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a b s t r a c t 

High school timetabling problems consist in building periodic timetables for class-teacher meetings con- 

sidering compulsory and non-compulsory requirements. This family of problems has been widely studied 

since the 1950s, mostly via mixed-integer programming and metaheuristic techniques. However, the effi- 

cient search of optimal or near-optimal solutions is still a challenge for many problems of practical size. 

In this paper, we investigate mixed-integer programming formulations and a parallel metaheuristic based 

algorithm for solving high school timetabling problems with compactness and balancing requirements. 

We propose two pattern-based formulations and a solution algorithm that simultaneously exploits col- 

umn generation and a team of metaheuristics to build and improve solutions. Extensive computational 

experiments conducted with real-world instances demonstrate that our formulations are competitive with 

the best existing high school timetabling formulations, while our parallel algorithm presents superior per- 

formance to alternative methods available in the literature. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

Educational timetabling problems consist in assigning meetings

etween teachers (or exams) and students, considering a list of dif-

erent hard (mandatory) or soft (non-mandatory) requirements. A

imetable that satisfies all hard requirements is said to be feasible,

nd a timetable that is feasible and also has a minimum number

f violated soft requirements is said to be optimal. 

The automated design of educational timetables started in the

ate 1950s, with methods that tried to encode manual proce-

ures. Junginger (1986) presents a review of the first papers on

imetabling problems, showing that simple heuristics were the

ost common solution methods. The article also reports on early

omputer programs that had been developed using exact meth-

ds ( Gotlieb, 1963 ). However, as expected, they were able to ad-

ress only small instances of simplified problems. Since then, the

imetabling literature has been widely extended. Current research

an be categorized around three main educational timetabling
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ariants: university course timetabling ( Lewis, 2008 ), examination

imetabling ( Qu, Burke, McCollum, Merlot, & Lee, 2009 ) and high

chool timetabling ( De Werra, 1985; Pillay, 2014 ). 

In this paper, we address the high school timetabling prob-

em (HSTP). In its most basic version, which is NP-complete ( Even,

tai, & Shamir, 1975 ), the HSTP requires that schedules contain no

lashes and that no teacher is assigned outside of his working

ours. Here, we consider an HSTP variant with additional require-

ents such as: enforcing double lessons for some classes’ subjects

two consecutive lessons between a teacher and a class within the

ame day), avoiding idle periods (a free period between busy pe-

iods within the same day in teachers’ schedules), and prioritiz-

ng teachers’ schedules containing a minimum number of working

ays. These latter requirements are common in situations where

 teacher works on multiple schools. An ideal schedule is the one

n which a teacher works the minimum number of days to meet

is/her teaching requirements. Any additional working day above

his minimum amount is called extra working days and should be

alanced among the teachers. 

Traditional compact mixed-integer programming (MIP) models 

 Dorneles, de Araújo, & Buriol, 2014; Kristiansen, Sørensen, & Stid-

en, 2015; Sørensen & Dahms, 2014 ) for high school timetabling

roblems are known to have weak linear programming relaxations.
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1 Available in http://labic.ic.uff.br/Instance/ 
2 Available in http://www.gpea.uem.br/benchmark.html 
3 Available in http://www.deapt.upatras.gr/cso _ timetabling/school-timetabling. 

html 
4 Available in https://www.utwente.nl/ctit/hstt/ 
Stronger MIP formulations have been proposed ( Dorneles,

de Araújo, & Buriol, 2017; Fonseca, Santos, Carrano, & Stidsen,

2017 ). However, these formulations are still ineffective when

implemented to solve medium and large size instances using cur-

rent black-box solvers. Given these limitations, many researchers

have focused on combining heuristic algorithms and relaxation

methods to obtain high-performance hybrid approaches with some

information on the quality of the schedules. On the one hand,

research on heuristic algorithms aims to compute high-quality

solutions with reduced computational effort. On the other hand,

the research on relaxation methods aims to compute tight lower

bounds on the optimal solutions. 

The quality of the lower bounds obtained by compact formu-

lations can sometimes be improved by solving the linear relax-

ation of extended MIP formulations via column generation. Indeed,

some extended formulations proposed to HSTPs have shown strong

lower bounds ( Dorneles et al., 2017; Papoutsis, Valouxis, & Housos,

2003; Santos, Uchoa, Ochi, & Maculan, 2012 ). Simultaneously, re-

cent heuristic approaches ( Saviniec & Constantino, 2017; Saviniec,

Santos, & Costa, 2018; Skoullis, Tassopoulos, & Beligiannis, 2017 )

have been shown to provide good quality solutions. Nevertheless,

even with these recent advances, optimality gaps for medium and

large size available instances are still not closed and motivate fur-

ther research in both the development of good lower and upper

bounds. 

In this paper, we propose two new MIP formulations for the ad-

dressed HSTP variant. The first formulation has a relatively small

number of variables when applied to realistic instances. This for-

mulation is strengthened using Fenchel cuts ( Boyd, 1994a; 1994b )

and solved with a black-box solver. The second formulation has an

enormous number of variables, even for small-size problems, and

we therefore, resort to column generation to solve its linear relax-

ation. 

We also propose a cooperative parallel solution algorithm. The

method uses a team of metaheuristics to construct and improve

solutions. The solution algorithm also incorporates new agents

based on the previously mentioned column generation. These

agents use partial/fractional solutions obtained by the column gen-

eration to (i) obtain lower bounds for the problem and (ii) ex-

tend them to complete solutions using an original method that re-

lies on a fix-and-optimize heuristic ( Pochet & Wolsey, 2006 ) with

an inbuilt repair procedure based on proximity search ( Fischetti &

Monaci, 2014 ). 

To assess the proposed approaches, we conduct a thorough

computational study with instances of the HSTP variant of in-

terest. The methods are also adapted and tested on two related

versions of the problem. The remainder of this paper is orga-

nized as follows. Section 2 presents a literature review on tech-

niques for high school timetabling. Section 3 formally defines the

problem under study. Section 4 is dedicated to the presentation

of the proposed MIP models, while Section 5 details our solu-

tion algorithm. Section 6 provides the computational experiments

and analysis, and Section 7 presents final remarks and sugges-

tions for future research. Two appendices complete this article:

Appendix A presents an additional MIP model ( Saviniec et al.,

2018 ) while Appendix B provides details on stand-alone meta-

heuristic methods for the problem. Both the additional model

and stand-alone heuristics are employed by the proposed parallel

algorithm. 

2. Techniques for HSTP 

Since the first studies in the late 1950s, the scientific literature

has reported numerous papers dealing with solution techniques for

high school timetabling problems. In this section, we review the

most successful of these approaches. 
Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a

for high school timetabling problems, European Journal of Operational 
Up to the 20 0 0s, the high school timetabling research had

een mostly based on independent case studies, making it diffi-

ult to compare different solution methods. The first high school

imetabling dataset to be widely available appeared in the early

0 0 0s. Souza (20 0 0) introduced a small set of instances from

razilian high schools, 1 which became a commonly used bench-

ark, being addressed later by both heuristics ( Dorneles et al.,

014; Santos, Ochi, & Souza, 2005; Saviniec & Constantino, 2017;

aviniec et al., 2018; Souza, Maculan, & Ochi, 2004 ) and mixed-

nteger programming techniques ( Dorneles et al., 2014; 2017; San-

os et al., 2012 ). This dataset was extended with new real cases 2 

roposed by Saviniec and Constantino (2017) . The leading heuristic

ethods for solving this new problem are parallel metaheuristic-

ased algorithms ( Saviniec et al., 2018 ). 

A second high school timetabling dataset appeared in the

ate 20 0 0s. Beligiannis, Moschopoulos, Kaperonis, and Likothanas-

is (2008) introduced a set of real-case instances from Greek

igh schools 3 that also became the subject of several studies

 Beligiannis, Moschopoulos, & Likothanassis, 2009; Skoullis et al.,

017; Tassopoulos & Beligiannis, 2012; Zhang, Liu, M’Hallah, & Le-

ng, 2010 ). The leading heuristic method reported for this dataset

s a Cat Swarm Optimization based algorithm ( Skoullis et al., 2017 ).

During the 7th International Conference on the Practice and

heory of Automated Timetabling (PATAT, 2008), the timetabling

ommunity proposed an XML-based format to represent differ-

nt high school timetabling problems and create a unified set of

enchmark instances ( Post et al., 2012 ). This format, called XHSTT

 Post et al., 2014 ), established rules to model the most common

igh school timetabling requirements found around the world. The

HSTT format allows the description of generalized high school

imetabling problems (GHSTP). After its creation, new instances

rom different countries have been added to the XHSTT reposi-

ory, 4 including some of those proposed by Souza (20 0 0) . Such in-

tances were used in the Third International Timetabling Competi-

ion (ITC-2011) devoted to HSTPs. The method with better perfor-

ance for these instances is the heuristic solver GOAL ( Fonseca,

antos, Toffolo, Brito, & Souza, 2016 ), which won the ITC-2011.

n updated version of GOAL is described in Fonseca, Santos, and

arrano (2016) . 

Regarding the use of mixed-integer programming techniques,

ifferent com pact formulations have been proposed to HSTPs ( Al-

akoob & Sherali, 2015; Dorneles et al., 2014; Kristiansen et al.,

015; Sørensen & Dahms, 2014; Santos et al., 2012 ). However, all

f these formulations have shown weak linear relaxations. The

trongest formulation for high school timetabling is based on a

ulti-commodity flow problem, first proposed for problems of

razilian high schools ( Dorneles et al., 2017 ) and later adapted to

olve GHSTP ( Fonseca et al., 2017 ). Extended formulations solved

y column generation have also been proposed. Santos et al.

2012) and Dorneles et al. (2017) proposed different formulations

or the Brazilian case, which showed similar results regarding the

uality of their lower bounds. Finally, a column generation lower

ounding procedure was also proposed in Al-Yakoob and Sherali

2015) , for instances based on Kuwaiti high schools timetabling

roblems. 

As mentioned before, the literature has reported many other

ase studies dealing with solution techniques for high school

imetabling problems. For a more detailed review of these meth-

ds, we refer the interested reader to Pillay (2014) . 
l., Pattern-based models and a cooperative parallel metaheuristic 
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Fig. 1. Example of high school timetabling data and solution. 
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. Problem definition 

We consider the high school timetabling problem studied in

aviniec et al. (2018) , which originated in the context of Brazil-

an public high schools. The problem structure is represented in

ig. 1 . The school has a set of classes C and a set of teachers T .

lasses are disjoint groups of students enrolled in the same list

f subjects. Classes should have no free periods during the week.

ach class’ subject has a number of weekly lessons that are taught

y a preassigned teacher. The set of all classes’ subjects is called

Courses” ( R ) and each class’ subject is called “a course”. Teachers

ay be unavailable in some periods/days. Given these input data,

he goal is to obtain a weekly timetable specifying the schedule for

ll courses in a particular shift (morning, afternoon, or evening). A

imetable is constructed for each independent shift, and it usually

preads over the set of weekdays D (Monday to Friday) with (usu-

lly) five periods each. We define H as the set of periods per day

nd refer to periods as a set of timeslots ( d , h ) ∈ D × H . 

The timetabling process must fulfill the following hard require-

ents: 

1. Meeting of weekly lessons : the lessons of each course r ∈ R

must be assigned. 

2. No clashes in classes’ schedules : each class c ∈ C must attend

exactly one lesson per period. 

3. No clashes in teachers’ schedules : each teacher t ∈ T must

teach at most one lesson per period. 

4. No assignment of teachers in their unavailable periods : teach-

ers must not be assigned to periods in which they are un-
available. m  

Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a

for high school timetabling problems, European Journal of Operational 
The following soft requirements are also considered: 

5. No daily workload violation for courses : for each course r ∈ R ,

there is a soft limit ˜ δr on the amount of lessons per day to

each given class. 

6. No gaps in courses’ schedules : gaps in courses’ schedules

should be avoided. A gap is a period splitting the daily

meetings of a course to a given class into non-consecutive

lessons. 

7. Meeting of double lessons for courses : for each course r ∈ R ,

there is a specified minimum number of consecutive double

lessons ˜ πr that should be met. 

8. No idle periods in teachers’ schedules : teachers should not

have free periods between busy periods within the same

day. For the purpose of this requirement, unavailable peri-

ods are considered as busy periods. Therefore, they are not

computed as idle periods. 

9. Minimizing the number of working days for teachers : teachers

should be scheduled to come to school the minimum possi-

ble number of days. 

10. Balancing on teachers’ extra working days : the extra working

days should be balanced among teachers. The number of ex-

tra working days for a teacher t ∈ T is the difference between

the number of worked days and an estimated lower bound˜ d t , defined later in Table 1 . 

. Mixed integer programming models 

This section presents our two models for the problem. Both

odels are extensive formulations as they rely on teachers/classes
l., Pattern-based models and a cooperative parallel metaheuristic 

Research, https://doi.org/10.1016/j.ejor.2019.08.001 
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Table 1 

Input parameters of a high school timetabling instance. 

Notation Definition 

Sets 

C The set of classes. 

T The set of teachers. 

D The set of weekdays. 

H The set of periods per day. 

H td ⊆ H The subset of periods in day d ∈ D for which teacher t ∈ T is available. 

R The set of courses, as defined in Section 3 . 

R c ⊆ R The subset of curses associated to a class c ∈ C . 
R t ⊆ R The subset of courses associated to a teacher t ∈ T . 

Parameters ˜ θr ∈ N The number of weekly lessons for a course r ∈ R . ˜ δr ∈ N The daily limit for the number of lessons of a course r ∈ R . ˜ πr ∈ N the desired minimum number of double lessons for a course r ∈ R . 
˜ d t = 

⌈ ∑ 

r∈ R t ̃
 θr 

| H| 
⌉ 

A lower bound on the minimum number of days for which a teacher t ∈ T can be assigned and still meet his/her teaching requirements. 

Table 2 

Additional notation and decision variables used in formulation EF1. 

Notation Definition 

Sets 

L The set of assignment layouts that a course r (or teacher t ) can follow in a day. 

Parameters ˜ μlh ∈ { 0 , 1 } Indicates whether a layout l ∈ L has an assignment at period h ∈ H . ˜ a l ∈ N The number of assignments in a layout l . 

˜ e rl ∈ N The number of lessons that exceed the daily limit ̃  δr in a layout l for a course r . ˜ h l ∈ N The number of gaps in a layout l for courses. ˜ ω l ∈ N The number of consecutive double lessons in a layout l for courses. ˜ φl ∈ { 0 , 1 } Indicates whether the number of assignments in a layout l is greater than zero. ˜ i tdl ∈ N The number of idle periods in a layout l for a teacher t in a day d . 

Decision variables 

x rdl ∈ {0, 1} Indicates whether a course r follows a layout l in a day d . 

y tdl ∈ {0, 1} Indicates whether a teacher t follows a layout l in a day d . 

Auxiliary variables ̂ πr ∈ N The number of unmet weekly double lessons for a course r . ̂ β ∈ N The largest value among all teachers’ extra working days. 
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meeting patterns. Extensive formulations have been used for

timetabling problems, for example, in Papoutsis et al. (2003) ,

Santos et al. (2012) , and Dorneles et al. (2017) . Different from the

strategy used in these papers, we propose a type of pattern with

limited information: teachers patterns only indicate if a teacher

is teaching or not in a given period (and relegate the decision

on which class they are teaching to the master problem) while

courses patterns only indicate if a given course is being taught or

not in a given period (and relegate the decision on the class to

which this course is being taught to the master problem). 

We call the limited-information patterns ‘layouts’. Our first ex-

tensive formulation, EF1, exploits the fact that the cardinality of

the sets of layouts is much smaller than the cardinality of tra-

ditional (full-information) patterns. The second formulation, EF2,

considers a more traditional approach with weekly layouts indicat-

ing the full schedule of a teacher. Both models and solution strate-

gies are discussed in the remainder of this section, using the nota-

tion in Table 1 . 

4.1. Extended formulation 1 

The first model (EF1) uses the idea of assignment layouts for

the daily schedules of teachers and courses. A daily assignment lay-

out is defined as a binary vector of size | H | in which the h th posi-

tion is associated with the h th period of the day. For a teacher, a

bit value of “1 ” indicates that the teacher is assigned at that period,

while for a course it indicates that there is one lesson associated

with that course at that period. 
Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a

for high school timetabling problems, European Journal of Operational 
The number of all possible daily layouts for a course or teacher

disregarding unavailable periods) is given by 2 | H | . For | H| = 5 , a

eaching layout ‘0 0 0 0 0’ for a given day indicates that the associ-

ted teacher has that day off while a layout ‘00111’ indicates that

he teacher has lessons assigned to him/her in the last three teach-

ng periods of the day. This definition of “layouts” is different from

he one used in most of the literature which usually explicitly cod-

fy which class the teacher should meet at each timeslot. Here,

or teacher layouts, there is only the definition of the presence or

bsence of the considered teacher in a timeslot. Analogously, for

ourse layouts, a layout ‘110 0 0’ indicates that a double lesson of

hat subject is taking place in the first two periods of the day while

 layout ‘10100’ represents an undesired gap between two lessons

f the same course. 

Table 2 presents the data of the HSTP in an appropriate for-

at and also lists the two sets of binary decision variables, x rdl and

 tdl . These binary variables indicate whether a course r ∈ R ( x rdl ) or

eacher t ∈ T ( y tdl ) follows an assignment layout l ∈ { 0 , 1 , . . . , 2 | H| −
 } on day d ∈ D . Model EF1 can thus be written as: 

Minimize 
∑ 

r∈ R 

∑ 

d∈ D 

∑ 

l∈ L 
(α5 ̃  e rl + α6 ̃

 h l ) x rdl + α7 

∑ 

r∈ R 
̂ πr 

+ 

∑ 

t∈ T 

∑ 

d∈ D 

∑ 

l∈ L 
(α8 ̃

 i tdl + α9 ̃
 φl ) y tdl + α10 ̂

 β (1)

ubject to: 

 

d∈ D 

∑ 

l∈ L 
˜ a l x rdl = ̃

 θr ∀ r ∈ R (2)
l., Pattern-based models and a cooperative parallel metaheuristic 

Research, https://doi.org/10.1016/j.ejor.2019.08.001 
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Table 3 

Notation used to define Fenchel cuts to formulation EF1. 

Notation Definition 

Sets 

K td = { 1 , . . . , | H td |} The set of all possible number of lessons for a teacher t in a day d . 

Q rd = { 1 , . . . , min {| H td | , ̃  θr }} The set of all possible number of lessons for a course r in a day d . In this definition, t is the teacher associated with course r . 

A k ⊆ L The subset of layouts l ∈ L which have exactly k bits at value 1, for k ∈ { 1 , . . . , | H|} . 
Additional variables 

w tdk ∈ { 0 , 1 } Indicates whether a teacher t has exactly k lessons in a day d . 

v rdk ∈ { 0 , 1 } Indicates whether a course r has exactly k lessons in a day d . 

∑
r

∑

∑
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∑
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∑
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∈ R c 

∑ 

l∈ L 
˜ μlh x rdl = 1 ∀ c ∈ C; d ∈ D ; h ∈ H (3) 

 

l∈ L 
x rdl = 1 ∀ r ∈ R ; d ∈ D (4) 

 

l∈ L 
y tdl = 1 ∀ t ∈ T ; d ∈ D (5) 

̂ r ≥ ˜ πr −
∑ 

d∈ D 

∑ 

l∈ L 
˜ ω l x rdl ∀ r ∈ R (6) 

̂ ≥
∑ 

d∈ D 

∑ 

l∈ L 

˜ φl y tdl − ˜ d t ∀ t ∈ T (7) 

 

l∈ L 
˜ μlh y tdl = 

∑ 

r∈ R t 

∑ 

l∈ L 
˜ μlh x rdl ∀ t ∈ T ; d ∈ D ; h ∈ H (8) 

̂ r ≥ 0 ∀ r ∈ R (9) 

̂ ≥ 0 (10) 

 rdl ∈ { 0 , 1 } ∀ r ∈ R ; d ∈ D ; l ∈ L (11) 

 tdl ∈ { 0 , 1 } ∀ t ∈ T ; d ∈ D ; l ∈ L (12) 

Objective function (1) minimizes violations of soft requirements

 to 10 , in which αi is a penalty parameter associated with the rel-

tive importance of the i th requirement. Note that for requirement

0 , we use a min–max approach where the objective is to mini-

ize the ‘extra busy days’ of the teacher with maximum value of

his parameter. This choice is in accord with what is done in previ-

us papers but has the issue of being blind to the load of teachers

ther than the most loaded one (in terms of busy days). Alternative

odeling could penalize the total sum (over all teachers) of extra

ays, either linearly or quadratically. In the experiments we used

he objective function as shown in (1) and (7) . Constraints (2) en-

ure that the weekly lessons of all courses are scheduled. Con-

traints (3) avoid clashes in classes’ schedules. Constraints (4) and

5) ensure that a single layout is assigned to each course and each 

eacher on a given day, respectively. Constraints (6) and (7) link

he auxiliary variables to the decision variables in order to quan-

ify violations of soft requirements 7 and 10 : constraints (6) com-

ute the number of unmet double lessons for each course while

onstraints (7) capture the largest value among all teachers’ extra

orking days. Finally, the linking constraints (8) ensure that the

aily schedules of teachers match their courses’ schedules. 

To avoid assigning teachers to their unavailable periods, we pre-

rocess the associated variables and forbid layouts which contain
Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a
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nfeasible assignments. This task can be accomplished by setting

he following variables to zero: 

 tdl = 0 ∀ t ∈ T ; d ∈ D ; l ∈ L ; h ∈ H \ H td ; ˜ μlh > 0 (13) 

 rdl = 0 ∀ t ∈ T ; r ∈ R t ; d ∈ D ; l ∈ L ; h ∈ H \ H td ; ˜ μlh > 0 

(14) 

Program (1) –(12) is also augmented with the additional valid

uts (15) , which specify that a teacher cannot work less than the

inimum necessary number of days ˜ d t ( Souza, 20 0 0 ). 
 

d∈ D 

∑ 

l∈ L 

˜ φl y tdl ≥ ˜ d t ∀ t ∈ T (15) 

We note that | H | is a small constant for some high school

imetabling problems of practical size (e.g., for the case of Brazil-

an institutions it is common to have | H| = 5 ). This fact, associated

ith the new layout patterns with reduced cardinality, keeps the

umber of variables of EF1 reasonably low. This allows for black-

ox MIP solvers to be used for obtaining solutions. In order to

urther increase the efficiency of the methods, we strengthen EF1

ith valid inequalities, as described in the following. 

.1.1. Cutting planes generation for EF1 

In this section, we describe cuts that can be added to the root

ode of program (1) –(12) to strengthen its linear relaxation. The

uts are generated by using Fenchel enumeration cutting planes

echnique ( Boyd, 1994a; 1994b ). The idea is adapted from Santos

t al. (2012) , which employed these cuts to a different formulation

f the HSTP problem. In Santos et al. (2012) , the cuts are used to

trengthen a column generation procedure instead of an explicitly

enerated model. 

Let us consider the notation defined in Table 3 . We augment

ormulation EF1 by introducing auxiliary binary variables w tdk and

 rdk . These new variables are linked to the original ones by means

f constraints: 
 

∈ A k 
y tdl = w tdk ∀ t ∈ T ; d ∈ D ; k ∈ K td (16) 

 

∈ A k 
x rdl = v rdk ∀ r ∈ R ; d ∈ D ; k ∈ Q rd (17) 

Now consider each of the following valid polyhedra: 

• Polyhedron Πt (for lessons of a teacher t ): 

 

d∈ D 

∑ 

k ∈ K td 

kw tdk = 

∑ 

r∈ R t 

˜ θr (18) 

∑ 

 ∈ K td 

w tdk ≤ 1 ∀ d ∈ D (19) 

 tdk ∈ { 0 , 1 } ∀ d ∈ D ; k ∈ K td (20) 
l., Pattern-based models and a cooperative parallel metaheuristic 
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Table 4 

Notation and decision variables used in formulation EF2. 

Notation Definition 

Sets 

S t The set of all possible weekly schedules that a teacher t ∈ T can follow. 

T c ⊆ T The set of teachers that teach to class c ∈ C . 

Parameters 

f ti The cost associated with violations of requirements 5 to 9 in the i th weekly schedule of a teacher t . 

ρcdh 
ti 

∈ { 0 , 1 } Indicates whether a teacher t teaches class c in a schedule i ∈ S t at period h of a day d . ˜ φti ∈ N The number of working days for a teacher t in a schedule i ∈ S t . 

Decision variables 

λti ∈ {0, 1} Indicates whether a teacher t follows a weekly schedule i ∈ S t . 

Auxiliary variables ̂ β ∈ N The largest value among all teachers’ extra working days. 
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Constraints (18) ensure that the weekly workload of teacher t is

met, and constraints (19) impose that at most one variable w is

active for each day. 

• Polyhedron Πr (for lessons of a course r ): 

∑ 

d∈ D 

∑ 

k ∈ Q rd 

k v rdk = ̃

 θr (21)

∑ 

k ∈ Q rd 

v rdk ≤ 1 ∀ d ∈ D (22)

v rdk ∈ { 0 , 1 } ∀ d ∈ D ; k ∈ Q rd (23)

Constraints (21) ensure that the correct weekly workload of course

r is met, and constraints (22) impose that at most one variable v is
active for each day. 

Let w be the fractional values of variables w in the optimal

solution of the linear program of augmented formulation EF1. By

enumerating all integer feasible solutions ẘ ∈ Πt , we can easily

check if there is an hyperplane separating w from the convex hull

defined by the feasible integer points ẘ ∈ Πt . This is done by solv-

ing the following oracle linear program O t : 

Maximize z t = 

∑ 

d∈ D 

∑ 

k ∈ K td 

w tdk a tdk (24)

Subject to: 

∑ 

d∈ D 

∑ 

k ∈ K td 

ẘ tdk a tdk ≤ 1 ∀ ẘ ∈ Πt (25)

a tdk ≥ 0 ∀ d ∈ D ; k ∈ K td (26)

Let ( z ∗t , a 
∗
tdk 

) be the optimal solution of O t . If z 
∗
t > 1 , then point

w lies outside of Πt and ∑ 

d∈ D 

∑ 

k ∈ K td 

a ∗tdk w tdk ≤ 1 (27)

is a valid inequality that is violated by the current fractional so-

lution. The exact same idea can be used to obtain violated valid

inequalities associated with variables v rdk . 

The described inequalities are iteratively identified and inserted

into program (1) –(12) at the root node. At each iteration, we solve

the linear program of EF1 and call the oracle problems for each

teacher and each course. Any violated inequality is inserted in the

program. If no new violated inequality is found and the solution is

still fractional, then we proceed to branch. 
Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a
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.2. Extended formulation 2 

This section presents the second extended formulation, denoted

y EF2. The variables of EF2 represent complete weekly schedules

f teachers. A weekly schedule for a teacher t̆ is any assignment

f binary values to variables y t̆ dl and x rdl (for all r ∈ R t̆ ) in model

F1, that satisfies constraints (2), (4) –(6), (8) and (13) –(15) . Note

hat contrary to EF1, EF2 has columns containing full schedule in-

ormation. We define S t as the set of all feasible weekly schedules

or a teacher t ∈ T . A timetable can thus be represented by a set

f binary variables λti , which indicate whether each teacher t ∈ T

ollows a weekly schedule i ∈ S t . 

Considering the additional notation defined in Table 4 , the

ixed-integer program of EF2 can be written as: 

Minimize 
∑ 

t∈ T 

∑ 

i ∈ S t 
f ti λti + α10 ̂

 β (28)

ubject to: 

(ξ 1 
t ) 

∑ 

i ∈ S t 
λti = 1 ∀ t ∈ T (29)

(ξ 2 
cdh ) 

∑ 

t∈ T c 

∑ 

i ∈ S t 
ρcdh 

ti λti = 1 ∀ c ∈ C; d ∈ D ; h ∈ H (30)

(ξ 3 
t ) 

̂ β −
∑ 

i ∈ S t 

˜ φti λti ≥ −˜ d t ∀ t ∈ T (31)

̂ ≥ 0 (32)

ti ∈ { 0 , 1 } ∀ t ∈ T ; i ∈ S t (33)

Objective function (28) minimizes the cost of violating re-

uirements 5 to 9 in selected weekly teacher schedules, plus the

ost associated with soft requirement 10 . Constraints (29) en-

ure that a single weekly schedule is selected for each teacher.

onstraints (30) avoid clashes in classes’ schedules, and con-

traints (31) capture the maximum number of extra working days

mong all teachers. In this formulation, we also indicate the dual

ariables associated with constraints (29) –(31) when the integral-

ty constraints (33) are relaxed. 

For instances of practical size, formulation EF2 has a huge num-

er of variables which usually forbids the explicit generation of

he model within a black-box solver. Even if the explicit writing

f the problem is possible, it usually results in models that can-

ot be tackled by current solvers. However, as optimal solutions

re defined by small subsets of these variables, we can use column
l., Pattern-based models and a cooperative parallel metaheuristic 
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Table 5 

Notation used in the formulation of a subproblem Q t . 

Notation Definition 

Sets 

L The set of all possible assignment layouts that a teacher t or a course r ∈ R t can follow in a day. 

C t ⊆ C The set of classes taught by teacher t . 

R ct ⊆ R The set of courses belonging to class c which are taught by teacher t . 

Parameters ˜ μlh ∈ { 0 , 1 } Indicates whether a layout l ∈ L has an assignment at period h ∈ H . ˜ a l ∈ N The number of assignments in a layout l . 

˜ e rl ∈ N The number of lessons that exceed the daily limit ̃  δr in a layout l for a course r ∈ R t . ˜ h l ∈ N The number of gaps in a layout l for courses. ˜ ω l ∈ N The number of consecutive double lessons in a layout l for courses. ˜ φl ∈ { 0 , 1 } Indicates whether the number of assignments in a layout l is greater than zero. ˜ i tdl ∈ N The number of idle periods in a layout l for a teacher t in a day d . 

Decision variables 

y dl ∈ {0, 1} Indicates whether teacher t follows a layout l ∈ L in a day d . 

x rdl ∈ {0, 1} Indicates whether a course r ∈ R t follows a layout l ∈ L in a day d . 

Auxiliary variables ̂ πr ∈ N The number of unmet weekly double lessons for a course r . 
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eneration ( Desaulniers, Desrosiers, & Solomon, 2005 ) as an effec-

ive tool to solve the associated relaxed problem. The procedure is

escribed in the following. 

.2.1. Column generation approach for EF2 

The proposed column generation procedure defines the master

roblem as the linear relaxation of program (28) –(33) . The initial

aster program contains a reduced number of artificial columns,

o which we assign high costs. New columns are generated via | T |

ricing subproblems Q t , which select the most attractive weekly

chedules (columns) for teachers. At each iteration, each subprob-

em Q t is solved to obtain the column that has the smallest re-

uced cost, for teacher t , based on the dual values of the associ-

ted master program solution. The new columns are inserted into

he master program, which is solved again, and the process con-

inues until there is no column with a reduced negative cost. 

With the notation defined in Table 5 , a mixed-integer program

or the pricing subproblems Q t can be written as: 

Minimize c t = 

∑ 

r∈ R t 

∑ 

d∈ D 

∑ 

l∈ L 
(α5 ̃  e rl + α6 ̃

 h l ) x rdl + α7 

∑ 

r∈ R t 
̂ πr 

+ 

∑ 

d∈ D 

∑ 

l∈ L 
(α8 ̃

 i tdl + α9 ̃
 φl ) y dl 

− ξ 1 
t −

∑ 

c∈ C t 

∑ 

d∈ D 

∑ 

h ∈ H 
ξ 2 

cdh 

∑ 

r∈ R ct 

∑ 

l∈ L 
˜ μlh x rdl 

+ ξ 3 
t 

∑ 

d∈ D 

∑ 

l∈ L 

˜ φl y dl (34) 

ubject to: 

 

d∈ D 

∑ 

l∈ L 
˜ a l x rdl = ̃

 θr ∀ r ∈ R t (35) 

∑ 

∈ R ct 

∑ 

l∈ L 
˜ μlh x rdl = 1 ∀ c ∈ C t ; d ∈ D ; h ∈ H (36) 

 

l∈ L 
x rdl = 1 ∀ r ∈ R t ; d ∈ D (37) 

 

l∈ L 
y dl = 1 ∀ d ∈ D (38) 

 

∈ R t 

∑ 

l∈ L 
˜ μlh x rdl = 

∑ 

l∈ L 
˜ μlh y dl ∀ d ∈ D ; h ∈ H (39) 
a  
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̂ r ≥ ˜ πr −
∑ 

d∈ D 

∑ 

l∈ L 
˜ ω l x rdl ∀ r ∈ R t (40) 

 

d∈ D 

∑ 

l∈ L 

˜ φl y dl ≥ ˜ d t (41) 

̂ r ≥ 0 ∀ r ∈ R t (42) 

 rdl ∈ { 0 , 1 } ∀ r ∈ R t ; d ∈ D ; l ∈ L (43) 

 dl ∈ { 0 , 1 } ∀ d ∈ D ; l ∈ L (44) 

Objective function (34) is the reduced cost c t based on the

ual values ξ 1 
t , ξ

2 
cdh 

and ξ 3 
t associated with constraints (29) –(31)

f the master problem. Constraints (35) ensure that the weekly

essons of all courses belonging to teacher t are scheduled. Con-

traints (36) forbid clashes in classes’ schedules. These constraints

re necessary since the same teacher can be associated with

ifferent courses (e.g., a teacher who teaches mathematics and

hysics to the same class). Constraints (37) and (38) ensure that

 teacher t and their courses r ∈ R t follow only one layout per day.

he linking constraints (39) ensure that the daily schedules of a

eacher t match his/her courses’ schedules. Constraints (40) com-

ute the number of unmet double lessons for courses. Finally, con-

traints (41) are valid inequalities stating that a teacher t does not

ork less than the minimum necessary number of days ˜ d t . 

As before, to avoid violating teachers’ unavailable periods, we

reprocess the variables as follows. 

 dl = 0 ∀ d ∈ D ; l ∈ L ; h ∈ H \ H td ; ˜ μlh > 0 (45) 

 rdl = 0 ∀ r ∈ R t ; d ∈ D ; l ∈ L ; h ∈ H \ H td ; ˜ μlh > 0 (46) 

. A new parallel solution framework 

We propose a parallel metaheuristic for the HSTP defined in

ection 3 and modeled in Section 4 . The approach builds on the

iversification–intensification memory based (DIMB) framework pro- 

osed in Saviniec et al. (2018) for the same problem. The DIMB

elies on a number of metaheuristic agents that work on parallel

nd share information via buffers of solutions. The method also
l., Pattern-based models and a cooperative parallel metaheuristic 
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Fig. 2. Interactions among elements of the DIMB-CG framework. 

Table 6 

DIMB-CG main elements. 

Element Description 

Manager Coordinates the exchange of information between the 

intensifiers and the diversification and intensification 

memories. 

Intensifiers Improvement metaheuristic methods used to improve 

incumbent solutions. 

Diversifier Heuristic method used to find solutions with different 

structures. 

Memories Pools of feasible solutions. 

CG and CGCH Column generation procedure to generate lower bounds 

and associated repair heuristic. 
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uses intensification and diversification memories to improve the

efficiency of the search. 

The proposed diversification–intensification memory based with

column generation (DIMB-CG) extends the DIMB by incorporating

new agents based on the column generation proposed for model

EF2, described in Section 4.2.1 . The column generation based

agents are responsible for obtaining lower bounds for the prob-

lem. They also exploit the generated columns to build new feasi-

ble schedules that are used to diversify the search. Table 6 lists the

main elements of the framework while Fig. 2 shows their main in-

teractions. 

An overview of the whole algorithm is in the following. The

manager procedure implements policies to guide the search and

to update the diversification and intensification memories of solu-

tions. It works by sending solutions (selected from one of the two

memories) to intensifiers and receiving solutions from them, via

the two intermediate buffers (the input and output buffers). The

intensifiers explore the neighborhoods of the received solutions,

during a pre-specified amount of time. The best solutions found

during the search are sent back to the manager. 

The agent CG is an implementation of the column generation

approach on model EF2 described earlier. At each iteration of the

column generation, a lower bound on the objective function value

is obtained. Moreover, the dual values from the relaxed master

problem are sent to a constructive heuristic, CGCH. The CGCH uses

pricing subproblems created with this dual information to create

new columns and complete solutions. The columns are sent back

to the CG master problem while the complete solutions are sent

to the diversification memory. The columns in the master are also

sent to the diversifier agent through a pool of columns. This agent

generates additional solutions to the diversification memory. In the

following section, details on each of these agents are presented. 
Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a
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.1. Implementation details 

In this subsection, we detail the behavior of each of the agents

isted earlier. We focus on the added elements with respect to

aviniec et al. (2018) . 

.1.1. Manager and intensifiers 

Both the manager and intensifiers are implemented as in

aviniec et al. (2018) . The manager controls the exchange of so-

utions between the intensifiers and the (diversification and inten-

ification) memories. All intensifiers and both memories are initial-

zed with solutions generated by the diversifier and the CGCH. Two

vents can trigger actions from the manager: 

• An intensifier finds a new solution: this solution is compared

with a random solution from the intensification memory. If the

objective value of this new solution is better, it replaces the old

solution in the intensification memory. 
• An intensifier becomes idle: the manager feeds the intensifier

agent with a solution from the diversification memory (with

probability ρ) or from the intensification memory (with proba-

bility 1 − ρ). 

The intensifiers are copies of the Iterated Local Search algorithm

sed in Saviniec et al. (2018) . A brief explanation of the algorithm

as been added for convenience in Appendix B . 

.1.2. Column generation 

The column generation agent (CG) works as described in

ection 4.2.1 with the sole additional feature that the master prob-

em is updated not only with columns generated from its own

ricing problems Q t (implemented as the MIP described in (34) –

44) ) but also with columns generated by the CGCH. 

.1.3. Column generation constructive heuristic 

For the CGCH agent, we start with a fix-and-optimize construc-

ive approach: the solution is built by solving the pricing prob-

ems Q t sequentially. After a given pricing problem is solved and a

chedule is obtained for a given teacher t , this part of the solution

s fixed. Subsequent subproblems include additional constraints to

void any clashes with the already-fixed variables. Due to the my-

pic nature of the procedure, it frequently happens that the pricing

roblems become infeasible after enough variables are fixed. 

Whenever an infeasible subproblem is found, we run a repair

rocedure based on proximity search ( Fischetti & Monaci, 2014 ).

his is done by using a modified version of the model, where the

bjective function is to minimize the Hamming distance between
l., Pattern-based models and a cooperative parallel metaheuristic 
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Table 7 

Features of the instances proposed by Saviniec and Constantino (2017) . The 

columns present the number of classes (| C |), teachers (| T |), days (| D |), periods per 

day (| H |), the total number of weekly lessons ( 
∑ 

r∈ R ̃
 θr ) and the total number of 

required double lessons ( 
∑ 

r∈ R ̃  πr ) for each instance. 

ID Instance | C | | T | | D | | H | 
∑ 

r∈ R ̃
 θr 

∑ 

r∈ R ̃  πr 

1 CL-CEASD-2008-V-A 12 27 5 5 300 132 

2 CL-CEASD-2008-V-B 12 27 5 5 300 132 

3 CL-CECL-2011-M-A 13 31 5 5 325 144 

4 CL-CECL-2011-M-B 13 31 5 5 325 143 

5 CL-CECL-2011-N-A 9 28 5 5 225 107 

6 CL-CECL-2011-V-A 14 29 5 5 350 164 

7 CM-CECM-2011-M 20 51 5 5 500 234 

8 CM-CECM-2011-N 8 30 5 5 200 96 

9 CM-CECM-2011-V 13 34 5 5 325 142 

10 CM-CEDB-2010-N 5 17 5 5 125 60 

11 CM-CEUP-2008-V 16 35 5 5 400 192 

12 CM-CEUP-2011-M 16 38 5 5 400 192 

13 CM-CEUP-2011-N 3 15 5 5 75 36 

14 CM-CEUP-2011-V 16 34 5 5 400 169 

15 FA-EEF-2011-M 4 12 5 5 100 42 

16 JNS-CEDPII-2011-M 8 19 5 5 200 85 

17 JNS-CEDPII-2011-V 7 21 5 5 175 73 

18 JNS-CEJXXIII-2011-M 5 18 5 5 125 60 

19 JNS-CEJXXIII-2011-N 4 15 5 5 100 48 

20 JNS-CEJXXIII-2011-V 5 18 5 5 125 60 

21 MGA-CEDC-2011-M 19 37 5 5 475 210 

22 MGA-CEDC-2011-V 12 31 5 5 300 131 

23 MGA-CEGV-2011-M 31 62 5 5 775 352 

24 MGA-CEGV-2011-V 32 75 5 5 800 357 

25 MGA-CEJXXIII-2010-V 16 35 5 5 400 192 

26 MGA-CEVB-2011-M 10 21 5 5 250 108 

27 MGA-CEVB-2011-V 9 20 5 5 225 97 

28 NE-CESVP-2011-M-A 18 45 5 5 450 212 

29 NE-CESVP-2011-M-B 18 44 5 5 450 212 

30 NE-CESVP-2011-M-C 18 45 5 5 450 211 

31 NE-CESVP-2011-M-D 18 45 5 5 450 211 

32 NE-CESVP-2011-V-A 16 44 5 5 400 183 

33 NE-CESVP-2011-V-B 16 43 5 5 400 184 

34 NE-CESVP-2011-V-C 16 43 5 5 400 182 

Table 8 

Features of the instances proposed by Souza (20 0 0) . 

ID | C | | T | | D | | H | 
∑ 

r∈ R ̃
 θr 

∑ 

r∈ R ̃  πr 

1 3 8 5 5 75 21 

2 6 14 5 5 150 29 

3 8 16 5 5 200 4 

4 12 23 5 5 300 41 

5 13 31 5 5 325 71 

6 14 30 5 5 350 63 

7 20 33 5 5 500 84 
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I  
he new feasible solution and the current infeasible partial solu-

ion. We use the compact model CF1 described in Appendix A ,

hich relies on variables x rdh indicating if a course r is fulfilled in

eriod h of day d . Let J be the subset of variables x rdh in model CF1

hich are already fixed in the current partial solution, and J 0 ⊂ J

 J 1 ⊂ J ) be the subset of these variables that have values set to zero

one). Our repair model can be written as: 

inimize 
∑ 

x rdh ∈ J 0 
x rdh + 

∑ 

x rdh ∈ J 1 
(1 − x rdh ) (47) 

ubject to: 

(A. 2) –(A. 21) 

x rdh ∈ { 0 , 1 } ∀ r ∈ R ; d ∈ D ; h ∈ H (48) 

The objective function forces the problem to find the closest

easible solution in the neighborhood of the current partial solu-

ion (in terms of the Hamming distance). This strategy somehow

reserves the structure of the solution built so far. Also, due to the

trong relaxation grip of the model ( Fischetti & Monaci, 2014 ), this

orrection problem tends to be easily solved. 

.1.4. Diversifier 

The diversifier agent is responsible for feeding the diversifica-

ion memory with solutions constructed by combining columns

rom the pool of columns. At each iteration, a random column is

elected for each teacher and concatenated to form a possible in-

easible solution (with clashes in classes’ schedules). The new solu-

ion is repaired and improved by an iterated local search algorithm

see Appendix B ) during a pre-specified amount of time and sent

o the diversification memory. 

. Computational experiments 

In this section, we conduct several experiments to evaluate our

odels and the proposed parallel algorithm. Experiments concern-

ng the models are discussed in Section 6.1 , while those of the par-

llel algorithm are analyzed in Section 6.2 . In both cases, the ex-

eriments use the problem described in Section 3 and two close

ariants. The three considered testbeds are: 

• HSTP-A: in this variant, we test the proposed methods on prob-

lem described in Section 3 using the 34 instances proposed

by Saviniec and Constantino (2017) , which are described in

Table 7 . These instances come from 13 high schools located on

State of Paraná, which is in southern Brazil. To this variant, we

use the objective function penalty parameters ( α2 = α3 = α4 =
10 0 , 0 0 0 , α5 = 10 0 , α6 = 25 and α7 = α8 = α9 = α10 = 10 ) sug-

gested by Saviniec et al. (2018) , which prioritize courses’ pref-

erences over teachers’ preferences. This penalties parameters

were defined based on the priority given by the schools to each

requirement. On all schools, the priority given to each require-

ment used to be the same, as all schools were following the

same Paraná’s education rules. 
• HSTP-B: in this variant, we test the proposed methods on prob-

lem introduced by Souza (20 0 0) using the author’s instances,

which are described in Table 8 . The problem and the instances

come from the State of Minas Gerais, which is in northeastern

Brazil. In this problem, requirements 1 to 5 are considered to

be hard, requirements 7 to 9 are soft, and requirements 6 and

10 are ignored. As suggested in Souza et al. (2004) , we use the

following penalty parameters in the objective function: α2 =
α3 = α4 = 10 0 , 0 0 0 , α5 = 10 , 0 0 0 , α7 = 1 , α8 = 3 and α9 = 9 .

Although this problem comes from real world, the largest in-

stances are artificial, which makes difficult to draw conclusions

about algorithm’s performance. 
Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a
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• HSTP-C: in this variant, the goal is to test the methods over

a modified version of problem HSTP-B, which was proposed

in the Third International Timetabling Competition 2011. This

new problem is composed of all requirements of problem

HSTP-B with the inclusion of requirement 6 as a hard re-

quirement, which makes the problem harder to be solved by

heuristics. To this purpose, we used the instances described in

Table 7 , which provide real cases that are larger than those

introduced by Souza (20 0 0) , shown in Table 8 . The objec-

tive function penalty parameters are the same suggested in

Saviniec et al. (2018) : α2 = α3 = α4 = 10 0 , 0 0 0 , α5 = 10 , 0 0 0 ,

α6 = 50 0 0 , α7 = 1 , α8 = 3 and α9 = 9 . 

All implementations were coded in C++ and compiled with

NU Compiler Collection 4.4.7. Concert Technology Libraries from

BM CPLEX 12.6 are used to solve the mixed-integer programming
l., Pattern-based models and a cooperative parallel metaheuristic 
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Table 9 

The linear relaxation of formulations EF1 and EF2 compared to CF1 on problem HSTP-A. 

ID CF1 EF1 EF1-cuts EF2 

Time 

(seconds) 

LP Time 

(seconds) 

LP Improv. Time 

(seconds) 

LP Improv. Time 

(seconds) 

LB Improv. 

1 0.90 720 0.35 885 18.64 13.64 930 22.58 47.16 950 24.21 

2 0.85 720 0.32 885 18.64 10.37 930 22.58 47.89 950 24.21 

3 1.55 760 0.49 925 17.84 39.45 990 23.23 62.40 1010 24.75 

4 1.67 770 0.50 925 16.76 31.01 970 20.62 64.63 990 22.22 

5 0.90 623.34 0.30 788.34 20.93 23.01 791.67 21.26 35.82 870 28.35 

6 1.70 830 0.51 1075 22.79 48.33 1080 23.15 75.69 1080 23.15 

7 1.96 1275 0.55 1640 22.26 22.57 1680 24.11 118.60 1690 24.56 

8 0.27 707.06 0.16 864.38 18.20 1.28 910.77 22.37 22.19 930 23.97 

9 0.66 853.42 0.27 1065.42 19.90 3.91 1100 22.42 92.47 1100 22.42 

10 0.37 320 0.17 420 23.81 7.85 420 23.81 19.66 420 23.81 

11 1.32 1040 0.41 1377.50 24.50 14.48 1391.67 25.27 108.70 1400 25.71 

12 1.12 1043.67 0.36 1401.12 25.51 7.09 1447 27.87 88.33 1450 28.02 

13 0.03 310 0.04 392.50 21.02 0.12 410 24.39 3.38 417.15 25.69 

14 0.84 987.34 0.30 1193 17.24 7.98 1260 21.64 71.02 1270 22.26 

15 0.13 250 0.10 340 26.47 0.99 375 33.33 8.13 387 35.40 

16 0.48 509 0.20 606.67 16.10 12.45 626.67 18.78 27.70 640 20.47 

17 0.42 470 0.19 525 10.48 10.62 540 12.96 21.11 580 18.97 

18 0.38 325 0.17 425 23.53 7.66 445 26.97 19.87 455 28.57 

19 0.33 270 0.14 350 22.86 2.97 360 25.00 13.01 360 25.00 

20 0.37 306.67 0.17 422.50 27.42 5.88 446.67 31.34 20.35 470 34.75 

21 1.77 1120 0.54 1405 20.28 30.27 1450 22.76 97.66 1450 22.76 

22 0.61 754 0.23 1009.09 25.28 4.60 1029.29 26.75 51.53 1029.29 26.75 

23 5.11 1929.53 1.21 2478.34 22.14 46.72 2500 22.82 302.46 2505 22.97 

24 4.13 2062.53 0.98 2597.23 20.59 45.53 2680 23.04 208.42 2680 23.04 

25 1.16 969 0.42 1295 25.17 34.10 1305 25.75 72.36 1313.34 26.22 

26 0.58 620 0.25 740 16.22 6.71 740 16.22 49.56 750 17.33 

27 0.45 584 0.19 710 17.75 4.28 730 20.00 37.01 730 20.00 

28 1.71 1110 0.59 1440 22.92 66.74 1450 23.45 119.56 1570 29.30 

29 1.58 1110 0.57 1440 22.92 57.28 1450 23.45 106.92 1570 29.30 

30 1.65 1094 0.56 1430 23.50 32.52 1450 24.55 126.22 1590 31.19 

31 1.44 1090 0.51 1410 22.70 18.24 1420 23.24 94.32 1570 30.57 

32 1.50 1010 0.55 1280 21.09 34.39 1295 22.01 72.45 1390 27.34 

33 1.32 1000 0.51 1275 21.57 35.88 1300 23.08 75.38 1410 29.08 

34 1.19 1016 0.43 1271.67 20.11 33.65 1305 22.15 61.65 1390 26.91 

Avg.: 1.19 0.39 21.09 21.25 23.32 71.87 25.57 
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models. The experiments were performed on a computer Intel

Xeon E5-2680v2 (2.8 gigahertz) with two cores and 128 gigabytes

of RAM, running Red Hat Enterprise Linux 6.5 . 

6.1. Experiments with the proposed models 

In this section, the goal is to analyze the efficacy of the pro-

posed extended formulations and column generation procedure

(for EF2). We report the following experiments: 

• Section 6.1.1 : In order to empirically study the efficacy of the

proposed models in terms of the bounds they can provide, we

compare the linear relaxation of EF1, EF1-cuts (EF1 augmented

with Fenchel cuts), and EF2 with that of the compact formula-

tion CF1, from Saviniec et al. (2018) , on problem HSTP-A. 
• Section 6.1.2 : To understand the efficacy of the first formula-

tion when used within a MIP black-box approach, we compare

the performance of CPLEX when applied to EF1-cuts and CF1, in

terms of the quality of primal and dual bounds and the number

of instances with a proved optimal solution in a time limit of

three hours. 
• Section 6.1.3 : To evaluate the performance of the models to

a variant of the problem, the two proposed formulations are

adjusted to model problem HSTP-B. We compare their results

with results of formulations previously published for the same

problem. 
• Section 6.1.4 : To evaluate the performance of the models to an-

other variant of the problem, the two proposed formulations
are adjusted and applied to solve the problem HSTP-C. s  

Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a
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.1.1. The linear program of EF1 and EF2 compared to CF1 on 

roblem HSTP-A 

Table 9 compares the quality of the proposed formulations, EF1

nd EF2, with formulation CF1 on problem HSTP-A. Tests were run

ith CPLEX’s default settings. For each formulation, we present the

xecution time (Time) and the linear program objective function

LP). We also present the same metrics, for formulation EF1 with

he addition of the Fenchel cuts described in Section 4.1.1 (EF1-

uts), the best results are shown in bold font. The column (Improv.)

lso provides, for each proposed formulation, the percentage im-

rovement between its LP objective value and that of formulation

F1, which is calculated as improv ement = 100 · (LP − LP CF 1 ) ÷ LP . 

The figures in Table 9 show that EF1 runs faster and obtains

inear bounds 21.09 % better than CF1, on average. The addi-

ion of Fenchel cuts can slightly improve linear relaxation bounds

ith the price of a considerable increase in computational time.

n the case of formulation EF2, the improvements obtained are

ven better than the ones obtained by EF1 and EF1-cuts. How-

ver, it required about three times more computational time than

F1-cuts. 

.1.2. The integer program of EF1-cuts compared to CF1 on problem 

STP-A 

In this section, we compare both primal and dual bounds ob-

ained by CPLEX when using the proposed formulation EF1-cuts

nd the compact formulation CF1. Table 10 presents, for each for-

ulation, the execution time (Time), the best lower bound (LB),

he objective value of the best integer solution (UB), and the as-

ociated optimality gap ( Gap = 100 · (UB − LB ) ÷ UB ) on the tested
l., Pattern-based models and a cooperative parallel metaheuristic 
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Table 10 

The integer program of formulation EF1-cuts compared to CF1 on problem HSTP-A (TL = 3 hours). 

ID CF1 EF1-cuts 

Time (seconds) LB UB Gap Time (seconds) LB UB Gap 

1 TL 826.24 1290 35.95 TL 940 1040 9.62 

2 TL 814.61 1260 35.35 TL 941.43 950 0.90 

3 TL 839.17 1350 37.84 TL 1000 1040 3.85 

4 TL 842.50 1430 41.08 TL 990 1900 47.89 

5 TL 820 1020 19.61 1054.40 870 870 0.00 

6 TL 880.36 1540 42.83 TL 1080 1340 19.40 

7 TL 1647.82 2325 29.13 TL 1690 3525 52.06 

8 2258.93 950 950 0.00 77.37 950 950 0.00 

9 TL 1062.59 1430 25.69 83.30 1100 1100 0.00 

10 4466.99 420 420 0.00 91.28 420 420 0.00 

11 TL 1373.34 1885 27.14 323.13 1400 1400 0.00 

12 TL 1422.16 2010 29.25 422.49 1450 1450 0.00 

13 2.59 420 420 0.00 0.50 420 420 0.00 

14 TL 1227.25 1650 25.62 529.50 1270 1270 0.00 

15 1566.40 395 395 0.00 9.39 395 395 0.00 

16 TL 579.17 750 22.78 517.54 640 640 0.00 

17 TL 531.67 660 19.44 568.90 580 580 0.00 

18 TL 442.50 490 9.69 120.26 460 460 0.00 

19 TL 350 360 2.78 17.79 360 360 0.00 

20 TL 417.34 520 19.74 2076.64 470 470 0.00 

21 TL 1415 1990 28.89 5801.61 1450 1450 0.00 

22 TL 1018.75 1245 18.17 295.88 1035 1035 0.00 

23 TL 2458.45 5715 56.98 TL 2504.28 17790 85.92 

24 TL 2604.80 5115 49.08 TL 2680 16825 84.07 

25 TL 1301.67 1685 22.75 TL 1315 1320 0.38 

26 TL 724.29 940 22.95 532.73 750 750 0.00 

27 6105.45 730 730 0.00 204.87 730 730 0.00 

28 TL 1457 2250 35.24 TL 1565 13420 88.34 

29 TL 1313.58 2160 39.19 TL 1545 2040 24.26 

30 TL 1444.29 2165 33.29 TL 1560.84 3500 55.40 

31 TL 1425.38 2070 31.14 TL 1554.45 3480 55.33 

32 TL 1275.56 1830 30.30 TL 1360 2185 37.76 

33 TL 1273.17 1920 33.69 TL 1390 2755 49.55 

34 TL 1269.45 1920 33.88 TL 1380 2205 37.41 

Rank: 5 16 5 34 24 18 

Avg.: 25.28 19.18 

Table 11 

The lower bounds of formulation EF2 on problem HSTP-B. 

ID Optimal Time (seconds) NoC LB Gap 

1 202 14.66 371 202 0.00 

2 333 24.60 848 333 0.00 

3 423 22.54 904 423 0.00 

4 652 35.08 1364 652 0.00 

5 762 39.73 1677 762 0.00 

6 756 89.80 2025 756 0.00 

7 1017 82.39 2216 1017 0.00 
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lower bounds. 
nstances. In column Time, TL means that the time limit of three

ours was reached without proof of optimality. The best LB and

B found for each instance are shown in bold font. Finally, the last

ow (Rank) presents the number of instances in which optimality

as proved, or the best LB/UB were obtained. 

The results in Table 10 indicate that formulation EF1-cuts can

e used to obtain better bounds and prove more optimal solutions

han the compact formulation CF1. 

.1.3. Results of EF1-cuts and EF2 compared to leading models on 

roblem HSTP-B 

In this section, we report the results obtained with formulations

F1 and EF2 when they are adapted to deal with problem HSTP-B.

e use the instances shown in Table 8 , which have optimal so-

utions known. Table 11 shows that the column generation proce-

ure presented for EF2 is able to find optimal lower bounds for all
Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a
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nstances tested. The table presents the execution time (Time), the

umber of generated columns (NoC), and the lower bound (LB) ob-

ained for each instance. These results are competitive with Santos

t al. (2012) and Dorneles et al. (2017) , which reported the same

ower bounds with their column generation approaches. For these

ests, CPLEX was run with a single thread, and its remaining pa-

ameters were set to default. 

We also compare the performance of EF1-cuts with the com-

act formulation based on multi-commodity flow problems (CF-

CFP) by Dorneles et al. (2017) . Table 12 shows, for both for-

ulations, the best lower bounds obtained (LB), the best inte-

er solutions (UB), and their optimality gaps (Gap) with a time

imit of 2h (as used in Dorneles et al., 2017 ). For these instances,

e also report the linear programming objective functions for EF1

column LP) and EF1-cuts (LP cuts ), and the time needed to obtain

hem. 

Formulations EF1 and CF-MCFP presented the same linear pro-

ramming relaxation values shown in column LP. Formulation EF1-

uts also improved these values via the Fenchel cuts. Regarding the

nteger programs, our formulation only performed worse than CF-

CFP in the number of best integer solutions. It ranked four best

olutions against six of CF-MCFP. Our formulation also did not find

 feasible solution to instance 7 within the time limit of two hours.

n the other hand, EF1-Cuts provided the best lower bounds for all

nstances and proved the optimality of three instances while CF-

CFP proved the optimality only for two instances. We also ob-

erve that in instances 4 and 7, the Fenchel cuts led to optimal
l., Pattern-based models and a cooperative parallel metaheuristic 
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Table 12 

Formulation EF1-cuts compared to CF-MCFP on problem HSTP-B (TL = 2 hours). 

EF1 EF1-cuts CF-MCFP 

ID Time 

(seconds) 

LP Time 

(seconds) 

LP cuts LB UB Gap LB a UB Gap 

1 0.08 189 1.66 190 202 202 0.00 190.24 202 5.82 

2 0.67 333 18.84 333 333 333 0.00 333 333 0.00 

3 0.39 414 19.29 414 418 444 5.86 413.99 429 3.50 

4 2.08 643 83.92 652 652 652 0.00 652 652 0.00 

5 4.05 756 273.95 757 757.50 763 0.72 756.02 777 2.70 

6 6.06 738 375.48 750 750 935 19.79 739.52 804 8.02 

7 12.69 999 842.92 1017 1017 – – 1006.58 1645 38.81 

Rank: 7 4 3 2 6 2 

a Dorneles et al. (2017) did not report the lower bounds ( LB ) of their integer programs after two hours. We cal- 

culated these values by the formula LB = UB · (1 − Gap ÷ 100) , where Gap was reported to be the CPLEX’s optimality 

gap. 

Table 13 

Results of formulations EF1-cuts and EF2 on problem HSTP-C. 

EF1 EF1-cuts (TL = 3 hours) EF2 

ID Time (seconds) LP Time (seconds) LP cuts Time (seconds) LB UB Gap Time (seconds) NoC LB Gap 

1 0.37 682.50 7.50 689 1446.54 699 699 0.00 49.06 1828 699 0.00 

2 0.35 682.50 11.75 689 1689.78 699 699 0.00 49.83 1817 699 0.00 

3 0.54 727.50 11.70 735 3900.23 742 742 0.00 58.25 2114 742 0.00 

4 0.51 726.50 22.04 731 3977.16 734 734 0.00 59.99 2131 734 0.00 

5 0.35 627 39.46 627 729.99 631 631 0.00 32.32 1427 631 0.00 

6 0.56 771.50 24.53 772 2942.94 772 772 0.00 71.08 2282 772 0.00 

7 0.58 1197.50 14.15 1209 10799.32 1212 1212 0.00 95.15 3281 1212 0.00 

8 0.17 637.86 1.09 664.80 66.33 675 675 0.00 21.86 1293 669 0.89 

9 0.35 797.18 6.84 805.25 247.16 807 807 0.00 59.83 2200 806.25 0.09 

10 0.18 298 3.70 298 72.79 298 298 0.00 18.17 884 298 0.00 

11 0.45 942.19 9.01 948.50 1972.01 961 961 0.00 76.99 2908 959.87 0.12 

12 0.37 996.13 5.01 1014.74 498.25 1018 1018 0.00 82.87 2946 1014.74 0.32 

13 0.04 261.50 0.05 265 0.72 273 273 0.00 2.51 302 270.67 0.85 

14 0.36 911.23 8.33 930 761.33 933 933 0.00 48.35 2476 933 0.00 

15 Infeasible 

16 0.24 472.67 5.39 477 485.21 481 481 0.00 22.55 1196 481 0.00 

17 0.22 455.50 10.20 457 308.88 457 457 0.00 20.56 1078 457 0.00 

18 0.18 309.25 3.81 316 100.77 319 319 0.00 19.62 859 319 0.00 

19 0.15 251 3.09 254 14.75 254 254 0.00 15.60 738 254 0.00 

20 0.19 310.50 3.79 317 224.26 325 325 0.00 24.83 1034 325 0.00 

21 0.62 1036 13.41 1050 6163.85 1050 1050 0.00 73.70 2760 1050 0.00 

22 Infeasible 

23 1.51 1789.19 39.77 1812 TL 1813 2357 23.08 273.51 6107 1813 23.08 

24 1.03 1932.79 30.19 1983.50 TL 1988 2535 21.58 201.99 5832 1988 21.58 

25 0.47 904 27.97 909 343.97 912 912 0.00 56.54 2408 912 0.00 

26 0.29 570 8.94 570 245.98 570 570 0.00 37.02 1594 570 0.00 

27 0.21 549.75 4.55 552 140.12 552 552 0.00 27.67 1322 552 0.00 

28 0.63 1104 64.61 1105 TL 1122.13 1190 5.70 95.61 3067 1124 5.55 

29 0.68 1095 43.33 1096 TL 1112.94 1306 14.78 115.67 3136 1116 14.55 

30 0.61 1113 86.22 1114 TL 1131.40 1703 33.56 107.54 3154 1133 33.47 

31 0.56 1112 60.81 1113 2618.76 1127 1127 0.00 79.59 2966 1127 0.00 

32 0.57 999 53.11 999 TL 1010 1740 41.95 78.22 2658 1014 41.72 

33 0.54 999.50 51.71 1001 TL 1016 1081 6.01 67.91 2613 1018 5.83 

34 0.53 980 37.11 981 9355.78 1005 1005 0.00 73.85 2557 1005 0.00 

Rank: 27 27 

Avg.: 4.58 4.63 
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6.1.4. Results of EF1-cuts and EF2 on problem HSTP-C 

In this section, we report the results of formulations EF1-cuts

and EF2 adapted to solve the problem HSTP-C. For this problem,

we consider the instances of Table 7 . 

The results are shown in Table 13 . For this variant, instances

15 and 22 are infeasible. For the remaining instances, the table

compares the lower bounds of EF1-cuts and EF2. The columns la-

beled with (Gap) present, for each formulation, the gaps between

its lower bounds (LB) and the best integer solutions (UB) of EF1-

cuts. The best gaps are shown in bold font. For this problem, both

p

Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a
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ormulations ranked the same number of best lower bounds. How-

ver, formulation EF1-cuts performed slightly better than EF2 in

erms of the quality of obtained lower bounds. As an overall re-

ult, we could prove the optimality for 25 out of the 32 instances

hat are not infeasible. 

.2. Experiments with the proposed parallel algorithm 

In this section, we present two experiment sets to assess our

arallel algorithm DIMB-CG. 
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Table 14 

CG run-time speed-ups and percentage of additional 

columns generated when employing the heuristic 

CGCH. 

HSTP-A HSTP-B HSTP-C 

Avg. speed-up: 1.54 2.29 1.23 

Avg. PoAC: 12.05 −20.21 8.96 

Table 15 

Effectiveness of the fix-and-optimize and the 

proximity search strategies in constructing feasi- 

ble solutions. 

HSTP-A HSTP-B HSTP-C 

Avg. PoS1: 1.7 1.5 1.5 

Avg. PoPPS: 85.8 89.7 85.8 

Avg. PoS2: 100.0 100.0 99.5 

Table 16 

Quality of the CGCH solutions. 

HSTP-A HSTP-B HSTP-C 

Avg. opt. gap: 19.17 2.74 10.57 
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• Section 6.2.1 : The goal here is to test the efficacy of the new

column generation-based agent, we test the effect of inserting

the CGCH extra columns into the master program of the CG

procedure. We also analyze the behavior of the two strategies

used in our constructive heuristic CGCH and the quality of its

solutions. 
Table 17 

Results of the algorithm DIMB-CG compared to DIMB-19I1D-8

ID Best LB DIMB-CG (TL = 625 seconds) 

ToBS (seconds) Median Gap Bes

1 950 306.90 960 1.04 950

2 950 349.62 960 1.04 950

3 1010 204.64 1010 0.00 101

4 990 148.24 990 0.00 990

5 870 29.34 870 0.00 870

6 1080 220.62 1080 0.00 108

7 1690 455.17 1830 7.65 177

8 950 38.78 1045 9.09 980

9 1100 269.50 1160 5.17 113

10 420 8.42 420 0.00 420

11 1400 378.52 1520 7.89 147

12 1450 332.04 1580 8.23 150

13 420 46.25 420 0.00 420

14 1270 313.59 1340 5.22 129

15 395 11.92 395 0.00 395

16 640 77.04 640 0.00 640

17 580 147.30 580 0.00 580

18 460 6.45 460 0.00 460

19 360 4.29 360 0.00 360

20 470 8.45 470 0.00 470

21 1450 432.95 1520 4.61 148

22 1035 251.71 1075 3.72 104

23 2505 490.41 2740 8.58 267

24 2680 477.62 2920 8.22 284

25 1315 401.50 1380 4.71 134

26 750 284.05 770 2.60 750

27 730 249.81 740 1.35 730

28 1570 319.46 1600 1.88 159

29 1570 444.11 1600 1.88 158

30 1590 343.04 1620 1.85 161

31 1570 421.71 1620 3.09 160

32 1390 437.21 1420 2.11 141

33 1410 307.89 1450 2.76 144

34 1390 427.91 1430 2.80 142

Rank: 33 29 

Avg.: 2.81 
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• Section 6.2.2 : To analyze the overall performance of the method

proposed, we compare our algorithm DIMB-CG with the best

parallel algorithm proposed in Saviniec et al. (2018) . 

In all tests, the algorithm DIMB-CG was allowed to execute dur-

ng a time limit of 625 seconds, as in Saviniec et al. (2018) , and 25

ndependent trials were carried out for each instance. 

.2.1. Analysis of the heuristic CGCH 

In Table 14 , we analyze the CG run-time speed-ups, and the

ercentage of additional columns (PoAC) generated when the extra

olumns of the heuristic CGCH are also inserted into the master

rogram of the column generation (strategy denoted as CG+CGCH).

his table shows that the convergence of the CG procedure is ac-

elerated when the extra columns are also added to its master pro-

ram. We observe that large speed-ups of 1.54, 2.29 and 1.23 were

btained for problems HSTP-A, HSTP-B and HSTP-C, respectively,

ue to the use of the new agent. However, we cannot observe any

pparent relation between the number of extra columns generated

nd the speed-ups obtained. 

In Table 15 , we analyze the effectiveness of the fix-and-

ptimize and proximity search strategies used by our CGCH heuris-

ic in constructing feasible solutions. In the table, Avg. PoS1 is

he fix-and-optimize average percentage of success in construct-

ng feasible solutions (e.g., PoS1 = 1.7 means that the fix-and-

ptimize strategy generates feasible solutions in only 1.7 % of the

ases). In the second row, Avg. PoPPS shows the average percent-

ge of pricing problems that the fix-and-optimize strategy solves

ithout failing. Namely, before it reaches an infeasible pricing

roblem (e.g., PoPPS = 85.0 means that, on average, the fix-and-
-0.05 on problem HSTP-A. 

DIMB-19I1D-8-0.05 (TL = 625 seconds) 

t Gap Median Gap Best Gap 

 0.00 970 2.06 950 0.00 

 0.00 970 2.06 950 0.00 

0 0.00 1020 0.98 1010 0.00 

 0.00 1000 1.00 990 0.00 

 0.00 870 0.00 870 0.00 

0 0.00 1100 1.82 1080 0.00 

0 4.52 1880 10.11 1810 6.63 

 3.06 1030 7.77 980 3.06 

0 2.65 1170 5.98 1130 2.65 

 0.00 420 0.00 420 0.00 

0 4.76 1530 8.50 1450 3.45 

0 3.33 1600 9.38 1530 5.23 

 0.00 420 0.00 420 0.00 

0 1.55 1360 6.62 1300 2.31 

 0.00 395 0.00 395 0.00 

 0.00 650 1.54 640 0.00 

 0.00 590 1.69 580 0.00 

 0.00 460 0.00 460 0.00 

 0.00 360 0.00 360 0.00 

 0.00 470 0.00 470 0.00 

0 2.03 1550 6.45 1480 2.03 

5 0.96 1095 5.48 1055 1.90 

0 6.18 2790 10.22 2670 6.18 

0 5.63 2970 9.76 2860 6.29 

0 1.87 1400 6.07 1340 1.87 

 0.00 780 3.85 750 0.00 

 0.00 750 2.67 730 0.00 

0 1.26 1620 3.09 1590 1.26 

0 0.63 1620 3.09 1590 1.26 

0 1.24 1640 3.05 1600 0.63 

0 1.88 1640 4.27 1590 1.26 

0 1.42 1440 3.47 1410 1.42 

0 2.08 1460 3.42 1430 1.40 

0 2.11 1450 4.14 1410 1.42 

8 28 

1.39 3.78 1.48 
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Table 18 

Results of the algorithm DIMB-CG compared to DIMB-19I1D-8-0.05 on problem HSTP-B. 

ID Best LB DIMB-CG (TL = 625 seconds) DIMB-19I1D-8-0.05 (TL = 625 seconds) 

ToBS (seconds) Median Gap Best Gap Median Gap Best Gap 

1 202 2.17 202 0.00 202 0.00 202 0.00 202 0.00 

2 333 2.44 333 0.00 333 0.00 333 0.00 333 0.00 

3 423 30.55 423 0.00 423 0.00 423 0.00 423 0.00 

4 652 4.67 652 0.00 652 0.00 652 0.00 652 0.00 

5 762 2.94 762 0.00 762 0.00 762 0.00 762 0.00 

6 756 3.00 756 0.00 756 0.00 756 0.00 756 0.00 

7 1017 3.62 1017 0.00 1017 0.00 1017 0.00 1017 0.00 

Rank: 7 7 7 7 

Avg.: 0.00 0.00 0.00 0.00 

Table 19 

Results of the algorithm DIMB-CG compared to DIMB-19I1D-8-0.05 on problem HSTP-C. 

ID Best LB DIMB-CG (TL = 625 seconds) DIMB-19I1D-8-0.05 (TL = 625 seconds) 

ToBS (seconds) Median Gap Best Gap Median Gap Best Gap 

1 699 364.74 708 1.27 701 0.29 710 1.55 700 0.14 

2 699 409.47 707 1.13 701 0.29 711 1.69 701 0.29 

3 742 389.30 747 0.67 743 0.13 749 0.93 743 0.13 

4 734 419.58 738 0.54 735 0.14 743 1.21 735 0.14 

5 631 93.26 631 0.00 631 0.00 631 0.00 631 0.00 

6 772 403.62 772 0.00 772 0.00 777 0.64 772 0.00 

7 1212 495.65 1259 3.73 1237 2.02 1270 4.57 1239 2.18 

8 675 58.63 697 3.16 679 0.59 698 3.30 686 1.60 

9 807 357.22 821 1.71 812 0.62 827 2.42 814 0.86 

10 298 10.42 298 0.00 298 0.00 298 0.00 298 0.00 

11 961 467.90 998 3.71 987 2.63 1005 4.38 985 2.44 

12 1018 334.13 1039 2.02 1032 1.36 1044 2.49 1030 1.17 

13 273 4.11 273 0.00 273 0.00 273 0.00 273 0.00 

14 933 440.61 946 1.37 940 0.74 954 2.20 939 0.64 

15 Infeasible 

16 481 173.54 483 0.41 481 0.00 484 0.62 481 0.00 

17 457 309.41 460 0.65 457 0.00 461 0.87 457 0.00 

18 319 22.51 319 0.00 319 0.00 319 0.00 319 0.00 

19 254 2.32 254 0.00 254 0.00 254 0.00 254 0.00 

20 325 18.41 325 0.00 325 0.00 325 0.00 325 0.00 

21 1050 452.70 1066 1.50 1059 0.85 1074 2.23 1058 0.76 

22 Infeasible 

23 1813 534.02 1887 3.92 1874 3.26 1910 5.08 1867 2.89 

24 1988 565.76 2059 3.45 2042 2.64 2079 4.38 2038 2.45 

25 912 485.79 937 2.67 920 0.87 944 3.39 926 1.51 

26 570 219.81 575 0.87 571 0.18 576 1.04 570 0.00 

27 552 306.29 555 0.54 552 0.00 556 0.72 552 0.00 

28 1124 459.30 1142 1.58 1132 0.71 1150 2.26 1127 0.27 

29 1116 511.92 1137 1.85 1130 1.24 1145 2.53 1127 0.98 

30 1133 426.27 1153 1.73 1142 0.79 1164 2.66 1142 0.79 

31 1127 511.13 1152 2.17 1140 1.14 1165 3.26 1137 0.88 

32 1014 506.90 1036 2.12 1026 1.17 1043 2.78 1024 0.98 

33 1018 352.11 1039 2.02 1028 0.97 1047 2.77 1034 1.55 

34 1005 417.23 1032 2.62 1020 1.47 1041 3.46 1015 0.99 

Rank: 32 19 6 27 

Avg.: 1.48 0.75 1.98 0.74 
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optimize strategy succeed in solving 85% of the pricing problems

until reaching an infeasibility). Finally, Avg. PoS2 is the proxim-

ity search average percentage of success in repairing the infeasible

partial solutions received from the fix-and-optimize strategy (e.g.,

PoS2 = 100.0 means that the proximity search strategy can repair

all infeasible solutions received). This table shows that although

the fix-and-optimize strategy fails with high rates, the proximity

search repair strategy can repair almost all infeasible partial solu-

tions generated by the fix-and-optimize strategy, making this hy-

brid approach very effective in practice. 

In Table 16 , we analyze the quality of the best solutions con-

structed by the heuristic CGCH. This table shows that the proposed

heuristic is very effective indeed: it builds feasible solutions with

an average optimality gap of 19.17% for problem HSTP-A and 10.57%

l  

Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a
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or problem HSTP-C. For problem HSTP-B, the produced solutions

re almost optimal, with an average gap of only 2.74%. We also ob-

erved that the less constrained the problem, more the proximity

earch was effective in not only repairing, but also improving the

artial fix-and-optimize solutions. 

.2.2. Analysis of the algorithm DIMB-CG 

In this section, we compare the proposed algorithm DIMB-CG

ith the best version of the parallel algorithm of Saviniec et al.

2018) , called DIMB-19I1D-8-0.05. 

In Table 17 , we present the results for problem HSTP-A. Column

Best LB” shows the best lower bounds reported in Section 6.1 . For

ach algorithm, we provide its median (Median) and best (Best) so-

utions, and the associated gaps (Gap) compared to the best-known
l., Pattern-based models and a cooperative parallel metaheuristic 
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ower bounds. The best results are shown in bold font. This table

hows that the proposed algorithm performs better than DIMB-

9I1D-8-0.05, both in terms of median and best solutions. In col-

mn “ToBS”, we also show the DIMB-CG median execution time

equired to stagnate in the last improved solution (i.e. the best so-

ution). This column shows that the most difficult instances for the

ethod are instances 23 and 24. In instance 23, for example, the

lgorithm takes approximately 491 seconds to find near-optimal

olutions ( ≈ 8.6 % of optimality gap). For some small instances,

uch as 10, 15 and 18 to 20, the algorithm only takes a few sec-

nds to find the optimal solutions. 

In Table 18 , we present the results for problem HSTP-B. This

able shows that both algorithms were able to find the optimal so-

utions for all instances in the median case. Column (ToBS) shows

hat the algorithm DIMB-CG is almost instantaneous to find opti-

al solutions for these instances, except for instance 3, in which it

akes around 31 seconds to reach the optimal solutions. 

Table 19 presents the results for problem HSTP-C. This table

hows that the algorithm DIMB-CG performs better than the al-

orithm DIMB-19I1D-8-0.05 in median solutions, but it is less ef-

ective in the number of best solutions. As the problem HSTP-C is

ore constrained than the problem HSTP-A, the algorithm DIMB-

G takes longer to make the last improvement, see column “ToBS”.

owever, for most of the tested instances, it is still able to reach

ear-optimal solutions expending running time much smaller than

he specified time limit. 

. Conclusions 

In this paper, we conducted a study with mixed-integer

rogramming formulations and parallel metaheuristic based algo-

ithms for high school timetabling problems. We proposed two

xtended pattern-based formulations and a cooperative parallel

lgorithm. 

The first proposed formulation, EF1, introduced original vari-

bles associated with layouts , indicating the presence/absence of

 teacher or course in a teaching slot. This formulation allowed

or the use of a black-box solver to tackle instances of practical

ize, as long as the number of teaching slots in a day is kept small.

his strategy was shown to have performance similar to the best

vailable compact formulations. Also effective was the introduction

f Fenchel cuts which increased the obtained lower bounds with

easonable computational costs. The second formulation EF2 was

olved within a column generation framework and also presented

ompetitive results in comparison to other extended formulations

vailable in the literature ( Dorneles et al., 2017; Santos et al., 2012 ),

ften obtaining lower bounds with the same value as the known

ptimal solutions. 

r

Table A.20 

Notation used in formulation CF1. 

Notation Definition 

Decision variables 

x rdh ∈ {0, 1} Indicates whether a course r ∈ R is a
Auxiliary variables ̂ δrd ∈ N The number of lessons that exceedŝ j rdh ∈ { 0 , 1 } Indicates whether the schedule of â φrdh ∈ { 0 , 1 } Indicates whether a course r has a d̂ πr ∈ N The number of unmet weekly doubl̂ d td ∈ { 0 , 1 } Indicates whether a teacher t workŝ i tdk ∈ { 0 , 1 } Indicates whether a teacher t is idlê β ∈ N The greatest value among all teache
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The proposed parallel algorithm DIMB-CG found near-optimal

olutions for all studied problems outperforming previous meth-

ds in three variants of the HSTP. The main contribution of this

lgorithm is the introduction of new agents that exploit the de-

eloped column generation method for EF2 to generate new fea-

ible solutions. It was done using a novel combination of fix-and-

ptimize and proximity search heuristics. The combination of these

wo heuristics proved successful and can certainly be extended

o other problems. Future work also includes the investigation of

ranch-and-price algorithms making use of the proposed column

eneration approach. Particularly interesting is the study of the be-

avior of the introduced reduced-information columns (layouts) in

his context. 
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ppendix A. Compact formulation 

This section describes a reformulation of the MIP model pro-

osed in Saviniec et al. (2018) , denoted here by CF1. In this refor-

ulation, a timetable output can be represented by a set of binary

ariables x rdh , for all ( r , d , h ) ∈ R × D × H . Let us consider the no-

ation defined in Table A.20 , the HSTP can be formulated as fol-

ows: 

Minimize α5 

∑ 

r∈ R 

∑ 

d∈ D 

̂ δrd + α6 

∑ 

r∈ R 

∑ 

d∈ D 

| H|−2 ∑ 

h =1 

̂ j rdh + α7 

∑ 

r∈ R 
̂ πr 

+ α8 

∑ 

t∈ T 

∑ 

d∈ D 

| H td |−2 ∑ 

k =1 

̂ i tdk + α9 

∑ 

t∈ T 

∑ 

d∈ D 

̂ d td + α10 · ̂ β

(A.1) 

ubject to: 

 

d∈ D 

∑ 

h ∈ H 
x rdh = ̃

 θr ∀ r ∈ R (A.2) 

 

∈ R c 
x rdh = 1 ∀ c ∈ C; d ∈ D ; h ∈ H (A.3) 

 

∈ R t 
x rdh ≤ 1 ∀ t ∈ T ; d ∈ D ; h ∈ H td (A.4) 

 

∈ R t 
x rdh = 0 ∀ t ∈ T ; d ∈ D ; h ∈ H \ H td (A.5) 
ssigned to a period h ∈ H of a day d ∈ D . 

 the limit ̃  δr in a day d for a course r . 

 course r has a gap at period h of day d . 

ouble lesson at periods h − 1 and h of day d . 

e lessons for a course r . 

 in a day d . 

 at period k of day d . 

rs’ extra working days. 

l., Pattern-based models and a cooperative parallel metaheuristic 
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h  
 δrd ≥
∑ 

h ∈ H 
x rdh − ˜ δr ∀ r ∈ R ; d ∈ D (A.6)

̂ j rdh ≥ x rdi − x rdh + x rdj − 1 ∀ r ∈ R ; d ∈ D ; h = 1 , . . . , | H| − 2 ;
i = 0 , · · · , h − 1 ; j = h + 1 , . . . , | H| − 1 (A.7)

̂ φrdh ≤ x rdh ∀ r ∈ R ; d ∈ D ; h = 1 , . . . , | H| − 1 (A.8)

̂ φrdh ≤ x r,d,h −1 ∀ r ∈ R ; d ∈ D ; h = 1 , . . . , | H| − 1 (A.9)

̂ φrdh ≤ 1 − ̂ φr,d,h −1 ∀ r ∈ R ; d ∈ D ; h = 2 , . . . , | H| − 1 (A.10)

̂ πr ≥ ˜ πr −
∑ 

d∈ D 

| H|−1 ∑ 

h =1 

̂ φrdh ∀ r ∈ R (A.11)

 i tdk ≥
∑ 

r∈ R t 
(x r,d,h i 

− x r,d,h k 
+ x r,d,h j 

) − 1 

∀ t ∈ T ; d ∈ D ; k = 1 , . . . , | H td | − 2 ;
i = 0 , . . . , k − 1 ; j = k + 1 , . . . , | H td | − 1 ;
h i , h k , h j ∈ H td (A.12)

̂ d td ≥
∑ 

r∈ R t 
x rdh ∀ t ∈ T ; d ∈ D ; h ∈ H td (A.13)

̂ β ≥
∑ 

d∈ D 

̂ d td − ˜ d t ∀ t ∈ T (A.14)

 δrd ≥ 0 ∀ r ∈ R ; d ∈ D (A.15)

̂ j rdh ≥ 0 ∀ r ∈ R ; d ∈ D ; h = 1 , . . . , | H| − 2 (A.16)

̂ φrdh ≥ 0 ∀ r ∈ R ; d ∈ D ; h = 1 , . . . , | H| − 1 (A.17)

̂ πr ≥ 0 ∀ r ∈ R (A.18)

 i tdk ≥ 0 ∀ t ∈ T ; d ∈ D ; k = 1 , . . . , | H td | − 2 (A.19)

̂ d td ≥ 0 ∀ t ∈ T ; d ∈ D (A.20)

̂ β ≥ 0 (A.21)

x rdh ∈ { 0 , 1 } ∀ r ∈ R ; d ∈ D ; h ∈ H (A.22)

The objective function (A.1) minimizes the cost of breaking

soft requirements 5 to 10. Eqs. (A.2) to (A.5) model the hard re-

quirements. Constraints (A.2) ensure that the weekly lessons of all

courses are scheduled. Constraints (A.3) to (A.4) avoid clashes in

classes and teachers’ schedules, and constraints (A.5) prevent the

assignment of teachers to unavailable periods. 
Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a
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The other equations are related to the soft requirements. Soft

equirement 5 is modeled by Eq. (A.6) , in which the auxiliary vari-

bles ̂ δrd measure the excess of lessons in daily workloads that

re greater than 

˜ δr , for each course r . The number of gaps in

ourses’ schedules are computed with the introduction of the aux-

liary variables ̂ j rdh and the constraints (A.7) . The variable ̂ j rdh in-

icates whether a course r has a gap at period h of day d . The

oft requirement regarding the meeting of double lessons is mod-

led by the set of constraints (A.8) to (A.11) . For each course r , the

uxiliary variables ̂ φrdh identify whether a double lesson ends in

 period h ∈ { 1 , . . . , | H| − 1 } of a day d ∈ D , and the number of un-

et weekly double lessons is quantified in constraint (A.11) , with

he help of the additional auxiliary variable ̂ πr . 

To compute idle periods in teachers’ schedules, we introduce

he constraints (A.12) , and the auxiliary variables ̂  i tdk , that flag if

 teacher t is idle in a period h k ∈ H td ( k = 1 , . . . , | H td | − 2 ) of a

ay d ∈ D . The computation of idle periods in teachers’ schedules

s similar to the computation of gaps in courses’ schedules, except

hat the variables ̂ i are omitted for periods in which the teach-

rs are unavailable ( Saviniec et al., 2018 ). As an example, consider

 = { 0 , 1 , 2 , 3 , 4 } , and suppose that a teacher t is unavailable at pe-

iods 2 and 3 during a day d . Therefore, H td = { 0 , 1 , 4 } and only the

ariable ̂  i t,d, 1 is considered, which means that unavailable periods

re disregarded. In constraints (A.13) , we model the minimization

f busy days on teachers’ schedules. For each teacher t , the aux-

liary variables ̂ d td flag if he/she is working on day d . Finally, the

ast set of constraints (A.14) model the balancing on teachers’ extra

orking days. 

ppendix B. The stand-alone iterated local search 

This section describes the sequential Iterated Local Search (ILS)

dapted from Saviniec et al. (2018) , that we employ in our parallel

lgorithm of Section 5 . We use two versions of this metaheuris-

ic. One works within the diversifier agent while the other works

ithin the intensifier agents. Each version also manipulates a dif-

erent type of timetable encoding, that we call type I and type II.

he timetable type I is manipulated by the ILS that works within

he diversifier and the timetable type II is manipulated by the

LS that works within the intensifiers. Following, we discuss the

wo timetable encodings ( Section B.1 ), the neighborhood structure

nd objective function evaluation ( Section B.2 ), then lastly, the ILS

seudo-code is presented ( Section B.3 ). 

.1. Timetable encodings 

Let S be an array of all timeslots ( d , h ) ∈ D × H . We illustrate

he timetables type I and II in Fig. B.3 . Both of them are based

n the persistent data structure proposed in Saviniec et al. (2018) .

n both cases, the core of the encodings is an array of timeslots.

n a timetabling encoding, either type I or II, each timeslot points

o a second-layer array of pointers, each one of those pointing to

 tuple (r ∈ R, c ∈ C, t ∈ T , ̃  θr , ̃
 δr , ̃  πr ) that represents a course r ∈ R

nd its parameters, the associated class, teacher, number of weekly

essons, limit of lessons per day, and number of required double

essons, respectively. In timetable encoding type I (resp. type II),

he i th position in the second-layer array indicates a course asso-

iated to the i th teacher (resp. class). In the remainder of this pa-

er, to improve the presentation, instead of showing a pointer to a

ourse tuple itself, we show only the teacher or class ID belonging

o the tuple being pointed by the pointer. 

.2. Neighborhood structure and objective function 

Neighboring solutions are generated via the torque neighbor-

ood operator (TQ) ( Saviniec & Constantino, 2017 ). This operator
l., Pattern-based models and a cooperative parallel metaheuristic 
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Fig. B.3. Timetable encodings. 

Fig. B.4. Neighborhood structure with timetable type II. 
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c  
dentifies chains of two-swap moves that must be performed to-

ether so that new clashes in classes’ (or teachers’) schedules are

voided. A two-swap move consists in exchanging the course tuples

f a teacher t ∈ T (or class c ∈ C ), that are assigned to two differ-

nt timeslots. Chains of two-swap moves are identified by conflict

raphs. Fig. B.4 shows an example of a TQ move with the timetable

ype II. In this example, we identify all possible moves for tuples

hat are assigned to timeslots s 2 and s 3 of the timetable solution

 , shown in Fig. B.4 (a). The conflict graph is shown in Fig. B.4 (b),

n which there is one vertex for each class, representing its tu-

les (remember, we are showing only the associated teachers), and

dges connecting conflicting vertexes. The neighboring solution Z 1 
 Fig. B.4 (a)) is generated by applying a two-swap move for each

lass in the connected component { c 0 , c 1 , c 2 }. Neighboring solu-

ions with timetable type I are obtained similarly as made with

imetable type II. 

Both ILS versions work in an infeasible space of solutions in

hich some of the hard requirements are relaxed and penalized

n the objective function. For the ILS version which works inside

he intensifier agents, the timetable encoding type II ensures that

ard requirements 1 and 2 are never violated by TQ moves. There-

ore, we relax hard requirements 3 and 4, and penalize them using

he following objective function: 

inimize f (Z) = (1) + 

∑ 

i ∈{ 3 , 4 } 
αi · V i (B.1)
s

Please cite this article as: L. Saviniec, M.O. Santos and A.M. Costa et a

for high school timetabling problems, European Journal of Operational 
Which is the objective function of the model EF1 plus the num-

er of violations V i , for hard requirements 3 and 4, times a penalty

arameter αi . 

For the ILS version which works inside the diversifier agent, the

imetabling encoding type I ensures that hard requirements 1 and

 are never broken by the employed operator. Hence, we relax hard

equirements 2 and 4, and penalize them according to the follow-

ng objective function: 

inimize f (X ) = (1) + 

∑ 

i ∈{ 2 , 4 } 
αi · V i (B.2)

.3. The ILS algorithm 

Let SP be the array of all timeslot pairs ( s i , s j ), for i, j =
 , . . . , | S| − 1 and i 
 = j , we show the pseudo-code of the sequen-

ial ILS in Algorithm 1 . At each iteration of the main loop (lines 3

o 23), the algorithm performs a random perturbation in its global

est solution (line 4), followed by a local search in the resulting

olution (lines 5 to 18), to reach a local optimum. If the local op-

imum is better than or equal to the global best solution (line 19),

t is accepted. Otherwise, it is rejected. The algorithm is controlled

y either, a maximum number of iterations or a time limit. The lo-

al search phase (lines 5 to 18) is a first improvement strategy that

tarts in a random index of SP (line 7), and inspects the next | SP |

onsecutive timeslot pairs (lines 8 to 17) to find new improving

olutions. 
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Algorithm 1 Pseudo-code of the sequential ILS adapted from 

Saviniec et al. (2018) . 

ILS (Z 0 , t imeOut , iterOut ) 

1 Z ∗ = Z 0 
2 k = 0 

3 while ( elapsedT ime < timeOut and k < iterOut) { 

4 Z = Perturbation (Z ∗) // a random TQ move 

5 do { 

6 best = f (Z) 

7 i = take a random integer in the range 

0 ≤ i ≤ | SP | − 1 

8 for ( j = 1 to | SP | ) { 
9 Compute the connected components for tuples 

assigned to timeslots sp i of Z 

10 for (each connected component) { 

11 Generate a new neighboring solution 

Z ′ from Z 

12 if ( f (Z ′ ) ≤ f (Z) ) { 

13 Z = Z ′ 
14 } 

15 } 

16 i = (i + 1) mod | SP | 
17 } 

18 } while ( f (Z) < best) 

19 if ( f (Z) ≤ f (Z ∗) ) { 
20 Z ∗ = Z 

21 } 

22 k = k + 1 

23 } 

24 return Z ∗
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