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The Steiner tree problem with revenues, budget and hop
constraints is a variant of the Steiner tree problem with
two main modifications: (a) besides the costs associ-
ated with arcs, there are also revenues associated with
the vertices, and (b) there are additional budget and hop
constraints, which impose limits on the total cost of the
network and on the number of edges between any ver-
tex and the root, respectively. This article introduces and
compares several mathematical models for this prob-
lem and describes two branch-and-cut algorithms, which
solve to optimality instances with up to 500 vertices
and 625 edges. © 2008 Wiley Periodicals, Inc. NETWORKS,
Vol. 53(2), 141–159 2009
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1. INTRODUCTION

Several real-life decision situations can be described as the
problem of determining a least cost network spanning all or
some of the vertices of a graph. The most widely known cases
include the Steiner Tree Problem (STP) and the Minimum
Spanning Tree Problem (MSTP). These two problems are
described as follows. Let G = (V , E) be a graph with vertex
set V = {1, . . . , n}, where vertex 1 is the root vertex, and edge
set E = {e = (i, j) : i, j ∈ V , i < j}, where each edge e ∈ E
has an associated cost ce. The set V is partitioned into a set
of terminal vertices (including the root) and a set of Steiner
vertices. The STP consists of determining a minimum cost
tree spanning all terminal vertices and possibly some Steiner
vertices (see, for instance, [8,17,26]). The MSTP is a special
case of the STP for which all vertices are terminal. Unlike
the MSTP, which can be solved in polynomial time (see, e.g.,
[37]), the STP is NP-hard [16].
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Steiner Tree Problems with Revenues (STPR) are an
important generalization of the classical STP. In the STPR, in
addition to the costs associated with the edges, there is also
a revenue ri ≥ 0 associated with each vertex i. The goal is
to determine a cost minimizing or revenue maximizing sub-
tree subject to constraints. This article deals with a particular
case of the STPR with two main features. We are first inter-
ested in the Steiner Tree Problem with Revenues and Budget
(STPRB), where the goal is to maximize the collected rev-
enue whereas respecting an upper limit on the total network
cost. We also consider hop constraints, which limit the num-
ber of edges between any vertex in the solution and the root
vertex to an upper limit equal to h. We call the resulting prob-
lem the Steiner Tree Problem with Revenues, Budget and Hop
Constraints (STPRBH).

Several authors (see, e.g., [31, 33]) have studied a related
version of the STPR where the goal is to maximize the dif-
ference between the collected revenues and the edge costs.
This problem is often called the Prize-Collecting Steiner Tree
Problem or the Steiner Tree Problem with Profits (STPP).
Because, in our case, the goal is to maximize the collected
revenue whereas respecting a limit on the total cost (and not
to maximize the difference between the collected revenue and
the network cost), we use the term “revenue” to avoid con-
fusion. Maximizing revenue and considering the costs only
in the constraints instead of maximizing the net profit may
be useful, for example, when costs and revenues are mea-
sured in incommensurate units (e.g. resource and monetary
units).

Our motivation for studying the STPRBH is twofold. Con-
cerning the budget constraint, we have been stimulated both
by the lack of studies dealing with this type of constraint and
by its practical importance. Indeed, we are aware of only two
articles that have considered such constraints [27,39], despite
the fact that they are often present in real-life situations [7].
Hop constraints, in turn, are often used in telecommunica-
tions applications. They guarantee that the probability of
service failure at a vertex will not exceed a given thresh-
old 1 − (1 − π)h, where π is the probability of failure of any
link and h is the number of allowed hops. These constraints
also restrict the maximum transmission delay in telecommu-
nication networks [22]. Finally, Voß [40] mentions a different
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motivation for considering Steiner trees with hop constraints:
when modeling certain lot sizing problems as Steiner tree
problems, hop constraints limit the number of periods during
which some goods can be held in stock.

Steiner Tree Problems with Profits have received consider-
able attention by operations researchers [7]. The first studies
go back to Segev [38] who implemented simple greedy
heuristics and a Lagrangean lower bounding procedure. Bien-
stock et al. [2] have proposed a heuristic with worst case
performance ratio of 3, whereas Goemans and Williamson
[19], Johnson et al. [27], and Cole et al. [6] have developed
approximation algorithms. More recent research has focused
on lower bounding procedures and metaheuristics. Canuto et
al. [3] have proposed a multi-start algorithm with local search
and a variable neighborhood search postoptimization phase.
Cunha et al. [9] have developed a Lagrangean relaxation algo-
rithm with dynamically generated cutting planes, whereas
Klau et al. [29] have proposed a hybrid exact-memetic algo-
rithm where the final population of the evolutionary approach
is used to construct a reduced instance that will go through
an exact optimization phase. Two recent articles have applied
branch-and-cut algorithms to the STPP. Lucena and Resende
[33] have obtained interesting results based on a separa-
tion of generalized subtour constraints. These results have
later been improved by Ljubić et al. [31] who have dealt
with an alternative formulation and proposed a separation
procedure to identify violated connectivity constraints. An
interesting variant of the STPP, called the Prize Collecting
Generalized Minimum Spanning Tree Problem, was recently
proposed by Golden et al. [20]. In this problem the vertices
are partitioned into clusters and a revenue is associated with
each vertex. The problem consists of determining a tree of
maximal profit spanning all clusters. The authors present sev-
eral heuristic strategies and a branch-and-cut algorithm that
solves instances containing up to 200 vertices.

Despite the considerable amount of research dedicated to
the STPP, very little work has been done on the STPRB.
Indeed, we are only aware of the article of Johnson et al. [27]
who proposed an approximation algorithm with limited prac-
tical interest. This lack of research is particulary intriguing
due to the fact that budgetary constraints are often present
in real-life situations. Indeed, Costa et al. [7] refer to sev-
eral articles in which budget constraints are considered in the
context of the Traveling Salesman Problem with Profits. As
discussed in their article, the relevance of these constraints
extends to the STPP. This article contains an example along
the lines of Johnson et al. [27] in which the use of the bud-
getary constraints helps differentiate solutions having the
same objective function given by the profit minus the cost,
but with very different practical implications.

Concerning the hop constraints no author has, to our
knowledge, ever considered their inclusion (or the inclusion
of any other notion of reliability) in conjunction with the
STPP. These constraints have only been considered in more
classical contexts such as the MST and STP. Gouveia [22]
and Gouvia and Requejo [25] have proposed Lagrangean
relaxation lower bounding approaches for the MST with

hop constraints and were able to solve instances on com-
plete graphs of up to 60 vertices. Gouveia [24] has presented
several hop-indexed models for the MST and STP with hop
constraints, among other problems, whereas Dahl et al. [10]
have described a general framework for modeling hop con-
strained MST problems. Finally, Voß [40] has presented a
mathematical formulation and a tabu search for the STP with
hop constraints.

We study four mathematical models for the STPRBH, and
we propose several branch-and-cut algorithms. Our choice
of branch-and-cut methods is motivated by the good results
obtained by Lucena and Resende [33] and Ljubić et al. [31] in
the context of the pure STPP. The first algorithm relies on the
initial relaxation of connectivity and hop constraints, whereas
the second relaxes a set of linking constraints on disaggre-
gated variables. In both cases, the constraints are dynamically
included in the model when found to be violated. Our com-
putational experiments show that the hop constraints make
the problem highly difficult and that the choice of the most
efficient strategy depends on the maximum number of hops.

The remainder of this article is organized as follows.
Section 2 proposes mathematical models for the STPRBH. In
Section 3, we present the branch-and-cut algorithms. Section
4 reports the computational results and the article ends with
some conclusions in Section 5.

2. FORMULATIONS

We introduce four formulations for the STPRB. In Section
2.1, we adapt the Dantzig-Fulkerson-Johnson (DFJ) subtour
elimination constraints and connectivity constraints [11] to
construct an undirected and a directed formulation for the
STPRBH, respectively. The resulting formulations contain
a limited number of variables but an exponential number
of constraints. A different approach is used in Section 2.2,
where we use a lifted version of the Miller-Tucker-Zemlin
(MTZ) constraints [12, 36] to eliminate circuits and to limit
the number of hops in each path of the solution. Finally, in
Section 2.3 we model the problem with three-index position
variables, and we show that this formulation dominates that
obtained with the MTZ constraints.

Gouveia [22] also presents a formulation belonging to a
different family and based on multicommodity flow variables
for MST problems with hop constraints, which could also be
adapted to the STPRBH. A variation of the multicommod-
ity flow formulation has been proposed by Gouveia [23] and
Gouvia and Requejo [25], inspired by the idea of variable
redefinition. This latter formulation is a combination of an
exact solution for the hop-constrained shortest path problem
and the original multicommodity flow formulation. In both
cases, the authors have proposed the use of Lagrangean relax-
ation methods to solve the formulations. Computational tests
have shown that even their linear relaxations pose a real chal-
lenge. For this reason, we do not consider formulations of this
type.
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2.1. Dantzig-Fulkerson-Johnson Formulations

Several mathematical formulations have been developed
for the STPP and can be adapted to the STPRB. The fol-
lowing model is based on the classical subtour elimination
constraints introduced by Dantzig et al. [11] for the Travelling
Salesman Problem (TSP). Let xij and yi be binary variables
associated with edges (i, j) ∈ E and vertices i ∈ V , respec-
tively. Variable yi is equal to 1 if vertex i belongs to the
solution (y1 = 1), and to 0 otherwise. Likewise, variable
xij is equal to 1 if edge (i, j) belongs to the solution, and
to 0 otherwise. For S ⊆ V , define E(S) as the set of edges
with both end vertices in S. Let also P = (i1 = 1, . . . , i�)
denote a path originating at the root node and containing �

vertices. Finally, define Ph as the set of paths P in G with
length � = h + 2. Each path P ∈ Ph contains h + 1 edges
and thus violates the hop constraint. The STPRBH can then
be written as:

Undirected Dantzig-Fulkerson-Johnson (UDFJ)
formulation

Maximize
∑
i∈V

riyi (1)

subject to
∑

(i,j)∈E

xij =
∑
i∈V

yi − 1, (2)

∑
(i,j)∈E(S)

xij ≤
∑

i∈S\{k}
yi, k ∈ S ⊆ V , |S| ≥ 2, (3)

∑
(i,j)∈E

cijxij ≤ b, (4)

h+2∑
t=2

xit−1,it ≤ h, P = (i1 = 1, . . . , ih+2) ∈ Ph, (5)

xij ∈ {0, 1}, (i, j) ∈ E, (6)

y1 = 1, (7)

yi ∈ {0, 1}, i ∈ V\{1}. (8)

The objective function maximizes the revenue of the
spanned vertices. Constraint (2) forces the presence of v − 1
edges connecting the v spanned vertices. Constraints (3)
are generalized subtour elimination constraints. These are
stronger than the classical subtour elimination constraints
used in the TSP formulation in which the right-hand side
is |S| − 1. Note that for subsets S formed only by spanned
vertices, constraints (3) reduce to the classical subtour elim-
ination constraints. Constraint (7) forces the presence of the
root vertex in the solution. Constraints (4) and (5) are spe-
cific to the STPRBH. Constraint (4) is the budget constraint,
which forces the total network cost not to exceed the budget
b, whereas constraints (5) guarantee that there are no more
than h hops between the root vertex and any other vertex in
the solution.

A version of model (1)–(8) with no budget and no hop
constraints was used by Resende [33] and follows from an

extended formulation for the STP proposed by Lucena [32],
Goemans [18], and Margot et al. [35]. It is interesting to
observe that in the absence of hop constraints, the x vari-
ables associated with edges need not be declared as integers.
Indeed, when the y variables are equal to 0 or 1, constraints
(2) and (3) define the convex hull of the characteristic vectors
of the spanning trees on the subgraph of G induced by the
selected vertices [35].

Formulation (1)–(8) is a straightforward model for the
STPRBH. An equivalent model can be developed based on
constraints that ensure the existence of a path between the root
vertex and all other selected vertices. This has been done in
the context of the STPP by Ljubić et al. [31]. Consider an
arc set A containing two directed arcs (i, j) and (j, i) for each
edge (i, j) ∈ E, but no arc entering the root. A directed rooted
tree is called a Steiner arborescence. Given a directed set of
arcs, the STPRBH can be written as the problem of finding a
Steiner arborescence rooted at vertex 1 and spanning a subset
Y of vertices with maximum revenue

∑
i∈Y ri.

Directed Dantzig-Fulkerson-Johnson (DDFJ)
formulation

Maximize
∑
i∈V

riyi (9)

subject to

∑
k|(k,i)∈A

xki = yi, i ∈ V\{1}, (10)

∑
(i,j)∈A|i∈S,j∈V\S

xij ≥ yk , S ⊂ V , 1 ∈ S, k ∈ V\S, (11)

∑
(i,j)∈A

cijxij ≤ b, (12)

�∑
t=2

xit−1,it ≤ h, P = (i1 = 1, . . . , i�) ∈ Ph, (13)

xij ∈ {0, 1}, (i, j) ∈ A, (14)

y1 = 1, (15)

yi ∈ {0, 1}, i ∈ V\{1}. (16)

Constraints (10) guarantee that if a vertex is selected, it has
an indegree of one and vice versa. Constraints (11) guaran-
tee that the selected vertices are connected and are therefore
called connectivity constraints. Note that because constraints
(11) have a variable right-hand side, connectivity does not
mean that the solution will span all vertices, but only that the
solution will be connected. Also note that in this case vari-
ables yi could be written in terms of the variables xij, but they
are kept in the model for clarity. Fischetti [14] has shown that
these constraints can be rewritten as a directed version of the
subtour elimination constraints (3). A number of studies have
shown that for several variants of the STP and MSTP, directed
models are better than their undirected counterpart (see, e.g.,
[4, 5, 13, 31, 34]). For this reason, we prefer model (9)–(16)
to model (1)–(8).
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2.2. Miller-Tucker-Zemlin Formulation

A different directed formulation can be obtained by adapt-
ing the MTZ constraints. Gouveia [21] has used this idea
to propose a formulation for the MST with hop constraints,
whereas Khoury et al. [28] have used the same set of con-
straints in a pure STP formulation. Later, Voß [40] has
adapted these formulations to the STP with hop constraints.
The basic idea of the MTZ constraints is to introduce poten-
tial variables associated with each vertex of the graph and
impose that in every path of the solution, the potential vari-
ables become larger when the distance from the root vertex
increases. Let ui be a real-valued potential variable associ-
ated with vertex i. Again, h is the maximum number of arcs
between any vertex and the root vertex. One can model the
STPRBH as follows:

Miller-Tucker-Zemlin (MTZ) formulation

Maximize
∑
i∈V

riyi (17)

subject to
∑

k|(k,i)∈A

xki = yi, i ∈ V\{1}, (18)

xij ≤
∑

k|(k,i)∈A,k �=j

xki (i, j) ∈ A, i �= 1,

(19)
∑

(i,j)∈A

cijxij ≤ b, (20)

u1 = 0, (21)

yi ≤ ui ≤ hyi, i ∈ V\{1}, (22)

(h + 1)xij + ui − uj + (h − 1)xji ≤ h (i, j) ∈ A, (23)

y1 = 1, (24)

xij ∈ {0, 1}, (i, j) ∈ A, (25)

yi ∈ {0, 1}, i ∈ V\{1}. (26)

Constraints (19) and (21)–(23) guarantee that the solution
is connected and cycle-free. Indeed, constraints (23) imply
that each vertex in a path has an associated potential variable
ui larger than that of its predecessor, which is impossible
in a circuit. Constraints (21)–(22) guarantee that the largest
potential in the solution does not exceed h.

Some valid inequalities can be added to the model. For
example, for vertices i with zero revenue, constraints (22)
can be tightened, as

yi ≤ ui ≤ (h − 1)yi i ∈ V\{1}, ri = 0, (27)

which are valid because there is always an optimal solution
containing no unprofitable vertices as leaves. The right-hand
side of these constraints can be further strengthened, as pro-
posed by Voß [40], by considering the arcs originating at the
root node:

yi ≤ ui ≤ (h − 1)yi − (h − 2)x1i i ∈ V\{1}, ri = 0. (28)

The consideration of the arcs emanating from the root enables
the strengthening of constraints (22) also for the case of
profitable vertices:

yi ≤ ui ≤ hyi − (h − 1)x1i i ∈ V\{1}, ri > 0. (29)

Finally, [40] also proposes several strengthenings of con-
straints (23), depending on the type of the vertices involved:
terminal vertices or Steiner vertices. We can adapt one
of these modifications to the case where the two vertices
involved in the constraint are unprofitable. In this case, we
know that none of the vertices is a leaf and, therefore, the
difference between their potentials is bounded by h − 1.
Constraints (23) then become:

hxij + ui − uj + (h − 2)xji ≤ h − 1 (i, j) ∈ A, ri = rj = 0.
(30)

2.3. Garcia-Gouveia Hop Formulation

Garcia [15] and Gouveia [24] have worked with posi-
tion variables (also called time-indexed variables) to model
subtour elimination constraints. The authors mention the pos-
sibility of using such variables in situations where a hop limit
is imposed. Indeed, let each arc variable xij be replaced by a
set of variables xp

ij, p = 1, . . . , h, where xp
ij is equal to one if

arc (i, j) is in position p in the solution, i.e., p hops away from
the root, and equal to zero otherwise. In the presence of these
disaggregated variables, constraints (19) of the MTZ model
can be strengthened and rewritten as

xp
ij ≤

∑
k|(k,i)∈A,k �=j

xp−1
ki (i, j) ∈ A, p = 2, . . . , h, (31)

and the STPRBH can be formulated as:
Garcia-Gouveia Hop (GG-Hop) formulation

Maximize
∑
i∈V

riyi (32)

subject to

∑
k|(k,i)∈A

xki = yi, i ∈ V\{1}, (33)

∑
(i,j)∈A

cijxij ≤ b, (34)

xp
ij ≤

∑
k|(k,i)∈A,k �=j

xp−1
ki (i, j) ∈ A, i �= 1, p = 2, . . . , h. (35)

xij =
h∑

p=1

xp
ij, (i, j) ∈ A, (36)

x1
ij = 0, (i, j) ∈ A, i �= 1, (37)

xp
1j = 0, j ∈ V\{1}, p = 2, . . . , h, (38)
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xh
ki = 0, (k, i) ∈ A, ri = 0 (39)

xij ∈ {0, 1}, (i, j) ∈ A. (40)

y1 = 1, (41)

yi ∈ {0, 1}, i ∈ V\{1}. (42)

The two-index variables xij could be rewritten in terms of
the three-index variables xp

ij only, but they are kept for clarity.
The strengthened constraints (35) not only ensure the con-
nectivity of the solution, but also guarantee that the solution
is cycle-free and that the hop limit is respected. Note also
that constraints (37) and (38) fix some variables based on the
fact that no arc originating at the root may be more than one
hop away from the root and, conversely, no intermediate arc
may be at exactly one hop from the root. Similarly, (39) states
that there is always an optimal solution where all leaves are
profitable vertices.

In the presence of three-index position variables xp
ij, we

propose four new families of valid inequalities:

h∑
p=1

pxp
ij ≥

h∑
p=1

∑
k|(k,i)∈A

pxp
ki − h + (h + 1)xij, (i, j) ∈ A,

(43)

xp
ij ≥

∑
k|(k,i)∈A

xp−1
ki + xij − 1,

(i, j) ∈ A, i �= 1, p = 2, . . . , h, (44)
∑

k|(i,k)∈A

xp
ik ≥

∑
k|(k,i)∈A

xp−1
ki ,

i ∈ V , i �= 1, ri = 0, p = 2, . . . , h, (45)

xp
ij ≤ 1 −

∑
k|(k,i)∈A

h∑
t=p

xt
ki −

p−1∑
t=1

xt
ij

(i, j) ∈ A, i �= 1, p = 2, . . . , h. (46)

Inequalities (43) are a linearization of the constraints

h∑
p=1

pxp
ij ≥




h∑
p=1

∑
k|(k,i)∈A

pxp
ki + 1


 xij, (i, j) ∈ A, (47)

which indicate that the hop associated with a given arc
depends on the number

∑h
p=1

∑
k|(k,i)∈A pxp

ki of arcs in the
path between the root and its origin vertex. In other words,
any arc (i, j) leaving vertex i is one more hop away from the
root than the arc entering vertex i. Inequalities (44) mean that
if arc (i, j) is in the solution, its position should exceed that of
its predecessor by one. Inequalities (45) state that no unprof-
itable vertex i is a leaf in the solution. These are a three-index
version of the valid inequalities

∑
k|(i,k)∈A

xik ≥
∑

k|(k,i)∈A

xki, i ∈ V , i �= 1, ri = 0. (48)

Finally, inequalities (46) state that an arc cannot be p hops
away from the root if its origin vertex has any incoming arc,

which is at least p hops away from the root or if another
three-index variable associated with the arc is already set to
one.

Gouveia [24] has proved that constraints (35), in their inte-
ger version, imply both the subtour and the hop constraints,
but he provides no theoretical comparison between the differ-
ent LP models. The following results prove that the GG-Hop
formulation implies the MTZ formulation. More precisely,
they show that the MTZ model constraints (19), (22), and
(23) are redundant for the GG-Hop model in the presence of
the linking constraints

ui =
h∑

p=1

∑
k|(k,i)∈A

pxp
ki. i ∈ V\{1}. (49)

Note that these constraints only define the ui variables and
do not strengthen the original GG-Hop formulation.

Proposition 1. Constraints (19) are redundant for the
GG-Hop formulation.

Proof. For any arc (i, j) ∈ A, i �= 1, summing up the
h − 1 constraints (35) associated with the arc yields:

h∑
p=2

xp
ij ≤

h∑
p=2

∑
k|(k,i)∈A,k �=j

xp−1
ki .

Because i �= 1, it follows that x1
ij = 0 and therefore,∑h

p=2 xp
ij = ∑h

p=1 xp
ij = xij. This implies

xij ≤
h∑

p=2

∑
k|(k,i)∈A,k �=j

xp−1
ki ≤

∑
k|(k,i)∈A,k �=j

xki.

■

Proposition 2. Constraints (23) are redundant for the
GG-Hop formulation.

Proof. We prove that constraints (23) are redundant for
the GG-Hop formulation by showing that in the presence of
the disaggregated variables and constraints (35), the left-hand
side of any of these constraints is smaller than h. Consider
the original MTZ constraint (23) associated with arc (i, j):

(h + 1)xij + ui − uj + (h − 1)xji ≤ h.

If vertex i is the root vertex, the result follows easily because
ui = u1 = 0 and (j, 1) /∈ A. Moreover, using (36) and (49),
the left-hand side of (23) becomes

L = (h + 1)

h∑
p=1

xp
1j −

h∑
p=1

∑
k|(k,j)∈A

pxp
kj

= (h + 1)

h∑
p=1

xp
1j −

h∑
p=1

pxp
1j −

h∑
p=1

∑
k|(k,j)∈A,k �=1

pxp
kj,

=
h∑

p=1

(h + 1 − p)xp
1j −

h∑
p=1

∑
k|(k,j)∈A,k �=1

pxp
kj ≤ h.
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If i is not the root vertex, we again use (49) to write

ui =
h∑

p=1

∑
k|(k,i)∈A

pxp
ki, and

uj =
h∑

p=1

pxp
ij +

h∑
p=1

∑
k|(k,j)∈A,k �=i

pxp
kj. (50)

Using (36) and (50), we can rewrite the left-hand side of (23)
as

L = (h + 1)xij + ui − uj + (h − 1)xji

= (h + 1)

h∑
p=1

xp
ij +

h∑
p=1

∑
k|(k,i)∈A

pxp
ki −

h∑
p=1

pxp
ij

−
h∑

p=1

∑
k|(k,j)∈A,k �=i

pxp
kj + (h − 1)

h∑
p=1

xp
ji.

Defining a = − ∑h
p=1

∑
k|(k,j)∈A,k �=i pxp

kj + (h − 1)
∑h

p=1 xp
ji,

we can write

L =
h∑

p=1

(h + 1 − p)xp
ij +

h∑
p=1

∑
k|(k,i)∈A

pxp
ki + a. (51)

Constraints (35) and (51) imply

L ≤ hx1
ij +

h−1∑
p=1

∑
k|(k,i)∈A,k �=j

(h − p)xp
ki +

h∑
p=1

∑
k|(k,i)∈A

pxp
ki + a

= hx1
ij + h

∑
k|(k,i)∈A

xh
ki + h

h−1∑
p=1

∑
k|(k,i)∈A

xp
ki

−
h−1∑
p=1

(h − p)xp
ji + a

= hx1
ij + h

h∑
p=1

∑
k|(k,i)∈A

xp
ki −

h−1∑
p=1

(h − p)xp
ji + a.

We now show that − ∑h−1
p=1(h −p)xp

ji +a ≤ 0. Again, we use
(35) to obtain an upper bound:

−
h−1∑
p=1

(h − p)xp
ji + a

= −
h−1∑
p=1

(h − p)xp
ji −

h∑
p=1

∑
k|(k,j)∈A,k �=i

pxp
kj + (h − 1)

h∑
p=1

xp
ji,

=
h∑

p=1

(p − 1)xp
ji −

h∑
p=1

∑
k|(k,j)∈A,k �=i

pxp
kj

≤
h−1∑
p=1

∑
k|(k,j)∈A,k �=i

pxp
kj −

h∑
p=1

∑
k|(k,j)∈A,k �=i

pxp
kj

= −
∑

k|(k,j)∈A,k �=i

hxh
kj ≤ 0.

It follows that

L ≤ hx1
ij + h

h∑
p=1

∑
k|(k,i)∈A

xp
ki ≤ h,

which proves our proposition since (37) implies hx1
ij = 0 and

(33) implies

h
h∑

p=1

∑
k|(k,i)∈A

xp
ki = h

∑
k|(k,i)∈A

h∑
p=1

xp
ki = h

∑
k|(k,i)∈A

xki = hyi ≤ h.

■

Proposition 3. Constraints (28) and (29) are redundant for
the GG-Hop formulation.

Proof. Constraints (33), (36), (38), (39), and (49) imply
(28) because, for any unprofitable vertex i,

ui =
h∑

p=1

∑
k|(k,i)∈A

pxp
ki =

h∑
p=1

∑
k|(k,i),k �=1∈A

pxp
ki + x1

1i

=
h∑

p=1

∑
k|(k,i)∈A,k �=1

pxp
ki + (h − 1)x1

1i − (h − 2)x1
1i

≤ (h − 1)

h∑
p=1

∑
k|(k,i)∈A,k �=1

xp
ki + (h − 1)x1

1i − (h − 2)x1
1i

= (h − 1)

h∑
p=1

∑
k|(k,i)∈A

xp
ki − (h − 2)x1i

= (h − 1)yi − (h − 2)x1i

and,

ui =
h∑

p=1

∑
k|(k,i)∈A

pxp
ki ≥

h∑
p=1

∑
k|(k,i)∈A

xp
ki =

∑
k|(k,i)∈A

xki = yi.

Similar arguments can be used to show that (29) is also
redundant for GG-Hop:

ui =
h∑

p=1

∑
k|(k,i)∈A

pxp
ki =

h∑
p=1

∑
k|(k,i),k �=1∈A

pxp
ki + x1

1i

=
h∑

p=1

∑
k|(k,i)∈A,k �=1

pxp
ki + hx1

1i − (h − 1)x1
1i
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≤ h
h∑

p=1

∑
k|(k,i)∈A,k �=1

xp
ki + hx1

1i − (h − 1)x1
1i

= h
h∑

p=1

∑
k|(k,i)∈A

xp
ki − (h − 1)x1i = hyi − (h − 1)x1i.

■

Proposition 4. The GG-Hop model dominates the MTZ
model.

Proof. The result follows from Propositions 1, 2, and 3
and from the fact that constraints (28) and (29) are liftings of
(22). ■

Finally, we can use similar arguments to prove that the
MTZ model with the lifted constraints (30) is also implied
by the GG-Hop formulation, as shown by the following
proposition.

Proposition 5. Constraints (30) are redundant for the
GG-Hop formulation.

Proof. The arguments are very similar to those used to
prove Proposition 2. Here, we also use (39), which states that
for any unprofitable vertex i, xh

ik = 0, (i, k) ∈ A. We prove that
the left-hand side of (30) associated with an arc (i, j) cannot
exceed h − 1 in the presence of the three-index variables xp

ij
and the associated constraints. Again, we consider two cases.
If i is the root vertex, then the left-hand side L of (30) can be
written as

L = hx1j − uj

= h
h∑

p=1

xp
1j −

h∑
p=1

∑
k|(k,j)∈A,k �=1

pxp
kj −

h∑
p=1

pxp
1j

=
h∑

p=1

(h − p)xp
1j −

h∑
p=1

∑
k|(k,j)∈A,k �=1

pxp
kj

≤ (h − p)x1j ≤ (h − 1).

Otherwise, we know that x1
ik = 0 and therefore,

L = hxij + ui − uj + (h − 2)xji

= h
h∑

p=1

xp
ij +

h∑
p=1

∑
k|(k,i)∈A,k �=j

pxp
ki +

h∑
p=1

pxp
ji

−
h∑

p=1

∑
k|(k,j)∈A,k �=i

pxp
kj −

h∑
p=1

pxp
ij + (h − 2)

h∑
p=1

xp
ji

=
h∑

p=1

(h − p)xp
ij +

h∑
p=1

∑
k|(k,i)∈A,k �=j

pxp
ki

+
h∑

p=1

(h + p − 2)xp
ji −

h∑
p=1

∑
k|(k,j)∈A,k �=i

pxp
kj

≤
h∑

p=1

∑
k|(k,i)∈A,k �=j

(h − p − 1)xp
ki +

h∑
p=1

∑
k|(k,i)∈A,k �=j

pxp
ki

+
h∑

p=1

(h + p − 2)xp
ji −

h∑
p=1

∑
k|(k,j)∈A,k �=i

pxp
kj

=
h∑

p=1

∑
k|(k,i)∈A,k �=j

(h − 1)xp
ki +

h∑
p=1

(h + p − 2)xp
ji

−
h∑

p=1

∑
k|(k,j)∈A,k �=i

pxp
kj

=
h∑

p=1

∑
k|(k,i)∈A

(h − 1)xp
ki +

h∑
p=1

(p − 1)xp
ji

−
h∑

p=1

∑
k|(k,j)∈A,k �=i

pxp
kj

≤
h∑

p=1

∑
k|(k,i)∈A

(h − 1)xp
ki +

h∑
p=1

∑
k|(k,j)∈A,k �=i

pxp
kj

−
h∑

p=1

∑
k|(k,j)∈A,k �=i

pxp
kj

=
h∑

p=1

∑
k|(k,i)∈A

(h − 1)xp
ki ≤ (h − 1)

∑
k|(k,i)∈A

xki ≤ h − 1.

■

3. BRANCH-AND-CUT ALGORITHMS

We have presented four mathematical formulations for the
STPRBH, based on quite different ideas. Models UDFJ and
DDFJ use the classical Dantzig-Fulkerson-Johnson subtour
elimination constraints, while MTZ model uses the Miller-
Tucker-Zemlin constraints, and GG-Hop is based on three-
index position variables. We have shown that model MTZ and
its lifted version are dominated by GG-Hop and, therefore,
they will not be considered in the tests. Moreover, as we
have explained in Section 2.1, we concentrate on the directed
DDFJ formulation.

Because of the exponential number of constraints of
DDFJ, it is impractical to apply commercial solvers to
this formulation, even for mid-size instances. We propose
a branch-and-cut algorithm containing two separation pro-
cedures which generate violated constraints of type (11)
and (13) only when these are found to be violated dur-
ing the branch-and-cut process. Section 3.1 explains the
two separation procedures and the overall branch-and-cut
algorithms.

The number of constraints in formulations GG-Hop is
polynomial and, therefore, one can make use of commer-
cial LP solvers for the problem as long as the instance size is
not too large. However, it is possible to relax constraints (35)
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TABLE 1. Summary of the branch-and-cut strategies.

Strategy Basic model Relaxed constraints Valid inequalities

S1 GG-Hop
S2 GG-Hop (11), (13)
S3 GG-Hop (35)
S4 GG-Hop (35) (11), (13)
S5 DDFJ + (52), (53) (11), (13)

and add them as cuts in the model when they are found to be
violated during the branching process. Section 3.2 presents
this second branch-and-cut approach.

3.1. Branch-and-Cut for Formulation DDFJ

We consider the DDFJ model. The idea of our branch-and-
cut algorithm is to initially relax connectivity constraints (11)
and hop constraints (13) and add them as cuts only when
they become violated. To reinforce the formulation at the
root node, we do not relax all of constraints (11). Instead, the
following constraints are kept:

xij ≤
∑

k|(k,i)∈A,k �=j

xki (i, j) ∈ A, i �= 1. (52)

Algorithm 1. Hop separation procedure.
� = 1; P = (i� = 1); XP = 0; f = [0, 1, 1, . . . , 1];
loop

if there exists (i�, j) ∈ A, with f [j] = 1 then
� = � + 1;
i� = j;
f [i�] = 0;
XP = XP + xi�−1,i� ;
if � = h + 2 and XP > h then

Add the cut XP ≤ h;
f [k] = 1, for all k such that (i�, k) ∈ A, k �= i�−1;
XP = XP − xi�−1,i� ;
� = � − 1;

else
if XP < � − 2 then

XP = XP − xi�−1,i� ;
� = � − 1;

end if
end if

else
if � = 1 then

Stop.
else

XP = XP − xi�−1,i� ;
f [k] = 1, for all k such that (i�, k) ∈ A, k �= i�−1;
� = � − 1;

end if
end if

end loop

Algorithm 2. Branch-and-cut template.
while constraints added do

Solve root node.
Look for violated relaxed constraints.
Look for violated valid inequalities.

end while
if solution is integer then

Stop.
else

Start branching.
while there exist active nodes do

Branch or change current node.
while constraints added do

Solve current node.
Look for violated relaxed constraints.
Look for violated valid inequalities.

end while
end while

end if

Note that constraints (52) are equivalent to constraints (11)
associated with sets S = {i, j}, for which (i, j) ∈ A.
Indeed, these constraints can be obtained by adding the term∑

(p�=i,j)∈A xpj to both sides of (52). In addition to these con-
straints, we also explicitly impose the two-vertex subtour
elimination constraints, which are implied by (10) and (11):

xij + xji ≤ 1 (i, j) ∈ E. (53)

For the relaxed constraints, it is necessary to develop
appropriate separation procedures. The first separation pro-
cedure takes care of the connectivity of the solution. This
procedure is adapted from the work of Ljubić et al. [31].
It consists of identifying disconnected vertices by means of
a maximum flow algorithm, and of adding the associated
violated constraints of type (11). The second separation pro-
cedure identifies violated hop constraints of type (13) by
finding paths from the root to any vertex containing more

TABLE 2. Optimal solutions for instance Steinb8 for the 12 different
scenarios.

Optimal Profitable
solution vertices % Revenue

Scenario Budget Cost h value reached collected Figure

1 501 11 3 85 2 10 1a
2 501 114 6 581 13 70 1b
3 501 167 9 836 19 100 1c
4 501 178 12 836 19 100 1c
5 100.2 11 3 85 2 10 1a
6 100.2 98 6 535 11 64 1d
7 100.2 100 9 761 16 91 1e
8 100.2 100 12 832 18 99 2a
9 50.1 11 3 85 2 10 1a

10 50.1 48 6 346 6 41 2b
11 50.1 50 9 537 10 64 2c
12 50.1 50 12 537 10 64 2c

148 NETWORKS—2009—DOI 10.1002/net



FIG. 1. Solutions for instance Steinb8 in the different scenarios. (a) Scenarios 1, 5, 9, (b) Scenario 2, (c) Scenarios
3, 4, (d) Scenario 6, and (e) Scenario 7.

arcs than the allowed hop limit. These two routines are now
presented in detail.

3.1.1. Connectivity Separation Procedure. The connec-
tivity separation procedure exploits the fact that constraints
(11) imply the connectivity of all selected vertices in the
graph, in particular, the connectivity of the root to all other
selected vertices. Indeed, given a partition {S, V\S} of V and

a cut C = {(i, j) : i ∈ S, j ∈ V\S} in which the root and a
given vertex k are on different sides of the cut, i.e., 1 ∈ S
and k ∈ V\S, let XC be the sum of the x variables belonging
to the cut: XC = ∑

(i,j)∈C xij. The connectivity constraints
guarantee that XC ≥ yk . Now, if one uses the current x values
at a given node of the branching tree as arc capacities, it is
possible to use a maximum flow algorithm to find the min-
imum cut, in terms of XC , between the root and every other
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FIG. 2. Solutions for instance Steinb8 in the different scenarios (continued). (a) Scenario 8, (b) Scenario 10, and
(c) Scenarios 11, 12.

vertex k of the graph. If XC is smaller than yk , then a violated
connectivity constraint has been identified and can be added
to the problem.

To identify more violated inequalities at each iteration,
Ljubić et al. [31] have proposed the use of nested cuts and
back-cuts. The nested cuts were introduced by Martin [30].
Once a violated cut is found, these cuts consist of setting to
one the values of the x variables in the cut and of solving the
minimum cut problem again, in the hope of finding another
cut that does not include all of the previous arcs. The process
is repeated until no more cuts can be identified or an upper
limit is reached. The back-cuts were introduced by Chopra
and Rao [4]. The idea is simply to reverse the flows and look
for a minimum cut with i as origin vertex and the root vertex
as destination. In our implementation, as suggested by Ljubić
et al. [31], the nested cuts and the back-cuts are combined,
maximizing the number of violated constraints found at each
iteration.

3.1.2. Hop Constraints Separation Procedure. The
search for violated hop constraints consists of exploring the
current tree for paths containing more arcs than the hop limit.
We concentrate on paths rooted at vertex 1 and we explore
the subgraph induced by the positive yi and xij variables. For
a path P = (i1 = 1, . . . , i�), define XP = ∑�

t=2 xit−1,it as the

sum of the xij variables in the path. The separation procedure
gradually extends a path P rooted at 1 until the number of
vertices in the path reaches h + 2 and the sum of associated
variables exceeds h, or this sum is less than the number of
vertices minus two. In other words, these conditions are:

1. � = h + 2 and XP > h,
2. XP < � − 2.

In condition 1 a violated hop constraint has been found
and the cut XP ≤ h is added to the model. In condition 2
it is useless to continue exploring the branch, because no
violated inequalities will be found. The complete separation
procedure is described in Algorithm 1, where f [i] = 1 if
vertex i can still been visited in the search (i = 1, . . . , n), and
0 otherwise.

The idea of Algorithm 1 is to sequentially visit the
connected vertices in the induced subgraph until one of con-
ditions 1 or 2 is met. Again, if condition 1 is satisfied, a
violated cut has been identified and is added to the model. In
both cases, the algorithm blocks the access to the last vertex
in the path and returns to the previous vertex, from which
the search is resumed. The procedure continues until the root
vertex is reached, with no other vertices to visit.
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TABLE 3. Results - instances MStein, h = 3.

Instance S1 S3 S5

Name n |E| b Opt B&B nodes Seconds B&B nodes Cuts (%) Seconds B&B nodes Sep Hops Seconds

Msteinb1 50 63 1 140 0 0.01 0 102 (40.48%) 0.03 279 4,245 744 1.77
5 140 0 0.01 0 78 (30.95%) 0.04 816 2,718 666 2.56

10 140 0 0.01 0 78 (30.95%) 0.04 178 283 100 0.31
Msteinb2 50 63 1 182 0 0.01 0 123 (48.81%) 0.01 445 4,902 1,738 5.79

5 182 0 0.01 0 126 (50.00%) 0.05 247 1,724 740 2.36
10 182 0 0.01 4 118 (46.83%) 0.07 72 508 206 0.53

Msteinb3 50 63 1 253 0 0.01 0 163 (64.68%) 0.02 9 268 194 0.3
5 253 0 0.01 0 154 (61.11%) 0.05 4 174 132 0.25

10 253 0 0.01 0 140 (55.56%) 0.05 4 151 104 0.18
Msteinb4 50 100 1 341 0 0.02 1 199 (49.75%) 0.07 15,609 486,329 32,432 [inf]

5 341 0 0.01 130 252 (63.00%) 0.53 17,751 154,921 14,198 [inf]
10 341 0 0.01 110 151 (37.75%) 0.81 26,908 147,184 17,087 [16.83%]

Msteinb5 50 100 1 588 0 0.02 0 153 (38.25%) 0.05 24,853 740,421 32,770 [inf]
5 588 0 0.02 72 142 (35.50%) 0.36 19,146 281,447 17,530 [inf]

10 565 0 0.02 0 58 (14.50%) 0.05 38,848 109,378 10,819 4,416.86
Msteinb6 50 100 1 1,040 0 0.02 11 250 (62.50%) 0.11 23,816 534,587 31,211 [inf]

5 1,035 0 0.01 68 163 (40.75%) 0.33 24,005 365,437 31,894 [31.84%]
10 610 10 0.04 120 152 (38.00%) 0.51 41,167 78,719 9,904 4,432.77

Msteinb7 75 94 1 87 0 0.02 0 211 (56.12%) 0.04 28 1,279 528 2.08
5 87 0 0.01 4 183 (48.67%) 0.09 4 657 292 0.84

10 87 0 0.01 78 174 (46.28%) 0.29 6 421 210 0.5
Msteinb8 75 94 1 85 0 0.01 0 206 (54.79%) 0.04 116 2,154 830 3.31

5 85 0 0.01 0 197 (52.39%) 0.08 40 970 570 2.72
10 85 0 0.01 8 176 (46.81%) 0.12 16 324 238 0.75

Msteinb9 75 94 1 596 0 0.01 0 231 (61.44%) 0.03 9,521 262,941 42,102 4,228.27
5 596 0 0.01 2 190 (50.53%) 0.11 7,566 73,353 15,871 1,087.73

10 483 3 0.02 80 175 (46.54%) 0.29 1,132 7,056 2,278 19.49
Msteinb10 75 150 1 319 0 0.02 10 359 (59.83%) 0.18 7,115 1,409,190 47,418 [inf]

5 319 0 0.02 391 388 (64.67%) 2.04 6,383 432,980 22,686 [inf]
10 319 0 0.02 125 275 (45.83%) 1.48 14,440 304,253 22,341 [64.47%]

Msteinb11 75 150 1 316 0 0.02 4 393 (65.50%) 0.15 6,893 1,100,426 45,110 [inf]
5 316 0 0.02 26 352 (58.67%) 0.46 6,737 353,237 25,042 [inf]

10 305 0 0.02 213 329 (54.83%) 3.07 6,102 178,547 21,538 [76.02%]
Msteinb12 75 150 1 1,169 0 0.02 0 418 (69.67%) 0.09 6,015 906,773 35,515 [inf]

5 1,169 0 0.02 78 349 (58.17%) 0.7 6,734 664,978 41,020 [inf]
10 1,017 1 0.03 116 202 (33.67%) 0.71 12,710 335,980 28,226 [inf]

Msteinb13 100 125 1 147 0 0.02 0 241 (48.20%) 0.06 2,171 377,891 51,584 [81.27%]
5 147 0 0.02 47 234 (46.80%) 0.39 6,306 183,147 30,340 [75.94%]

10 147 0 0.02 46 175 (35.00%) 0.51 2,386 18,519 4,848 162.37
Msteinb14 100 125 1 263 0 0.02 0 272 (54.40%) 0.07 189 14,482 3,400 54.13

5 263 0 0.02 0 252 (50.40%) 0.14 872 12,783 4,146 95.79
10 263 0 0.01 42 253 (50.60%) 0.56 162 4,380 1,538 15.09

Msteinb15 100 125 1 1,061 0 0.02 0 280 (56.00%) 0.05 1,639 709,689 68,728 [61.41%]
5 1,061 0 0.01 0 247 (49.40%) 0.17 26,630 121,736 25,932 [33.34%]

10 830 0 0.02 51 173 (34.60%) 0.55 1,491 6,735 2,132 28.03
Msteinb16 100 200 1 479 0 0.03 0 473 (59.13%) 0.19 3,196 1,048,853 38,092 [inf]

5 479 0 0.02 28 460 (57.50%) 0.65 5,941 232,061 13,442 [inf]
10 479 0 0.03 495 522 (65.25%) 7.34 4,118 177,306 18,746 [inf]

Msteinb17 100 200 1 254 0 0.03 0 602 (75.25%) 0.2 1,875 126,786 12,748 [inf]
5 254 0 0.02 28 516 (64.50%) 0.74 4,805 121,313 13,210 [inf]

10 254 0 0.03 0 464 (58.00%) 0.47 3,193 178,010 18,231 [76.62%]
Msteinb18 100 200 1 1,298 0 0.03 0 542 (67.75%) 0.15 6,331 1,334,390 43,226 [inf]

5 1,298 0 0.03 5 454 (56.75%) 0.37 3,254 540,237 30,572 [inf]
10 1,132 2 0.04 522 461 (57.63%) 3.37 3,424 563,325 34,466 [79.32%]

3.2. Branch-and-Cut for Formulation GG-Hop

Several algorithms can be used to solve the GG-Hop for-
mulation. The simplest approach is to solve GG-Hop directly
with a commercial branch-and-cut solver. Variants of this

approach are obtained by relaxing constraints (35) at the root
of the search tree and dynamically generating these con-
straints whenever they are found to be violated. Similarly,
valid inequalities (11) and (13) can be generated in the search
tree. We have also tested the possibility of including (43)–(46)
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TABLE 4. Results - instances MStein, h = 6.

Instance S1 S3 S5

Name n |E| b Opt B& B nodes Seconds B&B nodes Cuts (%) Seconds B&B nodes Sep Hops Seconds

Msteinb1 50 63 1 403 0 0.02 0 191 (30.32%) 0.05 4,351 3,026 598 8.15
5 403 0 0.02 23 57 (9.05%) 0.07 102 182 78 0.32

10 341 0 0.02 0 23 (3.65%) 0.02 0 0 0 0.01
Msteinb2 50 63 1 612 0 0.01 2 359 (56.98%) 0.33 14,483 8,200 2,004 53.78

5 491 7 0.04 243 304 (48.25%) 0.68 436 578 296 1.45
10 300 9 0.04 91 118 (18.73%) 0.21 65 6 62 0.24

Msteinb3 50 63 1 963 0 0.01 0 401 (63.65%) 0.22 5,256 9,587 1,464 18.7
5 807 0 0.02 170 424 (67.30%) 0.64 720 1,154 296 1.75

10 624 0 0.02 4 85 (13.49%) 0.11 11 45 36 0.1
Msteinb4 50 100 1 455 5 0.19 0 264 (26.40%) 0.13 20 1,181 88 0.33

5 455 10 0.22 125 332 (33.20%) 0.98 939 11,760 702 6.92
10 447 54 0.69 163 255 (25.50%) 1.04 546 4,410 496 11.35

Msteinb5 50 100 1 666 0 0.05 2 232 (23.20%) 0.14 31 2,104 90 0.53
5 666 3 0.24 98 352 (35.20%) 1 16 1,116 58 0.38

10 643 4 0.13 25 85 (8.50%) 0.12 73 237 26 0.21
Msteinb6 50 100 1 1,269 4 0.39 11 480 (48.00%) 0.27 26 5,029 210 0.87

5 1,257 18 0.59 94 358 (35.80%) 0.87 33,813 57,648 3,696 740.81
10 839 36 0.65 237 267 (26.70%) 1.04 1,392 5,325 538 14.19

Msteinb7 75 94 1 627 0 0.02 15 572 (60.85%) 0.33 27,591 115,272 21,226 [6.97%]
5 627 0 0.02 30 224 (23.83%) 0.3 195 706 330 1.69

10 432 2 0.03 212 219 (23.30%) 0.6 43 70 80 0.38
Msteinb8 75 94 1 581 0 0.02 0 571 (60.74%) 0.79 34,992 128,342 23,778 6,612.82

5 535 0 0.02 169 514 (54.68%) 1.57 31,888 39,172 9,957 2,307.75
10 346 0 0.03 344 494 (52.55%) 2.16 507 2,076 798 4.9

Msteinb9 75 94 1 1,698 0 0.02 0 497 (52.87%) 0.18 82,814 238,660 26,620 [3.57%]
5 1,343 0 0.04 39 240 (25.53%) 0.35 1,787 4,997 1,478 17.47

10 816 12 0.1 210 235 (25.00%) 0.66 66 24 22 0.3
Msteinb10 75 150 1 702 3 0.45 4 508 (33.87%) 0.33 15,377 1,993,727 42,816 [inf]

5 702 7 0.68 80 511 (34.07%) 1.67 749 10,127 424 9.69
10 668 77 1.2 289 318 (21.20%) 2.17 1,636 13,036 694 34.24

Msteinb11 75 150 1 893 4 0.18 0 430 (28.67%) 0.19 16,751 1,384,101 34,858 [inf]
5 893 8 0.35 583 727 (48.47%) 9.23 14,482 340,611 18,360 [inf]

10 829 3 0.54 619 625 (41.67%) 7.41 2,007 22,939 2,330 80.31
Msteinb12 75 150 1 1,867 2 0.24 0 663 (44.20%) 0.28 18,908 1,464,622 36,796 [inf]

5 1,847 20 0.76 278 606 (40.40%) 3.54 10,881 1,105,823 42,612 [inf]
10 1,384 3 0.09 48 215 (14.33%) 0.64 370 11,652 1,132 14.92

Msteinb13 100 125 1 785 0 0.05 0 516 (41.28%) 0.18 10,178 187,968 23,580 1,415.72
5 674 31 0.14 378 503 (40.24%) 1.87 16,585 15,337 5,337 696.88

10 452 8 0.1 172 394 (31.52%) 1.2 164 340 164 1.7
Msteinb14 100 125 1 1,296 0 0.02 4 773 (61.84%) 1.18 27,541 250,445 27,430 [19.67%]

5 977 1 0.04 497 525 (42.00%) 2.45 1,026 4,922 1,968 30.07
10 595 0 0.04 19 89 (7.12%) 0.3 0 1 10 0.05

Msteinb15 100 125 1 2,555 0 0.04 0 774 (61.92%) 0.38 18,788 457,920 42,774 [inf]
5 1,858 12 0.13 173 230 (18.40%) 1.09 313 1,801 430 4.3

10 1,040 38 0.16 252 297 (23.76%) 1.19 177 50 38 0.81
Msteinb16 100 200 1 840 1 0.31 18 1,414 (70.70%) 11.59 5,564 1,900,715 39,986 [inf]

5 840 15 0.68 407 1,082 (54.10%) 13.34 9,278 505,404 17,587 [inf]
10 767 106 2.65 437 805 (40.25%) 8.21 7,428 98,879 6,036 [4.12%]

Msteinb17 100 200 1 1,299 0 0.06 19 1,588 (79.40%) 6.58 1,885 1,600,101 46,970 [inf]
5 1,299 0 0.06 400 1,225 (61.25%) 18.37 9,059 930,397 30,941 [inf]

10 1,091 0 0.07 442 819 (40.95%) 9.04 11,986 273,874 24,689 [inf]
Msteinb18 100 200 1 2,585 10 1.42 11 1,088 (54.40%) 0.94 12,412 2,463,977 28,620 [inf]

5 2,575 8 0.84 43 581 (29.05%) 1.77 6,870 880,530 24,466 [inf]
10 1,917 0 0.09 160 562 (28.10%) 2.97 13,420 580,741 26,769 [inf]
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TABLE 5. Results - instances MStein, h = 9

Instance S1 S3 S5

Name n |E| b Opt B & B nodes Seconds B&B nodes Cuts (%) Seconds B&B nodes Sep Hops Seconds

Msteinb1 50 63 1 467 0 0.03 5 236 (23.41%) 0.1 13 372 82 0.17
5 431 17 0.17 3 78 (7.74%) 0.05 2 0 2 0.03

10 341 0 0.03 0 26 (2.58%) 0.03 0 0 0 0.01
Msteinb2 50 63 1 696 0 0.02 0 394 (39.09%) 0.14 30 934 192 0.45

5 600 7 0.09 31 228 (22.62%) 0.19 16 6 12 0.07
10 300 56 0.31 59 60 (5.95%) 0.18 62 0 64 0.24

Msteinb3 50 63 1 1,205 0 0.02 9 733 (72.72%) 3.31 18 689 94 0.23
5 924 4 0.08 87 324 (32.14%) 0.37 10 46 16 0.09

10 649 0 0.02 0 80 (7.94%) 0.02 0 0 0 0.01
Msteinb4 50 100 1 455 1 0.23 18 1,048 (65.50%) 6.65 0 17 2 0.02

5 455 0 0.08 4 219 (13.69%) 0.15 0 13 2 0.04
10 455 0 0.36 2 143 (8.94%) 0.18 2 424 4 0.08

Msteinb5 50 100 1 666 3 0.42 0 359 (22.44%) 0.14 9 2,460 46 0.36
5 666 7 1.36 10 382 (23.88%) 0.56 5 1,110 30 0.2

10 652 0 0.09 0 37 (2.31%) 0.05 0 0 0 0.02
Msteinb6 50 100 1 1,269 2 0.59 0 391 (24.44%) 0.25 0 479 24 0.08

5 1,262 18 2.03 221 630 (39.38%) 2.34 456 5,284 322 10.38
10 903 7 0.29 4 160 (10.00%) 0.18 5 6 4 0.05

Msteinb7 75 94 1 674 2 0.07 16 764 (50.80%) 0.55 394 2,127 380 2.66
5 662 0 0.04 0 202 (13.43%) 0.1 0 2 2 0.03

10 432 21 0.12 50 163 (10.84%) 0.25 21 3 18 0.14
Msteinb8 75 94 1 836 0 0.04 4 477 (31.72%) 0.27 8,338 35,111 4,342 112.73

5 761 36 0.26 439 783 (52.06%) 5.08 4,182 4,391 1,086 28.87
10 537 2 0.14 223 431 (28.66%) 1.84 6 115 26 0.13

Msteinb9 75 94 1 1,761 2 0.15 14 926 (61.57%) 3.23 52,369 134,183 12,568 3,138.36
5 1,388 0 0.06 3 217 (14.43%) 0.12 8 33 10 0.09

10 816 107 0.86 142 351 (23.34%) 0.61 60 2 14 0.26
Msteinb10 75 150 1 702 3 2.14 0 432 (18.00%) 0.26 26 5,045 190 1.67

5 702 5 1.28 89 577 (24.04%) 1.55 21 3,414 108 1.19
10 694 1 0.29 47 217 (9.04%) 0.96 2 27 10 0.16

Msteinb11 75 150 1 893 5 3.1 34 1,850 (77.08%) 15.63 35,616 1,748,774 24,754 [inf]
5 893 7 6.47 105 846 (35.25%) 2.75 6 1,501 46 0.32

10 855 4 1.59 213 598 (24.92%) 3.78 1 136 12 0.11
Msteinb12 75 150 1 1,867 5 4.12 37 1,537 (64.04%) 4.23 58 3,862 114 1.47

5 1,866 3 0.9 16 519 (21.63%) 1.08 98 14,165 396 5.97
10 1,401 48 1.18 53 247 (10.29%) 0.46 168 369 78 1.43

Msteinb13 100 125 1 785 2 0.17 13 826 (41.30%) 0.45 242 12,946 1,378 12.25
5 745 8 0.41 28 213 (10.65%) 0.3 11 8 20 0.23

10 465 69 0.87 162 342 (17.10%) 1.21 70 33 44 0.54
Msteinb14 100 125 1 1,403 0 0.05 10 1,296 (64.80%) 10.76 18 1,863 176 1.42

5 1,033 38 0.44 120 365 (18.25%) 0.89 128 580 248 2.31
10 595 27 0.21 118 139 (6.95%) 0.85 0 0 10 0.05

Msteinb15 100 125 1 2,555 1 0.19 20 1,341 (67.05%) 6.09 1,715 18,306 1,336 26.69
5 1,891 0 0.06 0 120 (6.00%) 0.06 0 0 0 0.03

10 1,086 138 2.39 202 252 (12.60%) 1.26 31 6 10 0.21
Msteinb16 100 200 1 840 5 3.79 26 2,045 (63.91%) 36.87 5,209 206,654 2,576 167.4

5 840 6 3.39 77 841 (26.28%) 2.84 10 5,015 194 1.82
10 800 21 7.4 10 223 (6.97%) 0.49 801 33,077 1,494 118.41

Msteinb17 100 200 1 1,299 5 4.4 0 623 (19.47%) 0.44 20,732 1,777,216 19,200 [inf]
5 1,299 14 4.91 367 1,614 (50.44%) 21.89 9,364 627,702 17,550 [inf]

10 1,178 32 2.34 986 1,256 (39.25%) 23.74 15,242 115,951 6,176 5,320.1
Msteinb18 100 200 1 2,585 8 7.77 31 2,098 (65.56%) 29.19 1,228 174,680 1,846 75.04

5 2,585 0 0.86 12 482 (15.06%) 0.72 2,824 297,448 4,606 1,613
10 1,997 8 0.99 7 354 (11.06%) 0.41 667 28,636 992 35.4
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TABLE 6. Results - instances MStein, h = 12.

Instance S1 S3 S5

Name n |E| b Opt B&B nodes Seconds B&B nodes Cuts (%) Seconds B&B nodes Sep Hops Seconds

Msteinb1 50 63 1 467 0 0.31 1 202 (14.57%) 0.07 3 24 28 0.06
5 431 2 0.14 3 50 (3.61%) 0.05 2 0 2 0.03

10 341 0 0.04 0 27 (1.95%) 0.03 0 0 0 0.01
Msteinb2 50 63 1 696 0 0.04 8 324 (23.38%) 0.13 2 35 14 0.05

5 600 30 0.37 51 332 (23.95%) 0.42 13 0 6 0.05
10 300 77 0.77 55 64 (4.62%) 0.17 62 0 64 0.24

Msteinb3 50 63 1 1,205 0 0.03 2 535 (38.60%) 0.17 50 1,136 166 0.48
5 931 39 0.45 101 405 (29.22%) 0.55 24 27 8 0.09

10 649 0 0.03 0 124 (8.95%) 0.04 0 0 0 0.01
Msteinb4 50 100 1 455 4 2.38 0 393 (17.86%) 0.24 0 2 2 0.02

5 455 18 6.77 58 449 (20.41%) 0.77 0 0 2 0.03
10 455 4 1.9 0 92 (4.18%) 0.11 0 375 4 0.04

Msteinb5 50 100 1 666 3 2.82 8 578 (26.27%) 0.59 0 1,005 10 0.05
5 666 6 5.54 0 185 (8.41%) 0.1 6 1,066 22 0.2

10 652 0 0.14 0 84 (3.82%) 0.07 0 0 0 0.02
Msteinb6 50 100 1 1,269 3 2.83 6 502 (22.82%) 0.33 0 286 20 0.07

5 1,262 456 21.66 223 687 (31.23%) 2.39 0 1,001 12 0.07
10 903 28 2.11 4 135 (6.14%) 0.14 6 0 4 0.06

Msteinb7 75 94 1 674 1 0.39 3 486 (23.50%) 0.17 0 181 60 0.14
5 662 0 0.14 1 276 (13.35%) 0.16 0 0 2 0.02

10 432 56 0.85 109 345 (16.68%) 0.79 21 0 18 0.14
Msteinb8 75 94 1 836 3 0.21 0 532 (25.73%) 0.23 39 1,474 262 1.05

5 832 7 0.57 225 673 (32.54%) 2.55 0 118 12 0.05
10 537 25 0.88 628 732 (35.40%) 5.97 11 74 36 0.15

Msteinb9 75 94 1 1,761 0 0.07 0 747 (36.12%) 0.3 2 26 10 0.09
5 1,388 4 0.35 42 448 (21.66%) 0.69 44 90 40 0.33

10 816 107 1.2 154 139 (6.72%) 0.43 60 3 14 0.26
Msteinb10 75 150 1 702 9 10.65 0 173 (5.24%) 0.13 17 7,909 150 1.55

5 702 14 21.13 13 523 (15.85%) 0.64 21 4,675 74 1.21
10 694 2 3.48 3 176 (5.33%) 0.34 2 1 10 0.13

Msteinb11 75 150 1 893 5 8.32 12 834 (25.27%) 0.92 12 7,363 186 1.45
5 893 11 16.9 117 1,044 (31.64%) 3.86 1 131 28 0.14

10 855 44 5.57 544 861 (26.09%) 9.88 2 169 12 0.1
Msteinb12 75 150 1 1,867 5 10.86 5 619 (18.76%) 0.37 15 10,956 100 1.37

5 1,866 0 0.58 0 466 (14.12%) 0.28 4 341 8 0.18
10 1,401 58 1.33 69 261 (7.91%) 0.5 130 200 26 0.68

Msteinb13 100 125 1 785 3 0.77 7 1,052 (38.25%) 0.74 0 7 2 0.03
5 745 35 1.54 27 312 (11.35%) 0.31 26 3 22 0.32

10 465 96 1.67 382 653 (23.75%) 3.58 55 5 30 0.41
Msteinb14 100 125 1 1,403 2 0.28 5 917 (33.35%) 0.54 12 979 194 1.38

5 1,038 52 0.75 73 533 (19.38%) 0.86 65 2 18 0.37
10 595 21 0.39 6 161 (5.85%) 0.39 0 0 10 0.05

Msteinb15 100 125 1 2,555 0 0.16 0 997 (36.25%) 0.4 10 845 122 1.12
5 1,891 0 0.09 0 294 (10.69%) 0.12 0 0 0 0.03

10 1,109 2 0.29 3 149 (5.42%) 0.19 21 0 8 0.21
Msteinb16 100 200 1 840 1 10.31 5 1,595 (36.25%) 1.44 80 42,144 516 9.72

5 840 7 28.64 116 1,381 (31.39%) 4.8 14 5,972 120 2.27
10 800 7 16.45 114 620 (14.09%) 3.03 104 2,622 128 4.09

Msteinb17 100 200 1 1,299 2 10.11 26 2,770 (62.95%) 38.44 69 59,844 352 9.11
5 1,299 6 19.32 112 1,261 (28.66%) 6.73 1 2,420 58 0.52

10 1,225 0 0.29 3 256 (5.82%) 0.27 2 2 0 0.12
Msteinb18 100 200 1 2,585 2 16.83 5 1,229 (27.93%) 0.97 21 12,678 166 4.09

5 2,585 4 20.03 83 938 (21.32%) 3.4 242 38,828 358 13.77
10 1,997 122 14.64 302 721 (16.39%) 5.2 390 5,088 94 5.29
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TABLE 7. Results - instances steinc, h = 5.

Instance S1 S3 S5

Name n |E| b Opt B& B nodes Seconds B&B nodes Cuts (%) Seconds B&B nodes Sep Hops Seconds

steinc1_10 500 625 1 8 0 0.11 0 2,959 (59.18%) 34.76 40 277,910 22,912 [inf]

steinc1_100 1 71 0 0.12 0 2,959 (59.18%) 34.67 40 277,910 22,912 [inf]

steinc1_10 10 8 0 0.12 998 3,121 (62.42%) 186.06 362 161,716 23,259 [inf]

steinc1_100 10 71 0 0.12 1,460 3,217 (64.34%) 536.13 285 139,990 20,097 [inf]

steinc1_10 30 8 0 0.13 1,253 2,045 (40.90%) 161.54 1,502 29,800 5,843 [inf]

steinc1_100 30 71 0 0.12 3,104 2,531 (50.62%) 416.89 1,207 26,545 5,265 [inf]

steinc2_10 1 32 0 0.11 22 2,865 (57.30%) 10.75 112 92,822 21,332 [inf]

steinc2_100 1 328 0 0.11 22 2,865 (57.30%) 10.8 112 92,822 21,332 [inf]

steinc2_10 10 32 0 0.13 1,595 2,831 (56.62%) 308.48 189 68,055 9,182 [inf]

steinc2_100 10 328 0 0.13 1,244 3,125 (62.50%) 202.69 324 77,146 9,158 [inf]

steinc2_10 30 32 0 0.13 1,440 1,937 (38.74%) 105.54 2,549 30,787 10,650 [inf]

steinc2_100 30 328 0 0.13 1,365 1,937 (38.74%) 124.22 460 31,898 12,087 [66.77%]

steinc3_10 1 151 0 0.12 0 2,906 (58.12%) 4.99 29 166,681 19,320 [inf]

steinc3_100 1 1,519 0 0.13 0 2,906 (58.12%) 5.07 30 129,354 17,600 [inf]

steinc3_10 10 151 0 0.13 613 2,496 (49.92%) 66.16 266 105,634 19,968 [inf]

steinc3_100 10 1,519 0 0.12 307 2,356 (47.12%) 33.79 1,462 111,538 17,429 [inf]

steinc3_10 30 95 14 0.2 887 1,398 (27.96%) 48.15 1,810 79,964 13,165 [34.42%]

steinc3_100 30 968 45 0.25 1,719 1,591 (31.82%) 65.66 1,249 77,391 14,692 [91.68%]

steinc4_10 1 115 0 0.11 0 3,141 (62.82%) 2.99 127 102,621 20,354 [inf]

steinc4_100 1 1,148 0 0.12 0 3,147 (62.94%) 3.06 163 103,229 22,120 [inf]

steinc4_10 10 115 0 0.12 109 2,857 (57.14%) 12.08 291 77,732 16,095 [inf]

steinc4_100 10 1,148 0 0.12 182 2,931 (58.62%) 30.2 572 71,038 15,558 [inf]

steinc4_10 30 84 4 0.14 1,537 3,043 (60.86%) 102.04 1,589 53,224 14,747 [90.50%]

steinc4_100 30 854 8 0.15 1,785 1,816 (36.32%) 109.94 1,430 40,269 14,014 [96.39%]

steinc5_10 1 258 0 0.12 0 3,220 (64.40%) 1.31 92 759,835 28,310 [inf]

steinc5_100 1 2,600 0 0.11 0 3,226 (64.52%) 1.32 98 907,096 34,754 [inf]

steinc5_10 10 258 0 0.12 227 2,897 (57.94%) 14.48 901 141,186 16,085 [inf]

steinc5_100 10 2,600 0 0.12 78 2,893 (57.86%) 24.97 459 138,829 17,203 [inf]

steinc5_10 30 154 0 0.12 1,404 1,860 (37.20%) 138.3 1,196 74,855 15,840 [inf]

steinc5_100 30 1,584 0 0.12 683 1,619 (32.38%) 71.8 2,236 111,998 15,738 [14.36%]

in the GG-Hop formulation but this did not prove to be ben-
eficial and this option was dropped after some preliminary
tests.

3.3. Summary of the Algorithmic Strategies and
Branch-and-Cut Template

We have tested the five algorithmic strategies summarized
in Table 1. The general branch-and-cut template for these
strategies is presented in Algorithm 2.

4. COMPUTATIONAL EXPERIMENTS

The branch-and-cut strategies just described were imple-
mented within the CPLEX 9.1.3 framework with standard

settings and run on an AMD Opteron machine with a
2,390 MHz CPU and 16 Gb RAM, under Linux. In all cases,
branching priority was given to the variables associated with
edges incident to the root vertex and the branching node
selection was performed according to the best bound rule.

4.1. Test Instances

We have tested the proposed valid inequalities and branch-
and-cut strategies on the sets of Steiner instances B and
C obtained from the OR-Library [1]. We have adapted
these instances to the STPRBH by using the terminal ver-
tices as profitable vertices with revenue generated randomly
according to a discrete uniform distribution over the inter-
val [1, 100]. The Steiner vertices were attributed a zero
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TABLE 8. Results - instances steinc, h = 15.

Instance S1 S3 S5

Name n |E| b Opt B & B nodes Seconds B & B nodes Cuts (%) Seconds B & B nodes Sep Hops Seconds

steinc1_10 500 625 1 27 0 0.48 44 7,660 (43.77%) 43.99 100 1,293,143 25,266 [inf]

steinc1_100 1 274 0 0.47 44 7,660 (43.77%) 43.98 100 1,293,143 25,266 [inf]

steinc1_10 10 27 0 0.47 325 2,978 (17.02%) 70.68 2,823 57,394 8,468 [inf]

steinc1_100 10 274 0 0.49 797 5,114 (29.22%) 347.12 1,975 40,568 6,840 [11.67%]

steinc1_10 30 27 0 0.49 493 1,641 (9.38%) 49.8 5 6 16 1.74

steinc1_100 30 274 0 0.48 403 1,558 (8.90%) 29.79 5 6 16 1.74

steinc2_10 1 59 3 2.55 227 10,525 (60.14%) 520.89 117 1,127,462 16,528 [inf]

steinc2_100 1 604 3 2.57 227 10,525 (60.14%) 521.19 117 1,127,462 16,528 [inf]

steinc2_10 10 59 3 2.57 613 3,319 (18.97%) 79.3 2,423 34,708 5,454 [5.08%]

steinc2_100 10 604 3 2.52 1,840 5,177 (29.58%) 450.5 320 6,427 1,180 229.07

steinc2_10 30 53 216 58.32 12 290 (1.66%) 2.57 15 1,011 48 7.03

steinc2_100 30 546 319 224.28 211 1,114 (6.37%) 11.98 2 290 32 3.17
steinc3_10 1 439 3 49.95 77 10,263 (58.65%) 900.85 580,833 13,260 1,569 7,105.42

steinc3_100 1 4,463 3 50.01 65 10,126 (57.86%) 996.52 644,089 14,220 988 [inf]

steinc3_10 10 289 90 114.05 2,834 4,548 (25.99%) 397.77 82 683 120 28.93
steinc3_100 10 2,971 310 190.13 4,354 4,658 (26.62%) 663.3 464 1,447 192 85.81
steinc3_10 30 129 3 1.32 430 837 (4.78%) 24.25 0 41 8 0.5
steinc3_100 30 1,343 0 1 643 996 (5.69%) 35.2 0 56 8 0.43
steinc4_10 1 648 1 19.28 25 9,754 (55.74%) 368.48 126 1,395,060 23,054 [inf]

steinc4_100 1 6,566 1 19.21 25 9,672 (55.27%) 306.99 126 1,395,060 23,054 [inf]

steinc4_10 10 336 20 15.05 826 2,958 (16.90%) 163.98 5,722 36,147 5,306 2,740.75

steinc4_100 10 3,458 214 77.28 3,150 4,676 (26.72%) 509.52 1,152 97,257 12,709 [inf]

steinc4_10 30 134 13 13.54 460 1,424 (8.14%) 37.41 290 4,268 1,464 348.86

steinc4_100 30 1,380 31 9.75 119 1,021 (5.83%) 9.8 148 113 90 23.36

steinc5_10 1 1,248 0 45.69 121 11,855 (67.74%) 871.98 3,770 589,718 7,092 [inf]

steinc5_100 1 12,533 0 45.58 59 11,578 (66.16%) 760.04 3,064 529,800 7,034 [inf]

steinc5_10 10 494 8 5.83 1,693 3,817 (21.81%) 251.73 1,044 61,998 4,638 1,234.44

steinc5_100 10 5,032 22 7.13 1,400 3,540 (20.23%) 129.9 262 44,232 3,516 1,465.93

steinc5_10 30 182 11 8.63 1,349 2,558 (14.62%) 82.8 202 1,990 458 93.38

steinc5_100 30 1,857 93 22.24 638 1,668 (9.53%) 50.2 60 70 44 9.97

revenue. For each instance of the first group, 12 scenar-
ios were analyzed, obtained from four values for the hop
limit, h = 3, 6, 9, and 12, and three values for the bud-
get, b = s, s/5, and s/10, where s = ∑

(i,j)∈E cij. For the
second group of instances, we used h = 5, 15, and 25 and
b = s, s/10, and s/30. Because vertex 1 is not always a termi-
nal vertex in the original instances, the root vertex was chosen
as the terminal vertex with the smallest index. The instance
sizes range from 50 vertices and 63 arcs to 500 vertices and
625 arcs.

It is interesting to observe how the budget and hop con-
straints interact, making the solutions of different scenarios
for the same instance completely different. Instance Steinb8
is a good example and is detailed in Table 2 which shows,
for each scenario, the optimal solution value, the number of
profitable vertices reached, and the percentage of the total
revenue collected. The table also shows the budget limit and
the sum of arc costs in the solution (Cost).

The table is linked to Figures 1 and 2 which depict the
solutions. The values inside the vertices are the vertex num-
bers, whereas the values next to the arcs are their cost. A
vertex is represented by a circle if its revenue is zero and by
a square, otherwise.

For the first three scenarios, there is no budgetary limit and,
therefore, the hop constraint is the only restriction preventing
the solution from reaching all profitable vertices. For h = 3,
only two vertices can be reached, yielding a total revenue of
85. For h = 6, the total revenue increases to 581 (given by
seven profitable vertices) but it is only for h = 9 and h = 12
that all 19 profitable vertices are reached. A similar analysis
can be made for a constant value of the hop limit, for example,
h = 9: in this case, the reduction in the budget reduces the
total collectable revenue from 836 (b = s = 501) to 761
(b = s/5 = 100.2) and finally to 537 (b = s/10 = 50.1). In
the sequel, we describe the results for all the instances.

4.2. Complete Tests

We were first interested in the effect of adding vio-
lated inequalities (11) and (13) when solving the polynomial
formulation GG-Hop with and without the relaxation of
constraints (35). The tests showed that, although for some
instances the cuts could help achieve an earlier convergence,
it is not as a rule beneficial to add these constraints and, for
this reason, strategies S2 and S4 were disregarded. Although
constraints (11) and (13) have not been useful in our tests, the
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TABLE 9. Results - instances steinc, h = 25.

Instance S1 S3 S5

Name n |E| b Opt B&B nodes Seconds B&B nodes Cuts (%) Seconds B&B nodes Sep Hops Seconds

steinc1_10 500 625 1 27 2 8.8 17 6,547 (21.82%) 14.49 28 18,727 982 222.51
steinc1_100 1 274 2 8.76 17 6,547 (21.82%) 14.55 28 18,727 982 222.87
steinc1_10 10 27 2 8.8 1,490 8,301 (27.67%) 878.27 28 1,655 272 43.76
steinc1_100 10 274 2 8.77 1,257 6,922 (23.07%) 682.47 28 1,655 272 43.81
steinc1_10 30 27 2 9.07 1,473 2,973 (9.91%) 230.37 7 0 38 2.86
steinc1_100 30 274 2 8.97 553 2,459 (8.20%) 56.54 7 0 38 2.85
steinc2_10 1 59 0 5.72 2 1,414 (4.71%) 2.73 0 178 82 7.24
steinc2_100 1 604 0 5.72 2 1,414 (4.71%) 2.73 0 178 82 7.3
steinc2_10 10 59 0 5.64 430 4,207 (14.02%) 57.57 0 178 82 7.26
steinc2_100 10 604 0 5.69 908 4,733 (15.78%) 183.89 0 178 82 7.26
steinc2_10 30 53 348 431.84 376 1,174 (3.91%) 24.98 17 1,001 60 8.5
steinc2_100 30 546 296 362.61 390 1,716 (5.72%) 24.9 14 292 30 4.12
steinc3_10 1 439 0 223.75 166 17,584 (58.61%) 257.3 0 1,002 8 2.16
steinc3_100 1 4,463 0 184.55 84 15,069 (50.23%) 120.87 0 1,002 8 2.15
steinc3_10 10 289 501 4,293.36 7,728 7,496 (24.99%) 3,309.14 64 35 56 18.46
steinc3_100 10 2,979 223 [inf] 8,601 8,351 (27.84%) [0.23%] 204 1,001 64 36.3
steinc3_10 30 129 47 153.97 626 1,920 (6.40%) 44.77 0 0 8 0.51
steinc3_100 30 1,343 3 8.17 130 1,464 (4.88%) 13.47 0 6 8 0.44
steinc4_10 1 648 1 539.17 101 19,869 (66.23%) [0.31%] 8 9,412 328 112.65
steinc4_100 1 6,566 1 542.52 66 19,077 (63.59%) [inf] 8 9,412 328 112.65
steinc4_10 10 341 5 14.8 1,547 4,811 (16.04%) 141.98 3 0 4 2.34
steinc4_100 10 3,504 30 30.81 514 3,361 (11.20%) 70.68 0 0 4 0.88
steinc4_10 30 136 109 1,149.3 181 1,901 (6.34%) 26.07 5 0 10 2.51
steinc4_100 30 1,396 120 115.14 702 2,218 (7.39%) 57.45 46 0 18 8.64
steinc5_10 1 1,248 5 1,009.69 46 18,999 (63.33%) 150.38 3 54,477 224 98.48
steinc5_100 1 12,533 8 1,208.92 46 18,999 (63.33%) 150.31 3 54,477 224 98.47
steinc5_10 10 495 401 139.93 2,212 5,367 (17.89%) 550.42 49 1,088 54 21.03
steinc5_100 10 5,044 521 305.44 3,242 5,150 (17.17%) 878.85 21 545 36 10.74
steinc5_10 30 183 324 1,568.97 235 1,739 (5.80%) 18.7 81 0 40 13.58
steinc5_100 30 1,860 206 89.11 490 2,270 (7.57%) 29.82 76 0 16 7.08

development of theoretical comparisons between these and
the GG-Hop model could prove an interesting research topic.

Strategies S1, S3, and S5 were tested on the two sets of
instances described in Section 4.1. A maximum CPU time
of 2 h was allowed for the solution of each scenario of each
instance. In Tables 3–9 we present the detailed results of our
computational tests. Besides the time needed by the algo-
rithm, we also report the number of cuts (11) and (13) for
strategy S5 and the number of cuts (35) for strategy S3. In this
case, we indicate the percentage of the total number of con-
straints (35) that were added to the model. For each algorithm,
the tables also show the number of branch-and-cut nodes
explored. In these tables, when the time limit is not sufficient
for the algorithm to converge to a proven optimal solution,
we present the MIP gap in brackets. The entry “[inf]” indi-
cates that no feasible solution was identified within the time
limit.

For the scenarios with a small hop limit h, S1 is clearly
superior. Indeed, it is the best for all instances Msteinb with
h = 3, and in all instances Steinc with h = 5. The reason
for this behavior seems to be the fact that formulation GG-
Hop is extremely strong, and its size is reasonable for small
values of h. This hypothesis can be confirmed by the fact
that a great proportion of these instances are solved at the
root node. For small values of h, S3 is also effective but less

than S1. However, formulation GG-Hop quickly grows with
h and, for this reason, the relaxation of constraints (35) even-
tually starts to pay off, as one can see in a direct comparison
of algorithms S1 and S3 for the Steinb instances with h =
12. For instances Steinc, S1 seems to be always superior
to S3.

Interestingly, Algorithm S5 behaves in a complete dif-
ferent manner. Indeed, for small values of h, the num-
ber of generated constraints (11) and (13) is huge, mak-
ing the algorithm very inefficient. As soon as h grows,
however, fewer cuts are needed for convergence and S5
clearly becomes the most efficient approach (see, for exam-
ple, the results for instances Steinb for h = 12 in
Table 6).

Table 10 summarizes the results of these tests. For the three
possible solution methods and the two groups of instances, we
indicate the number of scenarios for which the method was the
best and the number of scenarios the method could not solve
within the imposed time limit. One can observe again the clear
polarity between strategies S1 and S5. Indeed, for instances
with a small h, S1 seems to be the most efficient strategy,
whereas for instances with a large h, S5 yields better results.
As indicated earlier, this was somehow expected because for
increasing values of h two phenomena happen: on the one
hand, the size of formulation GG-Hop quickly increases and,
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TABLE 10. Summary of results.

S1 S3 S5

Group h Best Unsolved Best Unsolved Best Unsolved

Steinb 3 54 0 1 0 0 29
Steinb 6 48 0 5 0 1 18
Steinb 9 21 0 8 0 25 3
Steinb 12 6 0 14 0 34 0
SteinC 5 30 0 0 0 0 30
SteinC 15 23 0 1 0 6 13
SteinC 25 3 1 2 3 20 0
Total 185 1 31 3 86 93

on the other hand, the number of cuts necessary to find a
feasible solution in strategy S5 becomes smaller.

As a final remark, note that the instances used in the tests
are rather sparse. There are two reasons for this: (a) several
real network design problems occur on topologies defined by
streets and neighborhoods which yield sparse graphs, and (b)
hop constraints make more sense in sparse graphs, because in
complete graphs there is always a direct connection between
every pair of vertices. Nevertheless, we have performed some
tests to better understand the effect of increasing density with-
out changing the way of computing the budget parameter. Our
results indicate that strategy S1 is importantly affected by the
increase on density, becoming much slower. The performance
of strategies S3 and S5, in turn, seems to be quite robust to
arc density. These results are somehow expected since the
increase of the number of arcs greatly affects the number of
variables in S1, but has little influence in S5. The relaxation of
constraints (35) becomes more evident as density increases,
thus giving S3 a clear advantage over S1. We have performed
further tests in which the density was multiplied by a factor
θ and the budget values were taken as s, s/5θ , and s/10θ . In
this case, S3 clearly becomes the best strategy.

5. CONCLUSIONS

We have proposed several formulations for a modified ver-
sion of the Steiner Tree Problem with revenues, including
budget and hop constraints. These formulations were used
to develop branch-and-cut algorithms for the problem. Com-
putational tests have shown that the proposed algorithms are
capable of solving a majority of scenarios for instances with
up to 500 vertices and 625 arcs. Moreover, our results indi-
cate that the best algorithm depends on the number of allowed
hops. For small hop values, algorithms based on position vari-
ables are clearly superior, whereas for large hop values the
algorithm based on Dantzig-Fulkerson-Johnson formulation
is the most efficient.
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