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a b s t r a c t

We propose the Assembly Line Worker Integration and Balancing Problem (ALWIBP), a new assembly
line balancing problem arising in lines with conventional and disabled workers. The goal of this problem
is to maintain high productivity levels by minimizing the number of workstations needed to reach a
given output, while integrating in the assembly line a number of disabled workers. Being able to
efficiently manage a heterogeneous workforce is especially important in the current social context
where companies are urged to integrate workers with different profiles. In this paper we present
mathematical models and heuristic methodologies that can help assembly line managers to cope with
this additional complexity. We demonstrate by means of a robust benchmark how this integration can be
done with losses of productivity that are much lower than expected.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

According to the International Labour Organization (ILO),
people with disabilities represent an estimated 10% of the world's
population, including approximately 500 million of working age;
being apparent that in the unemployment rates of the disabled are
much higher than the average.

Employment is the main path for social inclusion and partici-
pation in modern societies. Having a job is not only the basis for
the survival and stability for many individuals, but also a key way
of accessing many rights as citizens. Therefore the welfare
and the social inclusion of the disabled depend very much on
the degree of labor integration they are able to achieve. Different
active policies to fight against discrimination have been set during
the last few decades, following models that are more/less inclusive
depending on the local culture. Across specific national legisla-
tions, a general common formula is to reserve a share of work-
places in ordinary companies for people with disabilities. This
share normally increases with the size of the company and,
depending on the country legislation, usually goes from 2% to 5%
of the jobs.

Unfortunately, it is also a common phenomenon in many
countries that this share is not always respected, indicating that

the solution should come not only by legal imposition, but mainly
by overcoming the prejudices about the capabilities of the dis-
abled, and by the genuine commitment of ordinary companies to
include integration programs in their strategies. The aim of this
paper is to contribute in making this commitment easier: (1) by
providing the production managers with practical approaches that
ease the integration of disabled workers in the production lines;
(2) by demonstrating that, through the approaches proposed, the
productivity of production systems suffers little (and often none)
decrease.

Once stated the great importance of integrating Disabled into the
workforce of ordinary companies, we should make a brief introduc-
tion on some previous work inspired on the specific scenario of the
so-called “Sheltered Work Centers for Disabled” (henceforth SWDs).
SWDs are a special work formula legislated in many countries (with
different variants) whose only difference from an ordinary company
is that most of its workers must be disabled, and therefore they
receive some institutional help in order to be able to compete in real
markets. This labor integration formula has been successful in
decreasing the former high unemployment rates of countries like
Spain, and one of the strategies used by SWDs to facilitate the labor
integration has been the adoption of assembly lines. In this
sense, Miralles et al. [9] were the first to evidence how the
integration of disabled workers in the productive systems can be
done without losing, even gaining, productive efficiency through the
use of assembly lines. This pioneer reference defined the so-called
Assembly Line Worker Assignment and Balancing Problem
(ALWABP) and demonstrated how the division of worker into single
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tasks becomes a powerful tool for making certain workers disabil-
ities invisible.

1.1. Contribution and outline of this work

ALWABP was inspired in the SWDs reality, where the very high
diversity of most of the workers and their limitations are the main
characteristics. This scenario is quite different to that one of an
ordinary company, where the aim is to efficiently integrate in the
workforce just some workers, often to cope with the 2–5% of
disabled workers legislation requirements. In this case the pro-
blem supposes much less diversity in the input data, and can also
be stated with very different approaches with respect to the
ALWABP, regarding the objective function, the hypothesis and
model defined, and the kind of appropriate solution procedures.

The aim of this paper is to introduce and analyze this new
problem that has been named “Assembly Line Worker Integration
and Balancing Problem” (ALWIBP). Our study aims to answer
specific requirements that normally arise in assembly lines of
ordinary companies, where only few disabled workers have to be
integrated, providing the production managers with practical tools
that ease the integration of disabled workers in the most efficient
manner. We propose newmathematical models for the problem as
well as a constructive heuristic based on the similarities between
the proposed problem and the so-called Simple Assembly Line
Balancing Problem (SALBP).

The remainder of this paper is structured as follows: in Section 2,
we state a formal codification of the new problem and some
extensions, analyzing their practical implications and reviewing refer-
ences of the literature with useful related approaches. Section 3 then
presents the corresponding IP models for the proposed versions of the
ALWIBP while Section 4 describes a fast heuristic that has been
developed to solve the problem. A experimental study in order to
analyze the effectiveness of the proposed models and algorithms is
conducted in Section 5. General conclusions end this paper.

2. The Assembly Line Worker Integration and Balancing
Problem

2.1. Introduction: SALBP vs ALWABP

The SALBP was initially reviewed by Baybars [1] and consists of
an assembly line balancing problem with several well-known
simplifying hypotheses. This classical single-model problemwhich
aims at finding the best feasible assignment of tasks to stations so
that certain precedence constraints are fulfilled, has been the
reference problem in the literature in its two basic versions: when
the cycle time C is given, and the objective is to optimize the
number of necessary workstations, the problem is called SALBP-1.
Whereas when there is a given number m of workstations, and the
goal is to minimize the cycle time C the literature knows this
second version as SALBP-2 [17].

A trend in Assembly Line research in the last decade has been
to narrow the gap between the theoretical proposals and the
industrial reality, which faces multiple specific configurations such
as multi-manned workstations [6,7], two sided assembly lines
[8,14], or operator allocation in job sharing and operator revisiting
lines [20], among many others. As part of this trend, Miralles et al.
[9] properly defined the ALWABP, a generalization of the SALBP
where, in addition to the assignment of tasks to stations, a set of
heterogeneous workers also has to be assigned to stations. In this
scenario each task has a worker-dependent processing time,
which allows taking into account the limitations and specific
production rates of each worker. Moreover, when the time to

execute a task for certain worker is very high, this assignment is
considered infeasible in the input data matrix.

Since Miralles et al. [9], many other references have contributed
to give ALWABP visibility throughout academia, proposing differ-
ent methods to solve the problem. The same authors have later
developed a branch-and-bound algorithm for the problem, obtain-
ing the exact solution of small-sized instances [10]. Because of the
problem complexity and the need to solve larger instances, the
literature has since then shifted its efforts to heuristic methods.
The current state-of-the-art methods for solving the ALWABP are
the iterated beam search (IBS) metaheuristic of Blum and Miralles
[2], the biased random-key genetic algorithm of Moreira et al. [11],
the iterative genetic algorithm of Mutlu et al. [12], the heuristic
and the branch-and-bound algorithms of Borba and Ritt [3] and
the branch-and-bound algorithm of Vilà and Pereira [19].

2.2. ALWIBP

The ALWABP problem was inspired in the SWDs reality with
most workers presenting a high diversity of operation times;
whereas the ALWIBP scenario introduced in Section 1 intends to
simulate the more inclusive situation in which disabled workers
relative (in a small number) are integrated in a conventional
assembly line. It has to be noted that the main (and only studied)
problem focusing on disabled integration in assembly lines has
been the ALWABP-2 [10,11] e.g., since the typical objective at SWD
is to be as efficient as possible with the (diverse) available
workforce.

In the scenario associated with the ALWIBP, it makes sense to
deal with the type 1 problem, since a reasonable aim of a
production manager can be to integrate the given disabled work-
ers (in some cases some 2 or 5% of workers, or even more whether
some compensation is needed due to low shares in other factory
sections) while minimizing the number of additional workstations
needed for doing so. This problem is named ALWIBP-1, by analogy
with the SALBP case.

In addition to this basic objective, once inside the solution
subspace with minimal number of workstations, the manager may
aim to find those assignments in which the idle time in stations with
disabled workers is minimum, in order to increase their participation
in the production process. We call this extension ALWIBP-1Smin. If,
according to Boysen et al. [4] classification, ALWABP-2 was stated as
½pa; link; cumjequipjc�, in this case we can define ALWIBP-1 as
½pa; link; cumjequipjm�, while the ALWIBP-1Smin can be stated as
½pa; link; cumjequipjm; SLLstat � using the same codification scheme.

In the following, we propose integer linear models for the basic
ALWIBP-1 situation and also for the extension proposed.

3. Mathematical models

In this section, we present a mathematical model for the
ALWIBP-1 defined earlier, and further extend it to cope with
ALWIBP1-Smin extra objective with the use of the following
notation:

N set of tasks to be assigned;
S set of workstations;
W set of disabled workers, jW jr jSj;
ti execution time of task i when assigned to a “conven-

tional” worker;
twi execution time of task i when assigned to disabled

worker wAW;
IwDN set of unfeasible tasks for worker wAW;
Fi set of immediate successors of task i;
Fn

i set of all successors of task i.
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3.1. Model for ALWIBP-1

The proposed formulation follows the idea used by Petterson
and Albracht [15] when modeling the SALBP-1. Let q be an artificial
task and Dq ¼ fiANjFi ¼∅g be the set of tasks that have no
followers. We define a new precedence graph in which N0 ¼N [
fqg and all tasks in Dq precede task q. The execution time of task q
is always 0, i.e., tq ¼ twq ¼ 0; 8wAW . The ALWIBP-1 can thus be
modelled as

Min∑
sAS

sxsq ð1Þ

subject to

∑
sA S

xsi ¼ 1; 8 iAN0; ð2Þ

∑
sA S

ysw ¼ 1; 8wAW ; ð3Þ

∑
wAW

yswr1; 8sAS; ð4Þ

∑
sA SjsZk

xsir ∑
sA SjsZk

xsj; 8 i; jAN0; jAFi; kAS; ka1; ð5Þ

∑
iAN0

tixsirC ; 8sAS; ð6Þ

∑
iAN0nIw

twixsirCþLwð1�yswÞ; 8sAS; 8wAW ; ð7Þ

yswr1�xsi; 8sAS; 8wAW ; 8 iA Iw; ð8Þ

∑
sA SjsZk

yswr ∑
sA SjsZk

xsq; 8wAW ; 8kAS; ka1; ð9Þ

xsiAf0;1g; 8sAS; 8 iAN0; ð10Þ

yswAf0;1g; 8sAS; 8wAW : ð11Þ
where:

xsi binary variable equals to one if task iAN0 is assigned to
workstation sAS,

ysw binary variable equals to one if a disabled worker wAW
is assigned to workstation sAS,

Lw large constant, wAW .

The objective function minimizes the index associated with the
last station (the one that executes the fictitious last task q). In
association with constraints (3) which state that all disabled workers
are assigned, this objective function minimizes the number of
“conventional” workers used in the line. Constraints (4) guarantee
that each workstation receives at most one (disabled) worker. This is
a fair assumption in many practical situations even for lines solely
with “conventional” workers. In the case of workers with disabilities,
this fact gains in importance since these workers might have special
constraints which might force that the workstation be modified
accordingly. Constraints (2) ensure that all tasks are assigned, while
constraints (5) guarantee that the precedence relations are respected.
These inequalities were proposed by Ritt and Costa [16] which
analyzed several versions of precedence constraints and concluded
that constraints (5) presented better theoretical and practical results.

Constraints (6) and (7) ensure that the cycle time is respected
at stations without and with disabled workers, respectively.
Constant Lw must be sufficiently large to deactivate these last
constraints if ysw ¼ 0. Therefore, we take Lw ¼∑iANnIw jtwi�tij. This
expression assumes the maximum additional time that a disabled
worker w spends at a station in comparison to a conventional
worker (this would be the additional time needed for the execu-
tion of all worker-feasible tasks). Also, we highlight that even

though a workstation must have only a single worker, this set of
constraints allow that more than one task can be assigned to the
same station.

Finally, constraints (8) and (9) guarantee that disabled workers
are not assigned to tasks which they are not able to execute and
that they execute at least one task, respectively.

3.2. ALWIBP-1Smin model extension

In order to extend this formulation to the ALWIBP-1Smin case,
one can simply note that this new problem is characterized by the
addition of another term in the objective function related to the
idle time of the disabled workers. The new goal is to hierarchically
minimize the number of stations (with higher priority) and the
idle time of the stations with disabled workers. Thereby, this
version of the problem aims to obtain more balanced solutions
that increase the participation of these workers.

To model this situation, we use non-negative real variables
δw;wAW , to measure the idle time of each disabled workerw. The
values of these new variables are obtained with the aid of slack
variables lsw; 8sAS; 8wAW associated with constraints (7), which
are rewritten as

∑
iAN0nIw

twi � xsiþ lsw ¼ CþLwð1�yswÞ; 8sAS; 8wAW ; ð12Þ

and with new constraints which are added to establish the correct
relations between δw and the slack variables:

δwZ lsw�ð1�yswÞ � Lwþ ∑
iAN0

ti

 !
; 8sAS; 8wAW : ð13Þ

Variables lsw measure the slack for constraints (12) obtained
with each pair sAS;wAW , while constraints (13) define δw as the
idle time of worker w, which is obtained with the value of lsw in
the constraint corresponding to the actual assignment ysw.

The objective function can now include terms associated with
these idle times, and the ALWIBP-1Smin can be written as

Min∑
sA S

sxsqþ ∑
wAW

δw
C jW j ð14Þ

subject to

ð2Þ–ð6Þ; ð8Þ–ð13Þ;
lswARþ ; 8sAS; 8wAW ; ð15Þ

δswARþ ; 8sAS; 8wAW : ð16Þ

The constant term multiplying the idle time variables imposes
a hierarchical characteristic in the objective function, giving
priority to the minimization of stations and using the idle times
as a secondary objective.

4. Constructive insertion heuristic

We propose a Constructive Insertion Heuristic (CIH) for the
ALWIBP-1. This heuristic relies on the similarities between the
ALWIBP and the classical SALBP. Indeed, during the heuristic
procedures, a SALBP-1 solution is found and then iteratively
adapted to incorporate the heterogeneous workers available in
the ALWIBP-1. In the following section, this heuristic is presented
in general terms. A formal description of the algorithm is pre-
sented in Section 4.2. Finally, some variants of the procedure and
two post-optimization routines are described in (Sections (4.3)
and 4.4), respectively.
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4.1. General structure of the proposed heuristic

The main steps of the proposed heuristic are described in
Algorithm 1.

Algorithm 1. Constructive insertion heuristic.

1: Ignore heterogeneous workers and obtain a SALBP-1
solution;

2: Divide remaining line in segments (containing a certain
number of stations each);

3: Try all available heterogeneous workers in each station of
the first line segment;

4: Select best assignment and fix the solution on stations prior
to the selected one.

5: If there are still workers to assign, go to step 2; Otherwise,
end.

In the following subsections, each step of the algorithm is
explained in detail.

4.1.1. Step 1: obtain a SALBP-1 solution
A feasible solution for the SALBP-1, xref, is used as a starting

point of the algorithm. This solution can be obtained with any
heuristic approach. In this study, we use the best solution found by
CPLEX 12.4 in 10 min of running time on a single thread of a
2.3 GHz Intel machine with 6 GB of memory.

4.1.2. Step 2: divide line into segments
The part of the line that has not yet been fixed is divided into

jWaj segments, where Wa is the set of disabled workers which
have not yet been assigned. If a single worker is available, all
stations in the remaining line are considered, otherwise, we
consider stations in the current segment, Sc, defined as
Sc’ sbþ1;…; sbþ1þ ðmc�sbÞ=jWaj

� �� �
, where sb is the last fixed

station and mc is the total number of stations in the current
solution.

This choice of line segments follows two main rationales: the first
is to have a sufficient number of stations for assigning the remaining
workers with disabilities after each of these workers is assigned. The
second is to somehow impose an even distribution of such workers
along the line, with the goal of allowing a deeper integration
between workers with and without disabilities – with the more
experienced workers serving as ‘monitors’ for the newcomers.

4.1.3. Step 3: try all possible assignments in current segment
In this step, we try to obtain a solution by considering all

assignments of workers in Wa to stations in the current analyzed
line segment Sc, one at a time. When a station sASc is considered
for the assignment of worker wAWa, the following solution is
obtained: in stations prior to s, the current solution, xtmp, remains
fixed. From station s and on, the solution is rebuild using a
constructive heuristic based on that of Scholl and Voß [18]. We
call this procedure salbp-1 ðxtmp;w; sÞ. The following heuristic
criteria were used to prioritize the assignment of tasks during
the procedure (refer Scholl and Voß [18] for more details):

� MaxTime: Ascending order of task execution times, ti;� MaxPW: Descending order of positional weights, pwi ¼ tiþ
∑jAFn

i
tj;� MaxIF: Descending order of immediate followers, Fi;� MaxF: Descending order of followers, Fn

i ;

In case a disabled worker is being considered, the appropriate
parameters twi and twj are considered in criteria MaxTime and MaxPw.

4.1.4. Step 4: select best assignment
In this step, the best solution xn among those obtained for each

assignment (w,s), with wAWa and sASc is chosen. A solution x1

obtained with an assignment of worker w1 to station s1 is
considered better than a solution x2 ðx1ox2Þ if the number of
final stations of x1 (designed by stationsðx1Þ) is smaller than
stationsðx2Þ. If a tie happens, we consider the solution with larger
idle time in the last station to be the best one.

4.2. Formal structure of the proposed algorithm

A formal description of the whole implemented heuristic is
presented in Algorithm 2. It uses a given SALBP-1 solution as input
as described in Section 4.1.1. Line division into segments described
in Section 4.1.2 is effected in lines 1–2 and in lines 20–21. The main
loop of the algorithm occurs in lines 5–23: while there are workers
yet to be assigned, each pair ðwAWa; sAScÞ is tested by obtaining a
complete solution with the procedure described in Section 4.1.3
(line 11) and the best one (according to the criterion presented in
Section 4.1.4) is selected (lines 12–15).

Algorithm 2. Constructive Insertion Heuristic.

Require: xref (SALBP-1 reference solution);
1: mc’ stations(xref);
2:

Sc’ 1;…; ⌈
mc

jWaj
⌉

� �
;

3: Wa’W;
4: Let xn be the incumbent solution (initially,

stationsðxnÞ ¼1);
5: while Waa∅ do
6: wb’1;
7: sb’1;
8: for all wAWa do
9: for all sAScdo
10: Fix solutions of xref on stations prior to sin xtmp;
11: xc’proc_salbp�1ðxtmp;w; sÞ;
12: if xcoxn then
13: wb’w;
14: sb’s;
15: xn’xc;
16: end if
17: end for
18: end for
19: Wa’Wa n fwbg;
20: mc’stationsðxnÞ;
21:

Sc’ sbþ1;…; sbþ1þ mc�sb
jWaj

� 	� �
;

22: xref’xn;
23: end while
Ensure: xn (best solution found).

4.3. Algorithmic variants

The proposed algorithm tries to assign workers from the first
ordered station to the last one. A variant of this strategy might
start at the last stations and proceed backwards. In this case, the
line division into segments presented in Section 4.1.2 needs to be
modified. Equations in line 2 and 21 of Algorithm 2 are modified
for Sc’ ⌈mc=jWaj⌉;…;mc

� �
and Sc’ ðsb�1Þ=jWaj

� �
;…; sb�1

� �
,

respectively. Since in this backward approach the tasks and
workers assigned in the end of the line are kept fixed, the
algorithm may need to insert intermediate stations. Therefore,
the tie-breaker for the procedure described in Section 4.1.4 is no
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longer the idle time in the last station but the idle time in the last
non-fixed station in the current solution.

In addition to changing the order the ordered stations are
visited for worker assignments, one can also change the order the
tasks are assigned in the procedure described in Section 4.1.3.
Indeed, as usual, the precedence graph can be considered in its
normal or reversed form, yielding four algorithmic variants (two
worker assignment strategies combined with two task assignment
strategies). Since the algorithm proposed is very fast, all four
strategies are used at each run of the algorithm and the best result
is kept; this increases the robustness of the algorithm with respect
to the precedence graph structure.

4.4. Post-optimization routines useful for ALWIBP-1Smin

The solution obtained by the CIH is improved by means of a
mixed-integer programming neighborhood based on the original
model (1)–(11). The main idea is to reduce the computational
burden needed to solve the model by fixing the worker assign-
ment variables and allowing changes only in task assignments
variables. This can be done by solving the original model (1)–(11)
with the addition of the following constraints:

ysðwÞ;w ¼ 1; 8wAWa; ð17Þ

where s(w) indicates the station to which worker w is assigned in
the solution of the CIH. Clearly, the model can be adjusted
accordingly, to eliminate useless constraints and variables.

In order to further reduce the computational effort needed to
solve the model, one can reduce the freedom of task assignment
variables in the MIP neighborhood, by allowing tasks to be
assigned only to the same station it was assigned in the CIH
solution or to neighboring stations. This can be easily done with
the addition of the following constraints:

xsðiÞ;iþxsðiÞ�1;iþxsðiÞþ1;i ¼ 1; 8 iAN; sðiÞAS n f1;mg; ð18Þ

x1iþx2i ¼ 1; 8 iAN; sðiÞ ¼ 1; ð19Þ

xmiþxm�1;i ¼ 1; 8 iAN; sðiÞ ¼m: ð20Þ
where s(i) indicates the station to which task i was assigned in the
CIH solution.

Additionally, the objective function of this post-optimization
program can be changed to incorporate the characteristics of the
ALWABP-1Smin, in which one prioritizes solutions with low idle
times for the disabled workers. In this case, it suffices to use (14) as
objective function and add constraints:

∑
iAN

psðwÞ;i � xsiþδw ¼ C; 8wAW ; ð21Þ

Note that these simpler constraints replace constraints (12)–(13)
in the original ALWIBP-1Smin problem, since the worker assign-
ments are already known in the post-optimization phase.

5. Experimental study

5.1. Justification of a new ALWIBP benchmark

As discussed in Section 2, the ALWABP was inspired by the
situation found at SWDs where the very high diversity of workers
and their limitations are the main characteristics; whereas the
ALWIBP scenario simulates the “desirable” situation of only a small
percentage of disabled workers being integrated in conventional
assembly lines. Moreover, as stated earlier, the main (and only
studied) approach in this scenario has been ALWABP-2, since the
typical objective in SWD is to be as efficient as possible with
the (diverse) available workforce. Instead, in this new scenario, the

assembly line balancing of type 1 (minimization of the number of
stations given the desired cycle time) approach becomes realistic,
since the basic aim of a production manager can be to integrate
the normative (common in most countries) 2–5% of disabled
workers into the assembly line, while maintaining a given pro-
ductivity. Many previous proposals for the ALWABP-2 were eval-
uated with the set of 320 benchmark instances first proposed by
Chaves et al. [5]. Once stated the completely different scenario
where the ALWIBP arises, it is clear that this classical ALWABP
benchmark is not useful here since, as explained above: (1) only a
little share of the workers are disabled; and (2) the basic aim is
now to minimize the number of workstations with non-disabled
workers (ALWIBP-1 perspective).

5.2. ALWIBP benchmark scheme

As many other ALB approaches, the ALWABP benchmark was
constructed from the only SALBP reference (the Scholl data
collection of http://www.assembly-line-balance.de), that was con-
sidered robust enough and has been extensively used to test most
proposals in the literature so far. Nevertheless, as recently demon-
strated by Otto et al. [13], this framework does not seem rigorous
enough. The problems were collected from different empirical and
not empirical sources, and are based on only 25 precedence
graphs; where just 18 distinct graphs have more than 25 tasks
and thus are meaningful for comparing solution methods. More-
over, Otto et al. [13] also point out the triviality of many classical
instances. Therefore, they propose a SALBP generator and a new
very robust challenging benchmark whose graphs morphologies
include a sufficient variety of chains, bottlenecks and modules.
Basically, it has different cells of data sets (with 25 different
instances per cell) following a full-factorial design for the follow-
ing parameters:

1. Type of the graph: precedence graphs containing more chains,
more bottlenecks, or a mix of both.

2. Order Strength: “low”, “medium” and “high”.
3. Distribution of task times: “peak at the bottom”, “bimodal” and

“peak in the middle”.
4. Number of tasks: “small”, “medium”, “large” and “very large”.

Thus, we selected as basis the following collection of subsets
from the Otto et al. [13] benchmark:

1. We consider that diversity of graphs is sufficiently ensured
selecting only the “mixed” instances (that have both chains and
bottlenecks).

2. From them, we only select the data subsets with “low” and
“high” Order Strength (that would give us clearer correlations if
needed).

3. And from them, regarding distribution of task times, we select
the subsets with “peak at the bottom” and “bimodal” distribu-
tion (we discard the “peak in the middle” subset because the
optimal SALBP solution is unknown for many of the instances).

4. Finally, we take the resulting 100 robust instances of the
“medium” (with n¼50 tasks), “large” (with n¼100 tasks),
and “very large” (with n¼1000 tasks) subsets, and we generate
three corresponding benchmarks that we use separately in our
experimentation (we discard the “small” subset since it is
advised for simple testing only).

In all three cases we generate the benchmark using the same
procedure: for each original instance we respect the precedence
network and the conventional task time, and then we generate
four different instances by adding one disabled worker with: high
or low variability of task time respect to the original ones, and high
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or low percentage of incompatibilities. The two levels defined for
the task times variability used the distributions U½ti;2ti� and
U½ti;5ti� for low and high variability, and the low and high
percentage of incompatibilities in the tasks-workers matrix was
set to 10% and 20% approximately. Following the same scheme we
created 400 additional instances with two workers, then three
workers, and finally four workers.

Following this outline, we finally obtain three reliable bench-
marks with the structure described, one with 1600 “medium”

instances, a second one with 1600 “large” instances, and a third
one with 1600 “very large” instances. It is important to note that in
our source benchmark the instances are classified from “less
tricky” to “extremely tricky” and it happens that, the four cells
finally selected as base have a quite symmetric composition
regarding this “triviality” measure.

Finally, it is also important to note that the following ALWIBP
computational study has always used an input cycle time of 1000
time units simply because it is the value used by Otto et al. [13],
making the results of both cases comparable.

5.3. ALWIBP computational study

Our computational study consists of three parts: in the first
experiment we use the “medium” and “large” benchmarks,
obtaining exact solutions for almost all the instances with the
model (and extension) of Section 3. In the second experiment we
use the same two benchmarks to compare the exact results with
the ones obtained by the heuristic procedures. In the third
experiment we use the “very large” benchmark to get further
evidence of the good behavior of the heuristic against large
problems that are difficult to solve exactly. Furthermore, we
validate the obtained results by comparing them to those of
another heuristic procedure.

5.3.1. Experiment 1: exact results for ALWIBP-1 and ALWIBP-1Smin

One basic aim of every company should be to integrate at least
the normative percentage of disabled workers into the workforce.
In this first experiment, we aim to demonstrate that the proposed
methods enable the inclusion of higher percentages of disabled
workers in the line without important losses in productivity. It has
to be noted that productivity always means somehow (output
result/input resources involved), and in assembly lines productiv-
ity can be defined as (throughput rate/number of workstations).
Therefore (considering that in this experiment the Throughput

rate is fixed), an increase on the number of workstations means, in
general, a decrease of productivity.

Having this in mind, this first experiment was devoted to check
what would be the shape of this expected loss of productivity. For
the medium and large instances, both ALWIBP-1 and ALWIBP-
1Smin models could be solved in reasonable computation times
using the commercial package CPLEX 12.4 (1 thread, limit time of
1800 s, and 6GB as tree limit) with Intel Core i7 3.4 GHz, 16GB
RAM.

In Tables 1 and 2, the columns indicate:

� Δ: number of instances solved to optimality;
� t(s): computational time (on average);
� m↑ and σm↑ : number of additional workstations needed in the

ALWIBP-1 solution, with respect to the best know solution of
SALBP-1 (average and deviation);

� m↑ and σm↑ ð%Þ: percentage of additional workstations needed
in the ALWIBP-1 solution, with respect to the best know
solution of SALBP-1 (average and deviation);

� τ: idle time of stations with disabled workers (on average) in
ALWIBP-1;

� τSmin: idle time of stations with disabled workers (on average)
in ALWIBP-1Smin;� ηð%Þ: percentage of tasks performed by disabled workers with
respect to the mean number of tasks assigned to ordinary
workers in ALWIBP-1;

� ηSminð%Þ: percentage of tasks performed by disabled workers
with respect to the mean number of tasks assigned to ordinary
workers in ALWIBP-1Smin.� β and σβð%Þ: percentage of the number of disabled in the
assembly line jW j=m
 �

, where m is the number of stations in
the ALWIBP-1 solution (average and deviation);

� θ: number of instances which there is no increase of the
number of stations with respect to the SALBP-1 solution; no
increase in the number of stations with respect to the SALBP-1
solution (average and deviation).

We analyze first the results for “middle” instances. As expected,
the increase in the number of stations grows with the number of
disabled workers to be integrated and with the variability of the
task times. Nevertheless, it can be observed that even in the most
constrained case (4 disabled workers with execution times of up to
5 times the conventional time and 20% incompatibility), an
average of only 1.6 new stations had to be added to integrate the
workers.

Table 1
Computational results: ALWIBP-1 and ALWIBP-1Smin models ðjNj ¼ 50Þ.

jWj Var Inc (%) Δ t(s) m↑7σm↑ m↑7σm↑ ð%Þ τ τSmin
ηð%Þ ηSmin

ð%Þ β7σβð%Þ θ

1 U[t, 2t] 10 95 104.0 0.270.4 2.875.5 149.9 1.6 66.2 87.6 10.972.7 78
20 95 90.6 0.270.4 2.975.6 131.4 3.1 62.8 85.6 10.972.7 78

U[t, 5t] 10 95 125.0 0.470.5 5.076.3 231.6 9.6 43.7 63.4 10.672.6 59
20 95 120.4 0.470.5 5.476.5 244.1 10.2 39.9 58.9 10.672.5 57

2 U[t,2t] 10 92 177.7 0.470.5 4.776.5 105.9 1.9 67.9 81.6 21.375.0 63
20 96 85.8 0.470.5 4.776.3 101.3 3.5 63.0 79.9 21.375.2 62

U[t, 5t] 10 93 166.3 0.770.5 8.576.8 127.1 7.4 51.6 64.3 20.574.8 30
20 93 152.7 0.770.5 8.677.1 140.1 8.1 47.7 60.6 20.574.8 30

3 U[t,2t] 10 91 195.7 0.570.5 6.476.5 72.8 2.7 73.0 82.0 31.477.3 48
20 89 213.6 0.670.5 6.976.4 76.5 3.1 69.0 79.2 31.377.3 43

U[t, 5t] 10 95 109.6 1.170.5 13.378.1 114.0 7.4 51.3 62.0 29.476.5 8
20 90 217.0 1.270.5 14.178.6 126.5 11.0 51.1 57.9 29.276.3 6

4 U[t,2t] 10 89 222.7 0.770.5 8.376.8 56.5 3.9 75.9 81.3 41.279.5 32
20 86 301.2 0.870.5 9.277.5 68.0 5.0 70.5 77.7 40.879.3 28

U[t, 5t] 10 89 278.8 1.570.6 17.079.7 109.6 11.7 53.7 59.7 37.977.8 1
20 84 362.9 1.670.6 18.179.9 120.5 11.7 50.7 58.2 37.677.9 0
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This result is even more remarkable when the size of lines is
taken into consideration. Indeed, in column 12, the βmetric shows
us that an average increase of 0.4 workstations imply in approxi-
mately 20% of the workforce composed of disabled workers. This
is, in fact, relevant in real contexts, once the legislation of many
countries requires a rate of disabled workers ranging from 2% to
5% in industries.

Concerning the θ metric, we see that in 38% of the cases we
obtain a line balancing for the ALWIBP-1 case with the same
number of workstations of the SALBP-1 solution, resulting in the
best of possible scenarios (integrate all disabled workers without
increasing production costs). Furthermore, the percentage of
disabled workers that take part in the workforce keep at least in
5% in these cases.

As the sub-space of possible ALWIBP-1 optimal solutions is
large, we can combine this primary aim of minimizing conven-
tional workstations with the (important) secondary objective of
minimizing the idle time of disabled workers. After applying
the extension ALWIBP-1Smin to all the instances the results show
that we maintain in all cases the same rough productivity (no
increase of the number of workstations), while we reach a very

little mean idle time (see column τSmin
). We note that in the

column related to the ηð%Þ and ηSminð%Þ criteria, since the increase
of these values follows the reduction of idle time in all scenarios
studied.

Concerning the ALWIBP models in the “large” instances (with
100 tasks), Table 2 has shown that the obtention of optimal
solutions becomes difficult when 3 and 4 disabled workers must
be inserted in assembly lines (column Δ). However, the number of
additional workstations is smaller than we notice in the experi-
ments of “middle” instances, which implies that its approach may
be useful in more complex assembly lines. Furthermore, the
percentage of disabled workforce integrated continues in at least
5%, as it is desired.

5.3.2. Experiment 2: heuristics comparison
For validation purposes, we solved the same 1600 “medium”

and “large” instances with the CIH procedure and its variations
with post-optimization phase (CIH-LS1 and CIH-LS2) presented in
section 4. The MIP-local search routines were runwith the package
CPLEX 12.4 with the same parameter settings, except for the
computational time limit, which was set to 60 s.

Table 2
Computational results: ALWIBP-1 and ALWIBP-1Smin models (jNj ¼ 100).

jWj Var Inc (%) Δ t(s) m↑7σm↑ m↑7σm↑ ð%Þ τ τSmin
ηð%Þ ηSmin

ð%Þ β7σβð%Þ θ

1 U[t,2t] 10 86 309.1 0.270.4 1.072.3 68.9 1.1 74.4 87.0 5.671.4 83
20 85 330.6 0.270.4 1.072.3 85.6 1.7 67.0 85.7 5.671.4 82

U[t, 5t] 10 81 435.2 0.370.5 2.072.9 109.1 3.4 56.8 66.0 5.571.3 66
20 74 521.9 0.470.5 2.473.1 125.1 5.3 49.7 67.0 5.571.3 59

2 U[t,2t] 10 67 675.8 0.470.5 2.373.1 70.4 1.5 71.4 88.5 11.072.7 61
20 65 679.5 0.470.5 2.473.1 72.7 1.7 71.3 85.5 11.072.7 59

U[t, 5t] 10 53 971.1 0.770.5 4.272.9 95.9 5.5 57.1 65.9 10.872.6 28
20 49 1045.3 0.870.4 4.572.7 105.5 4.8 55.4 66.2 10.872.6 21

3 U[t,2t] 10 47 1070.7 0.670.5 3.373.1 48.8 1.7 74.6 85.2 16.473.9 43
20 47 1099.7 0.670.5 3.573.0 55.0 2.8 73.4 83.8 16.473.9 39

U[t, 5t] 10 28 1397.5 1.170.5 6.473.2 86.7 5.5 57.4 65.1 15.973.7 5
20 28 1407.1 1.170.5 6.573.2 87.4 4.1 58.0 63.3 15.973.7 4

4 U[t,2t] 10 34 1300.6 0.870.5 4.472.9 55.2 2.7 74.1 82.6 21.675.1 26
20 32 1362.7 0.870.5 4.672.9 55.5 3.4 72.4 80.8 21.675.1 22

U[t, 5t] 10 8 1707.1 1.570.5 8.474.0 89.3 7.4 57.7 61.4 20.874.7 2
20 12 1724.5 1.570.5 8.573.7 109.6 8.2 57.6 58.5 20.874.8 1

Table 3
Computational results: CIH approaches (jNj ¼ 50).

jWj Var Inc % CIH CIH-LS1 CIH-LS2

mh↑
7σmh↑

mh↑
7σmh↑

ð%Þ thðsÞ Ties mh↑
7σmh↑

mh↑
7σmh↑

ð%Þ thðsÞ Ties mh↑
7σmh↑

mh↑
7σmh↑

ð%Þ thðsÞ Ties

1 U[t,2t] 10 0.270.4 1.874.3 0.0 84 0.170.2 0.672.7 10.5 95 0.170.3 1.373.6 0.1 88
20 0.170.3 1.373.6 0.0 88 0.070.1 0.271.7 10.8 98 0.170.3 1.173.4 0.1 89

U[t, 5t] 10 0.270.4 2.174.5 0.0 81 0.170.3 0.672.6 10.8 92 0.270.4 1.874.2 0.1 83
20 0.270.4 2.374.7 0.0 79 0.070.2 0.471.8 9.9 96 0.270.4 2.074.4 0.0 81

2 U[t,2t] 10 0.270.4 2.374.6 0.0 79 0.170.3 0.973.1 12.2 91 0.270.4 2.074.4 0.1 82
20 0.270.4 2.474.7 0.0 78 0.170.3 1.073.4 10.7 91 0.270.4 2.474.7 0.1 78

U[t, 5t] 10 0.370.5 3.275.1 0.0 70 0.270.4 1.774.1 13.4 85 0.370.5 3.075.0 0.1 72
20 0.370.5 3.475.2 0.0 69 0.270.4 2.174.4 12.1 81 0.370.5 3.475.2 0.1 69

3 U[t,2t] 10 0.370.5 3.375.2 0.0 69 0.170.3 1.373.4 16.4 86 0.370.5 3.175.0 0.1 71
20 0.370.4 2.875.0 0.0 74 0.170.3 0.973.0 14.1 91 0.270.4 2.474.7 0.1 78

U[t, 5t] 10 0.470.5 3.975.2 0.0 62 0.270.4 1.473.5 17.0 85 0.470.5 3.975.2 0.0 62
20 0.470.5 3.975.1 0.0 61 0.270.4 1.673.5 14.4 83 0.470.5 3.975.1 0.0 61

4 U[t,2t] 10 0.470.5 3.975.4 0.0 63 0.270.4 2.074.5 16.6 82 0.470.5 3.775.3 0.1 65
20 0.370.5 3.575.1 0.0 66 0.170.3 1.373.7 13.4 84 0.370.5 3.475.1 0.0 67

U[t, 5t] 10 0.570.5 5.275.1 0.0 46 0.370.4 2.374.2 18.7 75 0.570.5 5.175.1 0.0 47
20 0.670.5 5.275.1 0.0 46 0.370.5 2.674.3 14.6 72 0.570.5 5.275.0 0.0 46
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In Tables 3 and 4, the columns indicate:

� mh↑
and σmh↑

: number of additional workstations in the CIH
solution, with respect to the solution obtained when solving
the ALWIBP-1 model (average and deviation);

� mh↑
and σmh↑

ð%Þ: percentage of additional workstations in the
CIH solution, with respect to the solution obtained when
solving the ALWIBP-1 model (average and deviation);

� thðsÞ: Computational time used by the heuristic (on average);
� Ties: Number of instances in which the CIH solution had the

same number of workstations (no increase) as the ALWIBP-1
model solution;

� Tiessp 1: Number of instances in which the CIH solution had the
same number of workstations (no increase) as the SALBP-1
model solution;

The results of Table 3 show the robust behavior of the proposed
heuristic. Indeed, even in the most difficult situations (U[t,5t], Inc
20%) the increase of stations is 5.2% in average and the number of
ties is 46. The computational times are practically null, which
shows the computational efficiency of the heuristic. Concerning
the CIH approaches with post-optimization routines, we see that
the greater flexibility of the LS1 causes significant improvement in
the results of CIH, increasing the number of ties compared with
the solutions of ALWIBP-1 model in 24% (272 instances). We also
outline that, in some cases, the average number of additional
stations in the assembly lines is reduced by half. Despite the fact
that LS2 improves the quality of solutions in only a few instances,
it is very computationally efficient, running in very little time (0.1 s
in average).

Table 4 shows the results obtained for the large instances. We
notice that the number of Ties (66%) is practically the same as
observed in the previous case, but the average number of addi-
tional workstations is smaller. This states that the good results of
this scenario is powered by the flexibility of assembly lines with
many tasks.

The computational times of the three approaches of the CIH
show that the method is scalable. Moreover, the LS1 increases the
number of Ties related to the solutions of the ALWIBP-1 model,
spending up to 53 s on average, a very encouraging result if we
consider that the CPLEX exceeds the computational time limit in
most of cases.

5.3.3. Experiment 3: Validation of heuristics
In this section, we present results of the CIH taking into account

the largest instances of the ALWIBP benchmark. Also, we validate
our method by comparing it with a more straightforward sub-
stitution heuristic.

CPLEX fails in obtaining solutions for the “very large” instances
described earlier. Although these instances are more theoretical than
practical, computational experiments with this scenario are impor-
tant in order to put the scalability of the solving methods to proof.
Thus, we highlight the ability of the CIH to solve problems of these
dimensions in a reasonable computational times (3 min on average),
as shown in Table 5. Additionally it is remarkable that in 21% of the
instances, the number of stations of a conventional assembly line did
not change with the insertion of disabled workers.

In order to study the effectiveness of our algorithm in compar-
ison to more straightforward strategies, we have implemented a
simple substitution heuristic (denoted by SH) and evaluated the
obtained results. The idea behind the SH is simply to substitute
conventional workers for disabled ones, maintaining the task
assignments. Our goal with this experiment is to show that simple
strategies such as this one, which lack the ability to perform more
structural changes in the line structure are ineffective. The SH

Table 4
Computational results: CIH approaches (jNj ¼ 100).

jWj Var Inc (%) CIH CIH-LS1 CIH-LS2

mh↑
7σmh↑

mh↑
7σmh↑

ð%Þ thðsÞ Ties mh↑
7σmh↑

mh↑
7σmh↑

ð%Þ thðsÞ Ties mh↑
7σmh↑

mh↑
7σmh↑

ð%Þ thðsÞ Ties

1 U[t,2t] 10 0.370.4 1.572.6 0.0 73 0.170.3 0.571.6 47.5 89 0.270.4 1.172.3 5.2 79
20 0.370.5 1.872.9 0.0 71 0.270.4 0.972.3 46.9 82 0.270.4 1.372.6 6.6 77

U[t, 5t] 10 0.470.5 1.972.7 0.0 64 0.270.4 0.872.0 43.4 81 0.470.5 1.972.7 2.7 65
20 0.370.4 1.472.5 0.0 73 0.170.3 0.471.7 40.2 87 0.370.4 1.372.4 2.8 75

2 U[t,2t] 10 0.370.4 1.372.4 0.0 70 0.270.4 0.871.9 48.1 80 0.270.4 1.072.2 2.3 76
20 0.370.4 1.372.4 0.0 75 0.270.4 0.872.0 46.6 82 0.270.4 1.272.3 2.1 77

U[t, 5t] 10 0.370.5 1.772.7 0.1 68 0.270.4 0.972.2 46.3 74 0.370.5 1.672.6 3.0 70
20 0.370.5 1.672.6 0.0 72 0.270.4 0.972.2 43.9 78 0.370.5 1.672.6 1.3 72

3 U[t,2t] 10 0.370.5 1.572.6 0.1 70 0.270.4 0.972.1 49.6 78 0.370.4 1.472.5 3.1 72
20 0.370.5 1.672.6 0.1 71 0.270.4 0.671.9 46.9 82 0.370.4 1.472.4 2.5 74

U[t, 5t] 10 0.470.5 2.172.9 0.1 63 0.270.4 0.972.1 53.4 79 0.470.5 2.172.9 0.7 63
20 0.470.5 2.272.8 0.1 57 0.270.4 0.972.2 46.9 75 0.470.5 2.272.8 1.2 58

4 U[t,2t] 10 0.370.5 1.672.5 0.1 68 0.370.4 1.072.4 48.3 68 0.370.5 1.472.4 1.7 70
20 0.470.5 1.872.8 0.1 63 0.270.4 0.972.2 48.9 74 0.370.5 1.772.7 2.0 66

U[t, 5t] 10 0.470.5 2.372.8 0.1 56 0.270.4 0.772.2 50.5 72 0.470.5 2.272.8 2.3 57
20 0.570.5 2.772.9 0.1 52 0.370.4 1.372.5 49.6 70 0.570.5 2.572.9 0.9 55

Table 5
Computational results: CIH (jNj¼1000).

jWj Var Inc (%) CIH

mh↑
7σmh↑

mh↑
7σmh↑

ð%Þ thðsÞ Tiessp1

1 U[t,2t] 10 0.870.9 0.570.7 50.1 34
20 0.970.9 0.570.7 50.8 31

U[t, 5t] 10 0.970.9 0.670.7 50.4 31
20 1.070.9 0.670.7 50.2 29

2 U[t,2t] 10 1.170.9 0.770.7 106.6 25
20 1.170.9 0.770.7 105.9 24

U[t, 5t] 10 1.571.0 1.070.8 105.9 16
20 1.571.1 1.070.8 105.9 17

3 U[t,2t] 10 1.271.0 0.870.8 167.1 21
20 1.371.0 0.870.7 167.3 22

U[t, 5t] 10 1.871.1 1.170.8 164.4 14
20 1.971.0 1.270.8 163.6 8

4 U[t,2t] 10 1.471.0 0.970.8 223.4 21
20 1.471.0 0.970.8 225.4 21

U[t, 5t] 10 2.171.2 1.470.9 224.1 10
20 2.171.2 1.470.9 222.0 9
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works as follows: given a SALBP-1 solution the algorithm searches
for the most suitable stations in which to insert the disabled
workers without changing task assignment and respecting cycle
time and task/worker feasibilities constraints. Algorithm 3 presents
the pseudo-code of this heuristic. Note that the LD formulation,
modelled by Eqs. (22)–(28) is part of the kernel of the SH.

Algorithm 3. Simple Heuristic.

Require xref (SALBP-1 reference solution);
1: m’ stations(xref);
2: Let M be an integer matrix with m rows and jW j columns;
3: for s¼ 1;…;m do
4: for all wAW do
5: Msw’load ðs;w; xref Þ;
6: end for
7: end for
8: ðln; ynÞ’ solveLD(M);
9: if ln ¼ C then
10: return yn;
11: else
12: there is no feasible solution;
13: end if

Minl ð22Þ
subject to

lZC ; ð23Þ

lZMswysw; s¼ 1;…;m; 8wAW ; ð24Þ

∑
m

s ¼ 1
ysw ¼ 1; 8wAW ; ð25Þ

∑
wAW

yswr1; s¼ 1;…;m; ð26Þ

yswAf0;1g; s¼ 1;…;m; 8wAW ; ð27Þ

lAZ: ð28Þ
In lines 1–6, we compute the elements of the matrix M as the

load of station s if the “conventional” worker in that station is
replaced by disabled worker w. To do that, we consider the load
function (line 5). Next, in line 7, we solve the LD formulation. Lines
9–13 test the effectiveness of the SH. Thus, if the resulted solution
is feasible, that is, the best value found by LD model is equal to the
desired cycle time, the algorithm returns the variables y which
indicate the placement of each worker along the assembly line.

Computational experiments were conducted using the same
input solutions as those used for the CIH, as well as the same
machine settings and CPLEX version. The SH could only find
feasible solutions for about 4% of the instances (3%, 2% and 7%
for the medium, large and very large instances, respectively),
confirming our hypothesis that a more elaborate strategy such as
the proposed CIH is necessary when dealing with the problem.

6. Conclusions

We propose the Assembly Line Worker Integration and Balancing
Problem (ALWIBP), a new assembly line balancing problem arising
in lines with conventional and disabled workers. This problem is
relevant in a context where companies are urged to integrate
disabled workers in their conventional productive schemes in order
to cope with legislation issues or to include corporate social
responsibility goals in the production planning process.

To solve this problem, we first develop an integer linear model
that minimizes the number of stations while ensuring the presence
of all disabled workers in the assembly line. From this model, one
variant that reduces the idle time of stations with disabled workers
was proposed. We implement a heuristic approach called CIH that
starts with a simple assembly line balancing situation and inserts
the available disabled workers while reducing additional stations.
Furthermore, aiming the improvement of CIH solutions, two post-
optimizations procedures based on MIP neighborhoods were
designed. Finally, to validate heuristic results, we also implemented
a simple substitution heuristic (SH) that tries to insert disabled
workers in a conventional assembly line without changing its
original task settings.

Results of an experimental study on an extensive number of
instances indicate the efficiency of the proposed heuristics, leading
to the conclusion that not only disabled workers can be included
in the assembly lines with little productivity loss, but also that
other planning goals can be simultaneously considered. Further
work on this topic includes the proposal of new adjacent objec-
tives, implementation of more sophisticated methods, and exten-
sions that cope with job rotation schemes, U-shaped assembly
lines and some lexicographic objectives.
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