited the problem being addressed (e.g. Jager and Rose, 2003;
Szemis et al., 2012, 2013) or compared different solution methods
(e.g. Cioffi and Gallerano, 2012; Shiau and Wu, 2006).

Genetic algorithms are easy to use and have the advantage of
being able to determine near-optimal solutions for problems with
large and complex search spaces (Sivanandam and Deepa, 2008). As
a result they have the ability consider complex ecological models,
such as the ecological processes represented in population dynamic
models (e.g. Jager, 2014; Jager and Rose, 2003) that may be difficult
to model using other mathematical programming techniques. They
also have the ability to interact with existing water resource models
(Maier et al., 2014). However, genetic algorithms are not guaran-
teed to reach the optimal solution, nor do they provide any infor-
mation on how far the final solution might be from the optimum
(Reeves, 1993).

In contrast, mathematical programming techniques such as
mixed integer linear programming lead to a confirmed optimal
solution, and, if stopped short, provide a bound on the optimal
value, and hence a guarantee on the quality of the best solution
found so far. Although these methods can solve such problems
with high efficiency (Bixby, 2012), convergence can be an issue as
the problems grow larger, which can be the case for many envi-
ronmental water management problems. These methods also
tend to be less flexible than metaheuristics, as they impose
stronger requirements in the way the problem needs to be
modelled (e.g., by imposing that the problem constraints and
objective function be written with linear equations, in the case of
linear programming). This may require a particular effort in the
modeling stage in order to represent the necessary complexity of
the environmental system. It may also mean that by simplifying or

altering the representation of the problem, the solution while
mathematically optimal, may be affected by the introduced de-
viations in the system representation.

In cases with multiple objectives, there are multi-objective
versions of genetic algorithms and other methods to optimize
across a number of environmental values and consumptive uses
(e.g. Shiau and Wu, 2008). This is a particularly useful approach
when it is difficult to use the same measure of benefit across
different sub-objectives to compute a single objective function
value. Such methods aim to obtain a set of non-dominated solu-
tions, that is, those for which no single objective function can be
improved without the consequent deterioration of others (Pareto
curve). However, for discrete optimization problems, such as the
environmental water management problem, it has been shown
that the number of non-dominated solutions increase exponen-
tially as the number of objectives increases (Benson and Sun,
2002; Lokman and Koksalan, 2013). Moreover, like the single
objective case, multi-objective evolutionary search algorithms
may not converge to the true Pareto-optimal set, but rather
deliver a local Pareto-optimal set, i.e., a set of locally non-
dominated solutions (Deb, 1999; Maier et al., 2014). Further,
when many objectives are considered, the outputs may not be
readily interpretable (Maier et al., 2014). Thus, while having
alternate solutions may be of interest to the decision maker (as
they may provide diverse options to the decision maker), the
analysis and comparison of alternate solutions for multi-objective
problems may be difficult in the absence of appropriate repre-
sentation of the outputs.

5.2. How well does the model perform?

The studies reviewed used a range of approaches to assess
model performance, including comparison to historical releases
(e.g. Shiau and Wu, 2013) and comparison to current regulated
environmental water releases within a catchment (e.g Yin et al,,
2010). In these cases, the optimization models’ recommended
release patterns achieve a clear improvement in environmental
outcomes compared to the historical or regulated releases. A
number of studies compared different release scenarios, rather
than assessing the model against current operations (Cardwell
et al.,, 1996).

While all studies demonstrate the potential for optimization
to improve environmental outcomes, there is no decisive
approach for assessing model performance, in part due to the
difficulty in identifying a comparable benchmark. In many fields,
current practice based on expert design or an estimation of the
cost of a non-optimized solution would be used as the bench-
mark (e.g. Ferris et al., 2015; Hu et al., 2015). It is possible to
compare existing environmental water management rules to
optimization model outcomes over the long term, where there
are these rules in place. However, where an optimization model
is considering seasonal decisions this may not be appropriate as
management rules by definition are providing the best outcome
on average rather than for any one season. Where decisions are
made under an uncertain climate future, it becomes difficult to
compare model results directly to the previous behavior of an
environmental water manager as the optimization model in-
corporates the benefit of “perfect knowledge”. In reality the de-
cision maker would make choices as the climate conditions
unfold. In all of these approaches, the assessment of model
outcomes relies on a comparison of flow release decisions. The
real test of how effective optimization models are in informing
environment water management is to test them in practice, and
review ecological performance.

Perhaps a more fundamental challenge is that the
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optimization model represents an understanding of the link be-
tween flow and ecology. This relationship is embedded in the
model based on the chosen approach to representing ecological
responses. As previously discussed (refer to Section 4), there are
epistemic uncertainties in how the ecological outcomes are
represented (Beven and Alcock, 2012). When investigating the
outcomes from the optimization model, it may in fact be that the
underlying ecological representation needs revision, rather than
the construct of the decision tool itself. This reinforces the po-
tential role of models in facilitating system understanding
(Beven, 2002) and playing a role in adaptive management. A
‘hypothesis of causation’ that can be refined by learning from
previous decisions is a central element of adaptive management
(Allen and Stankey, 2009). The representation of ecological out-
comes can thus be seen as a working model, rather than
assuming model components remain static. Within this adaptive
management process, optimization tools and their model outputs
can play a role in supporting a structured dialogue between
scientists and managers around how the system behaves
(Ladson, 2009).

5.3. Representing climatic uncertainty

One key aspect of uncertainty for environmental water man-
agers is the likely future climate. The majority of reviewed studies,
specified a set of climate conditions and environmental re-
quirements for the model period (i.e. the model was deterministic)
(e.g. Basdekas et al., 2014; Cardwell et al., 1996; Chen, 2011). This
allows for a number of different scenarios to be run through the
optimization model. If enough scenarios are developed, the out-
comes can be summarized in a way that makes it accessible and
relevant to the way an environmental manager makes decisions
(e.g. information translated into release rules that help managers
understand when and how to move between management sce-
narios based on climate triggers). There are sophisticated ap-
proaches developed in the field of reservoir operation that use
weighting approaches to combine scenarios based on the proba-
bility of a scenario under future climate conditions (Brekke et al.,
2009). There are also a range of approaches that look at the
robustness of solutions under with changing climate (Hamarat
et al,, 2014; Herman et al., 2015).

However, the reality of managing environmental water for
seasonal or operational decisions is that at a given point in time, the
manager must make decisions faced with uncertain future climatic
and streamflow conditions. In other words, the manager does not
know at the start of the year whether it will be a very dry, dry,
average or wet year. It is difficult to translate the outcomes of
running a number of different scenarios in a deterministic opti-
mization model into practical management outcomes faced with
uncertain climate. Therefore there is scope to further develop the
current optimization modeling approaches to consider how the
model structure or model outputs can be adjusted to imbed this
uncertainty.

One method to achieving this is employing a stochastic
modeling framework and a “scenario tree” approach, where
different future conditions are given a probability of occurrence,
with each time-step having options that branch from the suite of
conditions possible a the previous time-step (Powell, 2014). The
optimal solutions from such models hedge over the range of
possible future conditions, which enables environmental water
managers to make a decision that places them in the best posi-
tion to be able to manage outcomes whatever climate scenario
unfolds. This may result in a very different release pattern to that
with “complete knowledge” of climate. Given the wide range of
solution methods, further research should investigate how to

best incorporate this uncertainty within each technique.
6. The challenge of adoption

Our classification of existing studies focused on the technical
challenges associated with developing an optimization model to
manage environmental water releases. For all papers, the problem
being addressed (and the basis of the objective function) is clearly
identified. However, none of the papers provided any linked dis-
cussion of the interaction with potential end users neither during
model development, nor of the use or application of an optimiza-
tion model within the management or decision-making process.
How is it envisaged that the tools will be used? We contacted the
authors of the reviewed papers, and asked about the level of
stakeholder involvement during model development and the up-
take of the model by stakeholders. Approximately 50% of the au-
thors responded, with the majority stating there was limited
involvement from stakeholders in model development, and there
were only a handful of the models that have been used by envi-
ronmental water managers (despite consistent interest from envi-
ronmental managers in the concept and potential of optimization
models). The existing literature has progressed the technical ap-
proaches and science. The next stage will be about translating this
approach to improve uptake and application of these approaches,
where they can be tested in real life management scenarios. The
simplistic survey of authors, provides an indication that the field of
optimization for environmental watering decisions is yet to prog-
ress into this phase. It should be noted that this is consistent with
conservation planning literature, where scientific literature rarely
reports the complete implementation of a proposed approach.
However, in conservation planning, prioritization techniques such
as optimization are appearing in the non-academic literature (such
as in government reports) demonstrating some translation into
management (Knight et al.,, 2009).

There are a number of factors that can limit uptake of decisions
support systems, such as optimization tools, in environmental
water management (INCA Consulting, 2011; Parker and Campion,
1997; Stewart et al., 2013) including:

. complexity of the software,

. accessibility and accuracy of inputs,

. cost versus benefits of using the system,

. lack of engagement during model development, resulting in
cynicism about its utility,

. belief that expert judgment is more reliable, and

. perception that the benefit of decision support tools is that they
provide answers rather than being an input to the decision
process.

AWK -
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Addressing these barriers to uptake hinges on the involvement
of the user in the tool development process (Parker and Campion,
1997). Limited use of optimization models in environmental wa-
ter management may be at least partly due to a lack of engagement
with end users and stakeholders in scoping and designing a rele-
vant tool rather than scientific limitations to potential models.
Often, the ongoing use of the tool requires an individual within the
relevant organization to champion the model and this process is
more likely if they have been engaged in the process of defining the
model needs, or have an existing strong relationship and trust with
the relevant scientist or practitioner (Knight et al., 2009).

We should emphasize that optimization models will only ever
be an input into the decision-making process for environmental
water management, not a replacement of current decision-making
processes. This has been the experience with use of optimization in
conservation reserve selection (Linke et al., 2011) where
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optimization is now well accepted. Knight et al. (2009) highlights
the importance of ensuring prioritization techniques are embedded
within a broader operational model for conservation planning. This
translates to environmental water management, where decision
support tools such as optimization would operate within broader
water management and planning structures and institutional
arrangement.

Perhaps a further challenge is the difficulty of developing,
maintaining and adapting a model over time. The first iteration of a
tool will often by necessity be a simplification of the management
space, but must be realistic enough to generate confidence among
water managers that the work is worthwhile. There should be a
shared understanding that model development will take time, and
once further model needs are clarified they can be addressed
through future iterations. There then needs to be a mechanism in
place for the continued development of the model and documen-
tation of these refinements. The systems in place for this ongoing
development need to consider the ongoing role of the scientific
team versus the ability of the environmental manager to take
ownership and governance of the model. There must be sensitivity
to the capacity constraints within the organizations that will use
the model (Knight et al., 2009). Continuing through typical research
funding cycles is a prerequisite for completing this journey
successfully.

Part of the benefit of using an optimization model or alternative
decision support tool is that it helps end users understand their
own decision-making processes and the resource system (McIntosh
et al,, 2011; Liebman, 1976; Beven and Alcock, 2012). An optimi-
zation model provides a learning device; it is a tool in the decision
process rather than an answer to the problem. The use of an opti-
mization tool has the potential to (McIntosh et al., 2011):

= provide clarity through the process of working with end users to
represent a system using a series of equations, qualitative re-
lationships or logical rules,

m clarify the decision process and influential factors,

= generate creative planning alternatives,

m provide transparent evaluation approaches for planning alter-
natives, and

= provide improved governance around the decision process.

In order for these benefits to be realized, the end user must be
engaged through the model development phase rather than simply
being recipients of the end model. The existing research into the
use of optimization models for environmental water management
has demonstrated the scientific potential of this approach. Thus the
next important steps in expanding this field will not only involve
improved certainty of environmental outcome predictions (Section
2.2), application of efficient optimization techniques (Section 2.3)
and improved model assessment approaches (Section 2.3), but
more importantly, it will require engagement with end-users dur-
ing the model development phase. Encouraging end-user involve-
ment and being cognizant of institutional context will ensure these
tools will assist in the adaptive management process, thereby
ensuring transparent and efficient management of limited envi-
ronmental water.
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