
European Journal of Operational Research 198 (2009) 706–714
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

An integer linear programming approach for approximate string comparison

Marcus Ritt a, Alysson M. Costa b,*, Sergio Mergen a, Viviane M. Orengo a

a Instituto de Informática, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
b Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, USP, 13560-970 Sao Carlos, Sao Paulo, Brazil

a r t i c l e i n f o
Article history:
Received 26 April 2008
Accepted 11 October 2008
Available online 26 October 2008

Keywords:
Approximate string matching
Distance metric
Block edits
Block moves
Integer programming
Hop constraints
0377-2217/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.ejor.2008.10.013

* Corresponding author. Tel.: +55 16 33738164; fax
E-mail addresses: marcus.ritt@inf.ufrgs.br (M. R

(V. Orengo).
a b s t r a c t

We introduce a problem called maximum common characters in blocks (MCCB), which arises in applica-
tions of approximate string comparison, particularly in the unification of possibly erroneous textual data
coming from different sources. We show that this problem is NP-complete, but can nevertheless be
solved satisfactorily using integer linear programming for instances of practical interest. Two integer lin-
ear formulations are proposed and compared in terms of their linear relaxations. We also compare the
results of the approximate matching with other known measures such as the Levenshtein (edit) distance.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

There has been continuous interest in string comparison algorithms due to their wide applicability in database applications, data
mining, text processing and bioinformatics, to give some examples. Due to errors in the data, we are interested in approximate com-
parisons, which determine a usually symmetric and positive distance (or equivalently a similarity) between two given strings. The
underlying model of differences for measuring this distance often depends on the application domain and determines its applicability.
The edit distance (Levenshtein, 1966), for example, defines the distance of two strings as the minimal number of insertions, deletions or
substitutions of a single character and therefore is likely to be an adequate measure, when the error source produces this kind of
modification.

Our application is motivated by the task of unifying textual data coming from different data sources. We are interested in an approx-
imate comparison which tolerates a small number of errors of the Levenshtein type (Levenshtein, 1966), but additionally allows the inver-
sion of complete substrings (polygrams) above a given minimum length. This kind of inversion frequently occurs in practice, for example in
person names or names of attributes in database schemes, as shown by the two examples in Table 1. This idea leads to the following def-
inition of the similarity between two strings s and t: Identify all occurrences of common substrings longer than a minimum length k > 0,
which do not overlap, neither in s nor in t. Let L be the total number of characters occurring in these common substrings and define the
similarity of s and t as
rðs; tÞ ¼ L
ajsj þ ð1� aÞjtj ;
where j � j denotes the length of a string. This similarity measure is called Carla and has been introduced in (Mergen and Heuser, 2005). The
parameter a permits different applications of the similarity measure. A parameter of a = 0.5 can be used to compare two strings, while a = 1
is more appropriate for deciding if s is contained in t.

The problem of determining the maximal number of common characters L leads to an optimization problem that we call maximum
common characters in blocks (MCCB):
ll rights reserved.

: +55 16 33739 175.
itt), alysson@icmc.usp.br, alysson@gmail.com (A.M. Costa), mergen@inf.ufrgs.br (S. Mergen), viviane@inf.ufrgs.br

mailto:marcus.ritt@inf.ufrgs.br
mailto:alysson@icmc.usp.br
mailto:alysson@gmail.com
mailto:mergen@inf.ufrgs.br
mailto:viviane@inf.ufrgs.br
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

Table 2
Example of instances for MCCB and their corresponding optimal solutions for different minimal substring sizes.

String a String b k Common substrings L

authorname nameauthor 4 {author, name} 10
semrua ruacharrua 3 {rua} 3
myfasterfoxtrains myfoxtofastrains 1 {a,a,f,f,i,m,n,o,r,s,s,t,t,x,y} 15
myfasterfoxtrains myfoxtofastrains 3 {myf, ast, oxt, rains} 14
myfasterfoxtrains myfoxtofastrains 4 {fast, foxt, rains} 13
myfasterfoxtrains myfoxtofastrains 5 {trains} 6

Table 1
Typical inversions in textual data and their similarities in the proposed measure to the reference string in the first line for a minimum common substring size k = 4 and a = 0.5.

Example 1 Similarity Example 2 Similarity

authorname 1.00 European journal of operational research 1.00
nameauthor 1.00 Operational research, European journal of 0.96
authorsname 0.95 European operations research journal 0.92
author’s name 0.87 Operational research journal 0.82
name of author 0.83

M. Ritt et al. / European Journal of Operational Research 198 (2009) 706–714 707
Instance Two strings s, t 2R* over an alphabet R, a minimum substring size k > 0.
Solution A sequence of substrings u1, . . . ,un, each of length at least k such that for 1 6 i 6 n each ui occurs in s and in t and ui does not

overlap uj (in s or t), if i – j.
Objective Maximize the number of common characters L ¼

P
16i6njuij.

Table 2 gives some example instances of MCCB.

2. Related work

There is an abundant list of proposals for approximate string comparison. The survey of Navarro (2001) provides a good overview over
distances based on models of substring substitution with varying costs in the context of approximate string matching (which applies to
approximate string comparison as well). These include the edit distance, the hamming distance, episode distance, and the longest common
subsequence. All these measures permit at most one transposition of individual characters.

An early paper about edit distances allowing block edits of Tichy (1984) seeks to minimize the number of common substrings covering
one of the input strings, but does not require the common substrings to be non-overlapping, which permits the problem to be solved in
polynomial time.

Buss and Yianilos (1995) compare strings based on bipartite matchings. They allow arbitrary matchings between the characters of the
two strings and attribute to each matching a cost proportional to the distance of the characters’ indices.

Lopresti and Tomkins (1997) study a complete family of models for block edits. Besides matching any number of blocks in both strings,
they allow for arbitrary cost functions when comparing the individual blocks. They show the associated problems to be NP-complete for
quite general conditions, including the case where the matching blocks are required to be non-overlapping.

The problem studied in this paper is an easy subproblem of the block edit model of Lopresti and Tomkins when the minimal com-
mon substring size is k = 1. For a general k, we prove in Section 3 that this problem remains NP-complete. Our method allows poly-
gram permutations without additional cost, but differently from all other approaches, it restricts them to polygrams of a minimum
length.

The remainder of this paper is organized as follows. Section 4 gives two different formulations for the problem as integer linear pro-
grams (ILP) to find the optimal value of MCCB, which is used by Carla. In both cases, the lower bound on the common substring length
is modeled with the use of the so-called hop constraints (Gouveia, 1999, Costa et al., forthcoming). In Section 6, we study the relative per-
formance of the ILP formulations. We evaluate the quality of Carla in comparison to other approximate string matching functions in Section
7.

3. NP-completeness of MCCB

In this section, we consider the decision version of MCCB, where an instance has an additional parameter L and we want to decide if
there exists a set of common substrings of total size at least L. The following theorem shows, that this problem is NP-complete.

Theorem 1. MCCB is NP-complete.

Proof. To establish NP-completeness, we have to show that MCCB is in NP and is NP-hard. We first show that MCCB is in NP. Given an
instance with two strings s, t, and a minimum common substring size k, let M = max(jsj, jtj). Since the common substrings are non-overlap-
ping in both s and t, there are at most N = bmin(jsj, jtj)/kc 6M of them, each of which can be described by a triple (i, j, l) where i is the start of
the substring in s, j is the start of the substring in t and l is the length of the substring. Each number has length O(logM). We can guess a
collection of at most N triples (there are at most M3M such collections) and verify in polynomial time that (i) all the intervals are non-over-
lapping, (ii) the selected substrings in s and t are the same and of length at least k and (iii) that

P
16i6Nli P L.

708 M. Ritt et al. / European Journal of Operational Research 198 (2009) 706–714
To prove NP-hardness, we will reduce 3-SAT to MCCB. Let
Fig. 1.
and tijh
u ¼ C1 ^ C2 ^ � � � ^ Cm;
be an instance of 3-SAT with variables X = {x1, . . . ,xn} and m clauses Cj ¼ ðcj1 _ cj2 _ cj3Þ, for literals cjk. In the following, we will assume that no
clause contains a variable and its negation. Such clauses are trivially true and could be filtered out in an additional step.

We will construct two strings s and t, such that for k = 3 we have that C P 3n(2m + 1) + 3m iff u is satisfiable. The underlying alphabet R
of size 5m + 9mn + 1 is the union of

� an alphabet Rj = {rj1, . . . ,rj5} for each clause j 2 [1,m];
� an alphabet Vij = {vij1, . . . ,vij5} for each variable i 2 [1,n] and clause j 2 [1,m];
� an alphabet Wij = {wij0,wij1,wij2,wij3} for each variable i 2 [1,n] and clause j 2 [1,m]; and
� an additional symbol s.

The different alphabets serve to avoid unwanted common strings in the following construction.
First, for each variable i and clause j we construct two strings sij and tij as follows:
sij ¼
v ij1v ij2rjprjprj;pþ1rj;pþ2 if xi ¼ cjp for a p 2 f1;2;3g;
rj;prj;pþ1rj;pþ2rj;pþ2v ij4v ij5 if xi ¼ cjp for a p 2 f1;2;3g;
v ij1v ij2v ij3v ij3v ij4v ij5 xi R Cj ^ xi R Cj;

8><
>:

ð1Þ

tij ¼
v ij1v ij2rjprj;pþ1rj;pþ2 if xi ¼ cjp for a p 2 f1;2;3g;
rj;prj;pþ1rj;pþ2v ij4v ij5 if xi ¼ cjp for a p 2 f1;2;3g;
v ij1v ij2v ij3v ij4v ij5 xi R Cj ^ xi R Cj:

8><
>:

ð2Þ
If a clause contains multiple occurrences of a variable xi, we choose the minimum possible p in the cases above. Each pair sij, tij is constructed
so that sij equals tij with the middle character repeated. Therefore either the first or the last half of sij can overlap with tij and each pair con-
tributes at most one common substring of length three (see Fig. 1a) and represents the selection of either xi = t or xi = f, for a (potential) use in
clause j.

Next, for each variable i, we construct a string si of length 12m + 3 by concatenating all sij, and a string ti of length 8m + 4 by
concatenating all tij
si ¼ gi0si1gi1si2gi2 � � � si;m�1gi;m�1simgim;

ti ¼ hi0ti1hi1ti2hi2 � � � ti;m�1hi;m�1timhim;
where
gi0 ¼ wim0wim1wim2wim2wim3si1½1�
gij ¼ sij½6�wij1wij2wij2wij3si;jþ1½1�
gim ¼ sim½6�wim0wim1

j 2 ½1;mÞ;

hi0 ¼ wim0wim1wim2wim3

hij ¼ wij1wij2wij3

him ¼ wim0wim1wim2

j 2 ½1;mÞ;
(s[i] denotes the ith character of string s, counting from one.)
The pair of strings si and ti represents the variable i. All adjacent substrings of length three in si are overlapping with their left and right

neighbor in ti. The strings gi0 and gim overlap the last and the first substring of si in ti, in a way that there are exactly two ways to choose a
maximal subset of 2m + 1 common strings of length three. Either we can select all 2m + 1 odd substrings in si, or we can select only the first
odd substring (namely gi0[1]gi0[2]gi0[3]) and all 2m even substrings in si. In the latter case, the first odd substring in si must correspond to
him in ti, to avoid overlapping. This guarantees a consistent choice of xi = f or xi = t in all clauses. Therefore, the pair si, ti can contribute at
most 3(2m + 1) characters in common substrings and this number can be achieved by exactly two choices of common substrings.
a b

(a) Left: overlapping of strings sij and tij for the case xi = cjp. The case xi ¼ cjp has the same overlapping with different characters. (b) Right: overlapping strings sijgijsi,j+1

ijti,j+1.

M. Ritt et al. / European Journal of Operational Research 198 (2009) 706–714 709
Then, consider the concatenations s = s1 s2 . . .sn and t0 = t1st2s . . .stn. Since, by choice of the alphabets, for i – j, the longest common
substring of si and tj has length two, the pair s, t0 can contribute at most 3n(2m + 1) characters in any selection of common substrings.
Finally, let
t ¼ t0sr11 . . . r15rr21 . . . r25 . . . srm1 . . .rm5:
The length of s and t is n(12m + 6) and n(8m + 4) + 6m + n � 1, respectively. The whole construction can be easily carried out in polynomial
time.

Consider some valuation of /. The characters rj1, . . . ,rj5 in the final part of t match the substrings in sij which correspond to negated
literals, in a way, that all three possible substrings of length three overlap in t. Therefore, for each satisfied clause, the final part of t can
contribute three characters to C. If u is satisfiable, it is possible to find a solution of size C P 3n(2m + 1) + 3m.

Conversely, if there is a collection of common substrings of total length C P 3n(2m + 1) + 3m, by construction we must have
C = 3n(2m + 1) + 3m. In this case, each of n pairs si, ti must contribute its maximum of 3(2m + 1) characters, and each of m pairs s and
rj1 . . .rj5 exactly three characters. If we attribute xi = t whenever si1 is covered by the common substrings, and xi = f otherwise, u must be
satisfied. �
4. Two integer linear programs

In this section, we propose two integer linear formulations for the MCCB. We first introduce a input representation, in order to simplify
the formulation presentation. Then, the two models are described.

4.1. Input representation

In order to formulate the MCCB as integer programs, let us first represent the original input as a 0–1 matrix with dimensions I � J,
(I = jsj, J = jtj), in which the element aij is equal to zero if no matching occurs between the position i in the first string and position j in
the second string, and to one otherwise. An example is presented in Fig. 2a.

We call a sequence of elements (i_j, (i + 1)_(j + 1), . . . , (i + q)_(j + q)) with q P 0 a maximum block Xt if aij = 1, "i_j 2 Xt and elements
a(i�1)(j�1) and a(i+q+1)(j+q+1) are either equal to 0 or do not exist (exceed the matrix dimensions). Let us call X = {X1,X2, . . . ,Xt, . . . ,XjXj} the
set of all maximum blocks. In the matrix given in Fig. 2a, we have X = {(1_1,2_2,3_3,4_4), (1_7,2_8), (3_5,4_6,5_7,6_8), (5_1,6_2)}. For
an element i_j 2 Xt, we say that elements (i + q)_(j + q) 2 Xt are below i_j and elements (i � q)_(j � q) 2 Xt are above i_j, q > 1.

Based on the input table, we create a matrix called forward in which each element fij associated with i_j 2 Xt represents the number of
elements g_h 2 Xt such that g 6 i and h 6 j (i.e., the number of elements in Xt that are above i_j plus one). Analogously, we create a backward
matrix in which each element bij associated with i_j 2 Xt represents the number of elements g_h 2 Xt such that g P i and h P j (i.e., the num-
ber of elements in Xt that are below i_j plus one). The forward and backward matrices corresponding to the input matrix in Fig. 2a are pre-
sented in Fig. 2b and c (null entries are omitted for clarity).

Let us now define a digraph G = (N [Ne,Ao [Ad [Ai). The sets N,Ne,Ao,Ad and Ai are defined as follows:

� N = {i_jjfij + bij P k + 1}
� Ne = {o_o,d_d}, where o_o and d_d are two artificial vertices.
� Ao = {(o_o, i_j)j(i_j) 2 N,bij P k}
� Ad = {(i_j,d_d)j(i_j) 2 N, fij P k}
� Ai ¼ fði j; i jþÞji j; i jþ 2 N; aij ¼ ai jþ ¼ 1g

In order to simplify the presentation, we use symbols i_j+ standing for (i + 1)_(j + 1). Later, we will also use i_j� to represent vertex
(i � 1)_(j � 1). Moreover, as mentioned before, we use aij, fij and bij to represent an element of the input, forward and backward matrices,
respectively. Note that each element in N belongs to a single maximum block. Let Xði jÞ be a function that returns the index of the max-
imum block to which an element i_j belongs. For instance, in the example presented in Fig. 2a, Xð1 1Þ ¼ 1 and Xð1 7Þ ¼ 2.

We can see that N is the set of all elements i_j belonging to a maximum block with at least k elements. Ao is the set of arcs connecting the
artificial origin vertex o_o to all elements i_j, such that the element i_j has at least k � 1 elements below it. Analogously, Ad is the set of all
arcs connecting elements of N with at least k � 1 elements above it to the artificial destination vertex d_d. Finally, Ai is the set of arcs linking
a b c

Fig. 2. (a) Input matrix; (b) forward matrix; (c) backward matrix.

_

_

_

_

_ _

_ _

_

_

Fig. 3. Graph G corresponding to input matrix in Fig. 2a.

710 M. Ritt et al. / European Journal of Operational Research 198 (2009) 706–714
each element i_j 2 N to the element that comes immediately after it in the maximum block Xði jÞ, if such an element exists. Graph G for the
input matrix in Fig. 2a and k = 3 is presented in Fig. 3.

4.2. Formulations

In this subsection, we use the just described representation to model the MCCB problem.

4.2.1. Path formulation
Let P = (i1 = o_o, . . . , i‘ = d_d) denote a path originating at vertex o_o and ending at vertex d_d, containing ‘ vertices. Define Ph as the set of

paths P in G with length 3 6 ‘ 6 k + 1. Each path P 2 Ph contains at most k � 1 vertices 2N (the set of vertices that do not include o_o and
d_d) and thus is equivalent to an infeasible choice of substring, since it violates the string limit constraint. Note that for k = 1, set Ph is
empty.

We now define binary variables yi_j and xi_j,g_h, associated with each vertex i_j 2 N and with each arc (i_j,g_h) 2 Ao [Ad [Ai, respectively.
Variables yi_j are equal to one if, in the solution, there is an arc incident to vertex i_j and equal to zero, otherwise. Variables xi_j,g_h are equal
to one if arc (i_j,g_h) is present in the solution and zero, otherwise. With these definitions, we can present a mathematical formulation for
the problem:
Maximize
X
i j2N

yi j ð3Þ

subject to yi j ¼
X

ðg h;i jÞ2Ao[Ai

xg h;i j; i j 2 N; ð4Þ
X

ðg h;i jÞ2Ao[Ai

xg h;i j ¼
X

ði j;g hÞ2Ad[Ai

xi j;g h; i j 2 N; ð5Þ
X

jji j2N

yi j 6 1; i ¼ 1; . . . ; I; ð6Þ
X

iji j2N

yi j 6 1; j ¼ 1; . . . ; J; ð7Þ

X‘
t¼2

xpt�1 ;pt
6 ‘� 2; P ¼ ðp1 ¼ o o; . . . ;p‘ ¼ d dÞ 2 Ph; ð8Þ

yi j 2 f0;1g; i j 2 N; ð9Þ
xi j;g h 2 f0;1g; ði j; g hÞ 2 Ao [Ad [Ai: ð10Þ
The objective function maximizes the number of matches found. Variables yi_j are descriptive and count the number of incoming links of a
vertex i_j, as shown in constraints (4). Eq. (5) are flow conservation constraints. Constraints (6) and (7) are responsible for avoiding overlaps:
constraints (6) guarantee that a single match is chosen in each row while constraints (7) guarantee that a single match is chosen per column.
Finally, constraints (8) assure that no string with less than k characters belonging to N is chosen. These constraints, called hop constraints, are
common in the literature dealing with optimizations in graphs (Gouveia, 1999; Costa et al., forthcoming, e.g.), however, to our knowledge, it
has only been used to limit the solutions to those containing paths of at most a given number of links. In our case, the hop constraints are
used with the inverse objective, i.e, to limit solutions to those containing at least k links. We believe that this new application of the con-
straints might be useful in other situations. It is also worth noting the unusual formulation of a string comparison problem as a network
design model.

4.2.2. Time-dependent variables formulation
A second formulation can be obtained by using the so-called time-dependent variables (Gouveia, 1999; Costa et al., forthcoming). Vari-

ables yi_j, i_j 2 N, xo_o,i_j 2 Ao and xi_j,d_d 2 Ad are defined as above but arc variables for arcs in Ai are defined as follows: let xt
i j;i jþ

be a binary
variable that is equal to one if arc (i_j,i_j+) is present in the solution and i_j is the tth vertex in the path from the origin vertex o_o, and to zero
otherwise. We carefully choose the values of t that can be applied to each arc, in order to use the minimum number of variables. This is
done with the help of the forward and backward matrices: for each arc (i_j,i_j+) we create xt

i j;i jþ
with t ¼ ti j

min; . . . ; ti j
max. The limit ti j

min is given
by max{1,k � bij + 1} and ti j

max is given by fij.
The rationale behind the choice of tmin and tmax is simply the fact that the possible set of positions of each vertex in a solution path is

restricted by the graph topology. Consider, for instance, the graph presented in Fig. 3, it is clear that node 3_3 can only appear in positions 2
or 3 in a path originating at vertex o_o. Indeed, these are the values that one obtains by computing t3 3

min and t3 3
max. Note that once we have

variables indicating the position of each arc in a path, we can explicitly set flow conservation constraints that only allow paths with at least

M. Ritt et al. / European Journal of Operational Research 198 (2009) 706–714 711
k vertices 2 N. This is done by relating, in the flow constraints, the value of exit variables xi_j,d_d to the value of variables xt
i j� ;i j for t P k � 1.

Since any variable xt
i j� ;i j ¼ 1 with t P k � 1 can lead to a variable xi_j,d_d = 1, we are not obliged to count the position of an arc in the path,

once we know that it has surpassed the minimum limit k. We can, therefore, further restrict ti j
max to max{fij,k}.

With the variables described above, one can write the problem as follows:
1 In o
Maximize
X
i j2N

yi j ð11Þ
subject to (4), (6), (7), (9) and (10) and
xi j;i jþ ¼
Xti j

max

t¼ti j
min

xt
i j;i jþ ; ði j; i jþÞ 2 Ai; ð12Þ

xo o;i j ¼ x1
i j;i jþ ; i j 2 Njti j

min ¼ 1; ð13Þ

xt�1
i j� ;i j ¼ xt

i j;i jþ ; maxf2; ti j
ming 6 t 6 minfk� 1; ti j

maxg; i j 2 N; ð14Þ

Xti j�
max

t¼k�1

xt
i j� ;i j ¼ xk

i j;i jþ þ xi j;d d; i j 2 Njti j
max ¼ k; ð15Þ

xt
i j;i jþ 2 f0;1g; ði j; i jþÞ 2 Ai; t ¼ ti j

min; . . . ; ti j
max: ð16Þ
In this new formulation, we still maximize the number of matches found. Variables xi j;i jþ 2 Ai are descriptive and their values are deter-
mined by constraints (12). Note that these variables could be eliminated from the formulation, but they are kept for clarity.1 Constraints
(13)–(15) are flow conservation constraints. These constraints can be understood as follows: constraints (13) indicate that all paths must start
at the root node. Constraints (14) ensure that once a first link is chosen in a path, this path must be taken for at least k steps. Constraints (15)
allow the path to be terminated at a destination vertex once at least k vertices have been chosen in a path.

5. Theoretical comparison of formulations

When dealing with mixed integer linear models, the strength of the associated linearly relaxed models is an important, if not essential,
characteristic. The main reason for this is the fact that many of the available solution methods, notably the branch-and-cut method, rely on
these relaxations and the stronger the relaxations, the more efficiently the methods will perform. In this section, we establish theoretical
domination relations between the LP relaxations of the proposed formulations. We call PFLP and TDFLP the linear relaxations of the path and
time dependent formulations, respectively.

We show that TDFLP dominates PFLP. To the extent of our knowledge, this result is new in the literature. Indeed, no results comparing
these two families of formulations could be obtained in (Costa et al., forthcoming), where other families of hop constrained formulations
have been compared.

The proof will be done by showing that all constraints of PFLP are already implied by TDFLP but the contrary is not true. First, let us prove
the two following propositions:

Proposition 1. Constraints (5) are redundant for the TD formulation.

Proof. For each i_j 2 N, using the descriptive variables defined at constraints (12), constraints (5) follow directly by the sum of constraints
(13)–(15) for i_j 2 N, when defined. �

Proposition 2. Constraints (8) are redundant for the TD formulation.

Proof. Take any path P ¼ fp1 ¼ o o; . . . ; p‘ ¼ d dg 2 Ph. The sum of the values of the flows associated to the arcs in the path is given by
L ¼ xo o;p2
þ xp‘�1 ;d d þ

Xt¼‘�1

t¼3

xpt�1 ;pt
: ð17Þ
Note that L is the left-hand side of constraints (8). Note also that vertex p‘�1 is not the last vertex in its maximum block (otherwise, since
‘ 6 k + 1, xo o;p2

would not exist). Therefore, the flow exiting vertex p‘�1, F, is given by the flow destinated to vertex d_d plus the flow des-
tinated to i_j, the next vertex in the maximum block.
F ¼
X

p‘�1 ;g h2Ad[Ai

xp‘�1 ;g h ¼ xp‘�1 ;d d þ xp‘�1 ;i j ¼ xp‘�1 ;d d þ x‘�2
p‘�1 ;i j þ

X‘�3

t¼t
p‘�1
min

xt
p‘�1 ;i j þ

Xtp‘�1
max

t¼‘�1

xt
p‘�1 ;i j:
Using constraints (13) and (14), and, again, the fact that ‘ 6 k + 1, we can say that x‘�2
p‘�1 ;i j ¼ xo o;p2

, and, therefore
F ¼ xp‘�1 ;d d þ xo o;p2
þ
X‘�3

t¼t
p‘�1
min

xt
p‘�1 ;i j þ

Xtp‘�1
max

t¼‘�1

xt
p‘�1 ;i j 6 1:
rder to eliminate constraints (12), one must introduce constraints
Pti j

max

t¼ti j
min

xt
i j;i jþ

6 1; ði j; i jþÞ 2 Ai .

Table 3
Results of ILP on random instances in the path and time-dependent formulation.

String size Block edits jRj Path formulation Time dependent formulation

Time Optimality gap [%] Time Optimality gap [%]

[s] Minimum Average Maximum [s] Minimum Average Maximum

20 10 2 0.225 0.00 0.00 0.00 0.138 0.00 0.00 0.00
20 10 3 0.071 0.00 1.22 5.56 0.121 0.00 0.67 3.33
20 10 5 0.065 0.00 0.00 0.00 0.062 0.00 0.00 0.00
20 10 10 0.052 0.00 0.00 0.00 0.086 0.00 0.00 0.00
20 10 26 0.077 0.00 0.00 0.00 0.052 0.00 0.00 0.00

20 20 2 0.108 0.00 0.24 2.38 0.089 0.00 0.24 2.38
20 20 3 0.060 0.00 1.00 10.0 0.123 0.00 1.00 10.00
20 20 5 0.081 0.00 0.56 5.56 0.056 0.00 0.00 0.00
20 20 10 0.060 0.00 0.00 0.00 0.089 0.00 0.00 0.00
20 20 26 0.063 0.00 0.67 6.67 0.106 0.00 0.00 0.00

20 30 2 0.145 0.00 0.71 7.14 0.122 0.00 0.71 7.14
20 30 3 0.056 0.00 0.00 0.00 0.086 0.00 0.00 0.00
20 30 5 0.050 0.00 0.00 0.00 0.058 0.00 0.00 0.00
20 30 10 0.057 0.00 0.00 0.00 0.062 0.00 0.00 0.00
20 30 26 0.057 0.00 0.00 0.00 0.062 0.00 0.00 0.00

50 10 2 4.570 0.00 0.00 0.00 1.710 0.00 0.00 0.00
50 10 3 0.817 0.00 1.37 3.75 0.638 0.00 1.24 3.59
50 10 5 0.119 0.00 0.26 2.59 0.161 0.00 0.17 1.72
50 10 10 0.097 0.00 0.00 0.00 0.147 0.00 0.00 0.00
50 10 26 0.136 0.00 0.00 0.00 0.129 0.00 0.00 0.00

50 20 2 10.070 0.00 0.00 0.00 1.464 0.00 0.00 0.00
50 20 3 2.284 0.00 1.46 3.79 0.898 0.00 1.06 3.05
50 20 5 0.177 0.00 0.38 1.92 0.174 0.00 0.38 1.92
50 20 10 0.157 0.00 0.00 0.00 0.125 0.00 0.00 0.00
50 20 26 0.103 0.00 0.00 0.00 0.156 0.00 0.00 0.00

50 30 2 2.378 0.00 0.00 0.00 0.705 0.00 0.00 0.00
50 30 3 0.783 0.00 0.63 2.33 0.960 0.00 0.50 1.55
50 30 5 0.112 0.00 0.56 3.37 0.193 0.00 0.19 1.92
50 30 10 0.155 0.00 0.81 5.13 0.221 0.00 0.29 2.94
50 30 26 0.100 0.00 0.42 4.17 0.157 0.00 0.00 0.00

712 M. Ritt et al. / European Journal of Operational Research 198 (2009) 706–714
The inequality comes from the fact that the sum of the outgoing flows of a vertex is bounded by one. Now, since all flow variables are po-
sitive, we can write:
xp‘�1 ;d d þ xo o;p2
6 1: ð18Þ
Finally, using (17), (18) and the fact that each flow variable is bounded by one, we have:
L ¼ xo o;p2
þ xp‘�1 ;d d þ

Xt¼‘�1

t¼3

xpt�1 ;pt
; ð19Þ

L 6 1þ
Xt¼‘�1

t¼3

xpt�1 ;pt
; ð20Þ

L 6 1þ ‘� 3 ¼ ‘� 2: � ð21Þ
We are now able to prove the main result:

Proposition 3. Formulation TDFLP dominates PFLP.

Proof. First, we show that TDFLP is not dominated by PFLP. This is done by inspection of Section 6 computational results. We can see that, by
the figures presented in Table 3, there are instances for which the gap given by TDFLP (compared to the optimal integral value) is smaller
than that given by PFLP, and, therefore PFLP does not imply TDFLP. To show that TDFLP implies PFLP, one needs to show that all constraints of
PFLP are implied by TDFLP. Constraints (4), (6), (7), (9) and (10) are explicitly present in TDFLP. It suffices, therefore, to show that constraints
(5) and (8) are dominated by the constraints of TDFLP, which has been done by Propositions 1 and 2. �

We will now present a series of computational tests that confirm the advantages of using TDF as well as the efficacy of the integer linear
approach to solve the MCCB.

6. Computational results of the ILP approach

We have tested the performance of the ILP approach and the quality of the LP relaxation on randomly generated instances, based on a
block edit model. We first create a random string of a given length, and then apply a number of random block edits (deletions, copies and
moves), where each block has a random length, up to an upper limit. The result of these operations is the second string used for
comparison.

M. Ritt et al. / European Journal of Operational Research 198 (2009) 706–714 713
In our experiments, we used initial string lengths 20,50, block edits with blocks of length up to 10 characters, 10,20 and 30 block edits
and an alphabet size of 2,3,5,10 and 26. For every combination of these parameters we generated a group of 10 instances.

The experiments have been conducted on an AMD Athlon 64 Dual Core 3800 with 1 GB of RAM using XpressMP v18.00.08. For each of
the 24 groups, Table 3 reports the average time for solving the ILP and the optimality gap of the LP relaxation for the path and the time-
dependent formulation, using a minimum substring size of k = 3.

The optimality gaps show that both formulations yield tight bounds for the ILP. We can also see that the time-dependent formulation
consistently yields stronger bounds than the path formulation and therefore can improve the execution time for the difficult instances of
alphabet size two by a factor of two to three. Observe also, that the execution time tends to decrease as the alphabet size increases. This is
due to the reduced probability of multiple common substrings for an increasing alphabet, and is desirable, since practical instances in
string comparison usually use large alphabets. Altogether the solution times show that the ILP approach is able to solve instances of prac-
tical interest in reasonable time.

7. Results of approximate string matching

We carried out a series of data retrieval experiments in order to assess the quality of Carla in comparison to other existing similarity
functions. The value of the length of the common substrings C has been obtained by the time-dependent formulation, which has proven
to be more efficient. The quality of a similarity function for data matching or integration purposes can be measured in terms of its ability in
assigning higher scores to strings that represent the same real world object as the string being queried than to strings that do not represent
the same object. This ability is usually measured in terms of average precision (AP), as done in (Bilenko et al., 2003). In order to calculate AP,
it is necessary to rank a collection of strings according to their similarity score with a string used as query. The entries in this ranking can be
classified as relevant or not relevant depending on whether or not they represent the same object as the query. Based on such a ranking, AP
is calculated as follows: For each position p in the ranking that corresponds to a relevant item, the precision is the ratio rp = n/p, where n is
the number of relevant results retrieved up to line p. After calculating the ratio r for all m relevant ranks, the AP for a query is defined as the
average of all m ratios r. The mean average precision (MAP) for a similarity function is the arithmetic mean of the APs for the individual
queries. In order to illustrate the calculation of AP, let us consider a query ‘‘European journal of operational research” posed over a database
that contains eight strings. In such a database, there are m = 5 relevant strings for the query. Table 4 shows the ranking of the database
items according to Carla. The last column from the table shows rp for each position p corresponding to a relevant item. If all relevant items
were assigned higher scores than all irrelevant items, then AP = 1.

The string collections used in the experiments were automatically generated using the data set generator from FEBRL – freely extensible
biomedical record linkage (Christen et al., 2004). This tool introduces misspellings (i.e. character insertions, removals, substitutions or
inversions) to simulate mistakes that are committed by people when keying in data. Eight string collections were generated. Each collec-
tion has one thousand strings that correspond to one hundred distinct person names. The inversion probability of blocks of characters was
varied systematically from 0.1 to 0.8 with increments of 0.1. The aim was to assess the quality of the similarity functions as the number of
inversions increases.

The tests were done using Carla and six other similarity functions available from SimMetrics (Chapman, 2006), namely: BlockDistance,
Cosine, Jaro, Levenshtein, QGramsDistance, Smith Waterman and Soundex. The parameters used for Carla are a = 0.5 and k = 2, as empirical
results have shown that this an adequate configuration for the dataset being analyzed. Recall from Section 1 that a = 0.5 can be used to
compare two strings and that k = 2 means that we are considering common blocks of at least 2 characters.
Table 4
Example of average precision calculation.

String Score Relevance

European journal of operational research 1.0000 Relevant r1 = 1/1 = 1
Operational research, European journal 0.9230 Relevant r2 = 2/2 = 1
Europ Jrnl of Operational Research 0.9189 Relevant r3 = 3/3 = 1
Operations research letters 0.5970 Not relevant
Computers & operations research 0.5915 Not relevant
Eur Jrnl Op Res 0.5454 Relevant r6 = 4/6 = 0.66
Transportation research part A 0.5428 Not relevant
EJOR 0.0909 Relevant r8 = 5/8 = 0.62

AP = (1 + 1 + 1 + 0.66 + 0.62)/5 = 0.85

Table 5
Results for the data retrieval experiments. Each cell contains the value for MAP for each similarity function on each string collection.

Similarity function 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Average

Carla 0.89 0.89 0.90 0.91 0.90 0.91 0.93 0.94 0.90
Q grams distance 0.89 0.85 0.82 0.82 0.81 0.82 0.85 0.88 0.85
Smith Waterman 0.88 0.86 0.82 0.81 0.81 0.83 0.85 0.87 0.84
Jaro 0.80 0.72 0.66 0.60 0.58 0.62 0.62 0.68 0.68
Levenshtein 0.79 0.69 0.62 0.55 0.54 0.56 0.59 0.64 0.65
Soundex 0.64 0.57 0.53 0.46 0.45 0.50 0.53 0.54 0.55
Block distance 0.22 0.27 0.29 0.31 0.30 0.37 0.44 0.45 0.32
Cosine similarity 0.22 0.27 0.29 0.31 0.30 0.37 0.44 0.45 0.32

714 M. Ritt et al. / European Journal of Operational Research 198 (2009) 706–714
The experiments were done using the SimEval Tool (Heuser et al., 2007). From each data collection, 5 samples of 50 randomly chosen
strings were used as queries against the whole collection. The results of MAP for each sample were averaged to produce the final results
shown in Table 5.

The results show that Carla obtains the best MAP scores for all collections. Amongst the other functions, Smith-Waterman and QGrams-
Distance achieve the best performance. It is also possible to observe that as the number of inversions increases, Carla’s advantage in com-
parison to the other similarity functions becomes more evident.

8. Conclusions

We have introduced a new problem called maximum common characters in blocks, which arises in the context of approximate string
matching. We have shown that this problem is NP-complete. Moreover, we have proposed two integer linear formulations, which contain
a novel application of the so-called hop constraints, either by introducing explicit path constraints or by the use of additional variables. A
theoretical comparison shows that the latter dominates the former.

On the practical side, we have shown that these formulations are able to compute the optimal values of our similarity measure Carla for
instances of interest. An experimental comparison of Carla with other similarity measures demonstrates that the quality of the results ob-
tained is significantly better for strings with block inversions.

In a future work, we intend to study the applicability of this distance measure in problems of bioinformatics (f. ex. genome
rearrangement).

Acknowledgements

We would like to thank the anonymous referees for their helpful suggestions. This work was partially supported by a CAPES-PRODOC
grant from the Brazilian Ministry of Education. Sergio Mergen is funded by CAPES.

References

Bilenko, M., Mooney, R., Cohen, W.W., Ravikumar, P., Fienberg, S., 2003. Adaptive name matching in information integration. IEEE Intelligent Systems 18 (5), 16–23.
Buss, S.R., Yianilos, P.N., 1995. A bipartite matching approach to approximate string comparison and search, Technical Report 95–193, NEC Research Institute.
Chapman, S., 2006. Simmetrics. <http://www.dcs.shef.ac.uk/~sam/simmetrics.html>.
Christen, P., Churches, T., Hegland, M., 2004. FEBRL – a parallel open source data linkage system. In: Proceedings of PAKDD (LNAI 3056). Springer, pp. 638–647.
Costa, A.M., Cordeau, J.F., Laporte, G., forthcoming. Models and branch-and-cut algorithms for the Steiner tree problem with revenues, budget and hop constraints. Networks.
Gouveia, L., 1999. Using hop-indexed models for constrained spanning and Steiner tree models. In: Sansò, B., Soriano, P. (Eds.), Telecommunications Network Planning.

Kluwer, Boston, pp. 21–32.
Heuser, C., Krieser, F.N.A., Orengo, V.M., 2007. Simeval – a tool for evaluating the quality of similarity functions. In: Grundy, J., Laender, A.H.F., Maciaszek, L., Roddick, J.F. (Eds),

Twenty-Sixth International Conference on Conceptual Modeling – ER 2007 – Tutorials, Posters, Panels and Industrial Contributions, Australian Computer Society,
Auckland, New Zealand.

Levenshtein, V., 1966. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10 (8), 707–710.
Lopresti, D., Tomkins, A., 1997. Block edit models for approximate string matching. Theoretical Computer Science 181, 159–179.
Mergen, S., Heuser, C., 2005. Carla: Uma técnica para comparação de cadeias de caractéres. I Escola Regional de Banco de Dados. SBC, Porto Alegre. pp. 55–70.
Navarro, G., 2001. A guided tour to approximate string matching. ACM Computing Surveys 33 (1), 31–88.
Tichy, W.F., 1984. The string-to-string correction problem with block moves. ACM Transactions on Computer Systems 2 (4), 309–321.

http://www.dcs.shef.ac.uk/~sam/simmetrics.html

	An integer linear programming approach for approximate string comparison
	Introduction
	Related work
	NP-completeness of MCCB
	Two integer linear programs
	Input representation
	Formulations
	Path formulation
	Time-dependent variables formulation

	Theoretical comparison of formulations
	Computational results of the ILP approach
	Results of approximate string matching
	Conclusions
	Acknowledgements
	References

