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Abstract In this paper, we deal with a vegetable crop supply problem with two main par-
ticularities: (i) the production must respect certain ecologically-based constraints and (ii)
harvested crops can be stocked but only for a limited period of time, given that they are
perishable. To model these characteristics, we develop a linear formulation in which each
variable is associated to a crop rotation plan. This model contains a very large number of
variables and is therefore solved with the aid of a column generation approach. Moreover,
we also propose a two-stage stochastic programming with recourse model which takes into
consideration that information on the demands might be uncertain. We provide a discussion
of the results obtained via computational tests run on instances adapted from real-world
data.
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1 Introduction

Recent years have seen a raise in sustainability awareness. Indeed, a growing number of
citizens and governments are showing increasing concern with regards to this issue, which
has reached a priority status in places such as the media and political campaigns. In partic-
ular, in what concerns agricultural production and distribution models, a rising number of
consumers are now inclined to choose products originating from more social-friendly and
ecologically-based agricultural systems, such as equitable, fair-trade, organic, biodynamical,
etc. (Altieri 1995; Gliessman 2000; Makatouni 2002).

These are alternative models to the conventional agricultural production and distribution
system which is based mainly in large monocultures and industry-based inputs. Although
the conventional paradigm claims a reduction in food production costs, there are important
advantages associated with small-scale farming systems: from a ecological point of view,
there is a less intense use of synthetic fertilizers, pesticides and polluting oil-based resources.
From a social point of view, the significantly lower capital requirements in small-scale farm-
ing systems do not exclude small farmers from the process. These farmers tend to stimulate
local economies by purchasing and selling locally, and creating more jobs (Ong’wen and
Wright 2007, and references therein).

These new production models give rise to different planning problems. In this context,
this paper focuses on a situation faced by some small family farmers of vegetable crops in
Brazil. These producers usually own small cropping areas yielding small and discontinu-
ous productions. The size and characteristics of the production make it harder for them to
individually invest in the necessary cleaning and packing house structures and to establish
permanent links with the consumer market. A solution is found in the creation of associ-
ations or cooperatives, for instance. These organizations gather many small farmers, and
promote the packing, standardization and distribution of the productions to the consumers,
according to an expected demand. They must coordinate the production, deciding when and
where to grow each crop.

In addition, in the case dealt with in this paper, the production plans must respect
technical-ecological constraints which allow a more sustainable production and a higher
market value for the products. In this case, these constraints are basically of three types:
(a) crops of the same botanical family can not be grown in sequence, in the same piece of
land, (b) a green manure crop, usually some legume species, must be grown periodically,
and (c) the land must lie fallow for a specific amount of time.

We call the problem of deciding the division of land, and production and distribution
plans presented above the Sustainable Vegetable Crop Supply Problem with Perishable
Stocks (SVCSPPS), whose main characteristics are summarized below:

1. A known demand for each crop exists.

2. Each crop has specific earliest and latest planting times in the season that must be re-

spected.

. The time between planting and harvesting varies for the different crops.

4. Ecologically-based constraints forbidding the growth of crops of the same botanical fam-
ily in sequence must be respected. These constraints also impose fallows and the period-
ical growth of green manure crops.

5. Harvested crops can be stocked for a limited and different amount of time, with associ-
ated losses.

W

Problems with some of characteristics 1-5 have already been proposed in the literature.
Indeed, agricultural planning problems have been in the very origins of Operations Research.
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As early as 1939, Kantorovich developed a linear model to select the optimal partition of
heterogeneous land to maximize the total production of crops (Kantorovich 1960, translated
from the Russian original, dated 1939). On a similar line, Hildreth and Reiter (1951), in
the pioneering 1949 Chicago Conference on Linear Programming Applications, proposed
the growing of crops simultaneously as a way to reduce the need for resources (water, labor,
etc.), as crops have different needs through time. The authors used the notion of crop rotation
plans, sequences of crops that should be planted one after another indefinitely. The set of
possible rotation plans was defined a priori. Later, El-Nazer and McCarl (1986) developed
a linear optimization model that eliminated the need of pre-determined rotations under the
assumption that the yields of a crop only depend upon the crops grown in the same piece of
land during the previous three years.

Haneveld and Stegeman (2005) have proposed a model to obtain crop rotation plans
based on the idea of explicitly forbidding some sequences of crops. Detlefsen and Jensen
(2007) have assumed that the amount of land to be used with each crop, at each year, is
known, which has enabled the modeling of the problem to be done with the aid of con-
servation flow constraints. More recently, Alfandari et al. (2010) propose a mixed-integer
linear optimization model to obtain crop rotation plans with demand constraints and incom-
patibility constraints between cultivation and fallow state on a land plot. In addition, some
researchers concentrate on the development of decision-aid tools to evaluate a given crop ro-
tation plan (Jones et al. 2003; Stockle et al. 2003; Bachinger and Zander 2006, e.g.). These
tools might also be useful to help implement and adapt optimization-obtained crop rotation
plans in practical contexts.

Sustainability constraints of the type described in the introduction have been used by
Santos et al. (2010b). The authors proposed a 0—1 linear optimization model for the planning
of crop rotations with spatial constraints: crops of the same botanical family are not allowed
to grow simultaneously in adjacent plots. Santos et al. (2010a) have introduced the idea of
a “supply problem” with the inclusion of known demands. The problem dealt with in that
paper copes with characteristics 1-4 presented above, but fails to consider the presence of
stocks.

Vegetable crops are usually sent to packing houses after harvesting. In the packing houses
the vegetables are cleaned, packed and stored in cold chambers until delivery. Due to the
high perishableness of many vegetable crops, however, they can only remain in stock for a
limited amount of time and, even so, with associated losses. The possibility of post-harvest
storage defines a more complex problem. In addition, considering a period of few days, the
possibility of storage might provide alternative crop rotation plans that still meet the demand
(eventually with stocked products) and is able to maximize revenue.

The goal of this paper is to study the effect of the introduction of post-harvest storage in
the previously addressed Sustainable Vegetable Crop Supply Problem (Santos et al. 2010a).
The post-harvest storage allows products to be stocked, while respecting maximum stocking
periods and considering the associated losses. The modeling is done with the aid of “time-
dependent variables” (Gouveia 1999; Costa et al. 2009) which, in this context, count the
number of periods a given product has been kept in stock.

Also, this paper presents an alternative model to consider the cases where the demand is
uncertain. In order to take randomness into account, we model the demand using a set of dis-
crete scenarios with given probabilities and formulate the resulting problem as a two-stage
stochastic programming with recourse model. To evaluate how beneficial the use of stochas-
tic models can be in this specific situation, two measures of uncertainty effects commonly
used in stochastic programming are further analyzed. In the literature, stochastic program-
ming has been successfully applied in diverse operations research problems. In particular,
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Ahumada and Villalobos (2009) pointed out the need for stochastic models to deal with the
tactical planning of perishable and non-perishable agri-foods.

The remainder of this article is divided as follows. A linear model for the SVCSPPS is
proposed in the following section. This model presents a number of variables that grows ex-
ponentially with the problem size and is therefore solved via a column generation approach,
which is presented in Sect. 3. An extension of this model that takes into consideration the
fact that the demand is uncertain is developed in Sect. 4. Computational results on instances
inspired from real-world data are discussed in Sect. 5. This paper ends with some conclu-
sions and future work directions in Sect. 6.

2 Mathematical model

In an agricultural production system, a crop rotation can be defined as the sequence of crops
that should be planted, one after another, in a given area during a time interval, say T years.
A crop rotation schedule is a planting calendar of M periods (in which 7" was divided) for
each crop in the rotation. In this section, we extend the crop rotation schedule with known
demands model proposed by Santos et al. (2010a), to introduce the possibility of stocking
harvested crops. By defining variables:

Ay size of plot associated with crop rotation plan k,
and parameters:

A total available arable land;

M number of periods in a crop rotation schedule;

afj amount of crop i harvested in period j in crop rotation plan k, per unity of area;
¢, return associated with crop rotation plan k;

d;; demand of crop i in period j;

K set of possible crop rotation plans.

Santos et al. (2010a) have written the original model as:

K
Max ch)‘-k (1)
k=1
subjectto Y afih=dy, j=1.....M, )
kekK
D m<A, ©)
keK
M>0 keK. )

Constraints (2) guarantee that the demand is supplied, by stating that the production for each
crop i, at each period j must be greater than the associated demand d;;. The production of
crop i at period j is given by the sum, for all used crop rotation plans, of the area dedicated
to the plan, A, multiplied by the associated productivity of crop i at period j. Constraints (3)
limit the area to be used to the area actually available.

Formulation (1)—(4) does not model the possibility of keeping some of the crops in stock
to serve the demand of future periods. To overcome this limitation, we define variables:
I stock of product i available at period j which has been produced w periods previously.
n}; quantity of crop i delivered at period j using stocks /7.
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Production balance:

Total harvested quantities of crop ¢ —_— LO]

Stock balance: Demand supply:
) i 0

I " \

¢ : dij — 055 + 035

G /
w+1 Cri
tu jtl 71”

Fig. 1 Relations between variables for crop i at period j

9? quantity of crop i delivered at period j that exceeds the demand dj;.
6. unmet demand of product i in period j.

In both sets of variables I} and n;;, index w indicates the age of the product. Index w =
0 indicates a product that has just been harvested. The idea of using such time-indexes
is adapted from existing developments in the literature in the context of hop-constrained
spanning trees (Gouveia 1999; Costa et al. 2009).

At each period, the available stocks (of different ages) can either be used to serve the
current demand or be kept in stock for one additional period. To model the fact that each
product can only be stocked for a limited amount of time, it suffices to limit index w to
appropriate values. For example, if a crop can be stocked for 3 periods, only the associated
variables with indexes w =0, ..., 4 should exist, the index 4 being associated with spoiled
product. In the general case, parameter G; represents the number of periods a given crop i
can be kept in stock. Figure 1 illustrates the general idea.

The total harvested quantities of crop i, at period j, is modeled by variables Ii(; (Produc-
tion balance). This quantity can either be used to meet the demand of period j, by means
of variables n?j or be kept in stock, in which case it will appear (discounted the losses) as
variable Il.f j+1 in the next period. The same is valid for values of w other than zero (Stock
balance). All quantities n}; are used to meet the current demand (Demand supply). Variables
6’; and 6’; model the unmet demand or the quantity sold above the demand, respectively.

With the following additional notation:

c;j revenue associated with product 7, when delivered at period j to meet the contracted
demand;

cg revenue associated with the quantity of product i delivered at period j exceeding the
demand;

riw percentage loss incurring in product i of age w periods, if stocked for one more period,;

C set of crops, not including those associated with green manuring.

The SVCSPPS model can thus be written as:

Max Y "% " cij(di; — 0;) + ci6;% )

ieC jeM
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subjectto Y afin=1}, ie€C.j=1,....M, (6)
keK
Y rk<a, ™
keK
(A —ri)IY —nf)=1"1, ieC j=1,....Mw=0,...,G. ()
Gi
Y onli=di;—0;+6%, ieC.j=1,...M, )
w=0
M>0, kek, (10)
6;.65=0, ieC,j=1,....M, (11)
nt. >0, ieCj=1..Mw=0,...G, (12)
I">0, ieCj=1...Mw=0..G+1 (13)

The objective function (5) maximizes the profit which can be obtained with the selling
of products to meet the demand, associated with parameter c;;, or with the selling of extra
production, associated with parameter c; . This can be seen as a generalization of the para-
meterized objective function mentioned in (1) which defined a fixed return, ¢, associated
with a rotation plan. In the case of objective function (5), a single parameter such as ¢; can
not be used to define the return of a crop rotation plan, once this return depends on the desti-
nation of the harvested crops (if they are used to supply the demand, sold as extra production
or maintained in stock).

Constraints (6) associate variables I,-Of with the harvested quantities of each crop i at
each period j. Constraint (7) ensures that only the available land is used. Constraints (8)
are the stock balance constraints and include a loss-factor for every additional period a
product is kept in stock. These constraints can be read as follows: the quantity of stocked

product i at period j having w periods of age (/;;) can be either used to meet the demand

w+1
]i,j+

Note that for w = G;, the constraints use a variable IUG-" *+! which appears nowhere else in
the formulation and, therefore, indicates losses (all remaining product i after G; weeks is
considered spoiled). Constraints (9) control the demand supply: the demand of product i at
period j, d;;, can be supplied from fresh harvested products (n?f) or from stocked products
with w < G; periods of age, (n}f}, w > 1). Finally, constraints (10)—(13) define the used
variables.

of period j (becoming n;;) or remain in stock, appearing as , in the following period.

3 Column generation algorithm

As any linear programming formulation, model (5)—(12) can be seen as a set of columns,
which one associated with a variable. Each element of the column is the coefficient of the
associated variable in the respective constraint. Model (5)—(12) has the following set of
variables: n:‘j Iilj’?, 6’,-;, 01-7 and Ag. In particular, each one of variables A, is associated with a
column that contains all the information with respect to a given crop rotation plan. Indeed,
a crop rotation plan k generates a harvesting schedule that can be represented by parame-

ters a¥., the quantities to be harvested for each crop i, at period j, for each unit of area
k

ij’
dedicated to the crop rotation plan k. In possession of parameters a;;, the column associated
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with variable A, can be easily written as:

(a{‘j) — associated with constraints (6)
column a; = 1 — associated with constraint (7)
0 — associated with constraints (8)—(9).

In the case of the crop rotation plans defined by conditions 2—4 (see introduction), the
number of possible plans grows exponentially with the problem size. To cope with this prob-
lem, model (5)—(12) can be seen as a master program within a column generation framework
(Liibbecke and Desrosiers 2005). The main idea would be to solve the problem for an ini-
tial set of columns (possibly columns associated with variables n}j 1,-';?, 9,.;, 0;;) and then,
iteratively include promising columns @ until optimality is found.

To generate promising columns @, one needs an auxiliary problem composed by a set of
constraints describing the feasible space of crop rotation plans K, and an objective function
associated with the reduced cost of a column g in model (5)—(12). These two developments
are done in what follows. Define binary variables:

x;; equal to 1 if crop i is planted in period j, and equal to 0, otherwise,

and parameters:

NF number of botanical families;

F(p) set of crops belonging to botanical family p, p=1,...,NF;

t; production time of crop i, including the estimated soil preparation and harvest-
ing times;

I; set of planting periods for crop i;

N set of all crops;

G set of crops that can be used as green manure;

n=|N|+1 artificial crop associated with fallow. The cultivation period of this crop is the
fallow length.

The technological constraints 2—4 can then be written as in Santos et al. (2010b):

n ti—1

Y xija<l j=1...M, (14)

i=1 r=0

1
> Y xije<1l. p=1L...NFj=1..M, (15)
ieF(p) r=0
2D wi=1 (16)
ieG jel;
M
> x=1, (17)
j=1
x;€{0,1), i=1,...,n,jel, (18)

where, in constraints (14) and (15), non-positive indexes j — r are replaced by j —r + M.
Constraints (14) guarantee that no more than one crop is planted at a time. Constraints (15)
ensure that two crops of the same botanical family can not be planted in sequence. Finally,
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constraints (16) and (17) force the planting of a crop associated with green manure and the
presence of a time of fallow at each rotation, respectively.

Moreover, by associating dual variables 7;; and o to (6) and (7), respectively, one can
calculate the reduced cost of a column a;, which is given by:

Ek:ZZ_”ijazkj — . (19)

ieC jel;

Let ()?;_‘i) be the k™ feasible crop rotation schedule, i.e., satisfying (14)—(18), the associ-
ated coefficients a{‘j can be easily determined with the aid of the following parameters:

o; number of periods between planting and the first harvesting of crop i;
pir r"harvesting of cropi,r=1,...,t; —o0; — 1.

These parameters define the programmed harvestings of a given crop. For example, if for
crop 1,1, =4, 0, =1 and p;; =2 kg, pi» = 3 kg, then crop 1, if planted in period 1 will
yield harvest of 2 and 3 kg per m? of planted area in periods 3 and 4, respectively.

Thus, for a given crop rotation schedule, ()?;‘j), coefficients a;‘j can be written as:

i—0i—1

1
ali= Y pukl; o . i€Cj=1...Mk=1.._K, (20)
r=I1

where index j — o; —r is replaced by M + j — 0; — r whenever it less or equal to zero.

The goal of the auxiliary problem is to find a promising column for the master prob-
lem. The column with the largest reduced cost is, therefore, found by solving the following
problem:

ti—o;—1
Max E E ( E —7Ti,j+r+o,~l7ir>xij—a

ieC jel; r=1

(21)
subject to  (14)—(18).

Algorithm 1 presents a pseudo-code for the implemented column generation.

The convergence of simplex-based column generation algorithms has been the subject
of much research (Du Merle et al. 1999; Liibbecke and Desrosiers 2005). In this kind of
algorithmic approach, it is very common that a near-optimal solution is obtained consider-
ably fast but very little progress is obtained at each iteration, near the optimum. This is the

Algorithm 1 Column generation algorithm
1: Set the initial restricted master problem (5)—(12) with the columns associated with vari-
ables n};, 17,6, 9,-;7.
2: Solve the restricted master problem and obtain the dual variables (7, o).
: Solve the auxiliary problem (21) and obtain the associated relative cost ¢; and col-
umn dy.
. if ¢, =0 then
Stop. The current solution is optimal.
else
Insert column ay, in the restricted master problem (5)—(12) and go to step 2.
. end if

(98]

AN A
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so-called “tailing-off effect”. Other frequently observed effect is that the master problem
becomes harder to solve due to massive degeneracy and the fact that the dual variables end
up not yielding efficient columns (Du Merle et al. 1999). In Sect. 5, we present computa-
tional results which show that, for the proposed model, real-life problems could be solved in
quite reasonable computational times and no convergence difficulties were experienced. In
that section, we also analyze the effect of allowing harvested products to be stocked. Before
that, in the following section, we extend model (5)—(12) to try to cope with the fact that the
demands might be uncertain.

4 A two-stage stochastic programming with recourse

In this section, we present a discussion on how model (5)—(12) can be extended to cope with
uncertainties in demand. The choice of demand as the source of uncertainty seems natural in
the case dealt with in this article. Indeed, although the market for ecologically-based crops is
growing, it is still one of the first to be affected in situations of economical crisis or recession
and, therefore, a natural uncertainty in demands do exist.

We propose a two-stage stochastic programming with recourse model to consider this
situation. Stochastic programming models with recourse are adequate when decisions might
be taken in two stages: part of the decision variables must be determined beforehand and part
can be chosen only after a set of random variables is observed. The second set of decision
variables can be used to implement corrective actions with respect to the decisions taken in
the first stage. For details, the reader is referred to Dantzig (1955), Kall and Wallace (1994),
Birge and Louveaux (1997).

In this paper, the stochastic demand is represented through a set of discrete outcomes
seQ=1{1,2,..., 8}, called scenarios, with associated probabilities P = {py, p2, ..., Ps},
such that p; > 0 for all s and ) _, ps = 1. Each scenario s corresponds to a particular
realization of the demand and the probability of occurrence represents the likelihood of that
scenario s, as seen by the specialists or decision makers. Consider the following additional
notation:

dj; = demand of crop i in period j in scenario s;

I ;}” = stock of product i available at period j which has been produced w periods previ-
ously in scenario s;

= amount of demand of product i at period j that is supplied using stocks If;"s in
scenario s;

9;” = quantity of crop i sold at period j that exceeds the demand d;; in scenario s;

w,s

n;;

Gi;‘s = non supplied demand of crop i at period j in scenario s.

Our aim is to find the optimal first-stage decisions regarding land allocation and the
optimal second-stage decisions associated to inventory and demand fulfillment policy. The
two-stage stochastic programming with recourse (or simply recourse model) can be written
as follows.

Max ) D> pileyj(dyy =0, + 6] (22)
seQ ieC jeM
subjectto Y alh =12, ie€C.j=1,.... M seq, 23)
keK
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DM =A (24)
kek

A =r) @7 =y =155
ieCj=1,..Mw=0..G,seQ, (25)
Gi

donlt=di -0 +05, ieCj=1....MseQ (26
w=0

=0, keKk, 27
6;°.05°>0, ieC j=1,....MseqQ, (28)
ni* >0, ieC, j=1,....Mw=0,...,G,s€Q, (29)

Il.'})"gZO, ieC j=1,....M,w=0,...,G;+1,5s € Q. (30)

The revised objective function (22) maximize the expected profit which can be obtained
with the selling of products to meet the demand or the selling of extra production, consid-
ering all scenarios. Constraints (23) associate variables IS."‘ with the harvested quantities of
each crop i at each period j. Since these quantities are scenario-independent, we can re-
place IS.’S by 118' and the set of constraints become independent of s. Constraints (25) are the
stock balance constraints for each scenario s. Constraints (26) control the demand supply,
also for each scenario. Constraints (28)—(30) define the domain of the second-stage decision
variables.

Model (22)—(30) can be solved with a similar column generation approach as the
one described in Sect. 3. Initial set of columns can be now associated with variables
n* 1,0, 0% and the column with the largest reduced cost is found by solving the

ij oo nij 0 Tij i
following problem:

i—0;—1

1,
s
Max z :E : Z § :_ni¢j+r+0,-pirxij_a

ieC jel; r=1 se§ (31)
subject to  (14)—(18).

In the following section, we test the efficiency of model (22)—(30), in terms of computa-
tional burden and with the aid of measures such as the expected value of perfect information
(EVPI) and the value of stochastic solution (VSS), which can give an idea of how beneficial
the use of stochastic models can be in this specific situation (Birge and Louveaux 1997;
Kall and Wallace 1994; Escudero et al. 2007; Alem et al. 2010, e.g.).

5 Computational results

In Sect. 2 we have proposed a linear model with a large number of variables for the SVC-
SPPS while in Sect. 3 a column generation approach has been developed for its resolution.
Later, in Sect. 4, the SVCSPPS model has been extended to cope with uncertainty in de-
mands, with the aid of a two-stage stochastic programming with recourse. This new model
has also been solved with the aid of an adaptation of the column generation developed be-
fore.
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In this section, we run a series of computational tests to analyze the performance of the
algorithms and the impact of allowing the maintenance of stocks and the consideration of
uncertainty in demands. In order to simulate the situations where stocks are not allowed, the
same models were used and the number of periods each product could be kept in stock, G;,
was set to zero for all crops.

We use a planning period of two years, divided in weeks. For each rotation plan, a fallow
of 4 weeks must be respected. The instances are divided in classes according to the parame-
ters related to the size of arable area (500 m?, 1000 m?, 2000 m?, 4000 m?) and the number
of crops (10, 15 or 20). In total, we have 12 groups of instances with 10 instances each.
The demands for the crops were randomly generated taking into account the appropriated
planting and harvesting periods.

The crop-related data is displayed in Appendix and has been obtained at an ecologically-
based production unit situated in the city of Barbacena (21° 13” 30” S and 43° 46° 25” W,
1165 meters above sea level), in the countryside of Brazil. The demand for the crops in all
the periods were randomly generated taking into account planting and harvesting periods of
each crop and making random changes to data collected from that production unit.

The column-generation algorithm has been implemented in C++ and both the master
and the subproblem have been solved with the aid of the commercial package CPLEX 10.1
ILOG (2006). A time limit of 1h has been established for each instance. The tests have been
carried out at a machine under Windows, with 1.66 GHz and 2 Gb of RAM. For all the
experiments, we fixed ¢;; = 1 and C; =0, for all i and j. In this way, the main goal of the
algorithm was to serve the contracted demand.

The results are presented in what follows and are compiled in two subsections, one for
the deterministic case and the other for the stochastic case.

5.1 Results for the deterministic model

In order to analyze the effect of stocks, all instances have also been solved for the situation
where stocks are not allowed. Tables 1 and 2 present the average results for each one of the
12 groups of instances. The tables refer to the situations when no stock is allowed and when
stocking (under the conditions described in Table 7 in Appendix) is allowed, respectively. In
both tables, the results are presented in terms of the time used by the algorithm, the number
of plots in the final solution, the percentage of unmet demand and the extra production (how
much of a product has been produced over the demand, in percentage terms). These results
are presented in the columns time, #plots, %resid, and %extra, respectively.

The computational experiments indicate that the proposed algorithm was able to find
optimal solutions very quickly, both for the situations with and without stocks. In gen-
eral terms, the convergence became harder to achieve as the number of crops increased but
seemed independent on the planting areas considered. Some preliminary tests were run by
varying some other parameters (such as G; or the crop productivities) and the computational
times remained stable.

By comparing the results in Tables 1 and 2, it is possible to see that enabling stocks was
generally responsible for reducing the unmet demand while increasing extra production. The
results confirm our hypothesis that the possibility of keeping some products in inventory
would introduce a higher level of flexibility, allowing the obtention of better solutions. It is
also noteworthy that the computational burden of the new model was not significantly higher.
This shows that the implemented column generation algorithm is flexible and sufficiently
efficient to deal with this more complex model.
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Table 1 Results when no stock is allowed

Group A #crops Time (s) #plots Yoresid Yoextra
1 500 10 53.40 62.40 18.20 69.50
2 15 96.30 93.80 43.10 94.90
3 20 404.10 112.50 66.60 96.40
4 1000 10 15.30 69.80 3.60 56.30

15 184.40 200.70 16.10 89.80
6 20 181.90 121.0 46.60 99.20
7 2000 10 2.70 40.00 0.10 39.10
8 15 94.40 189.20 0.90 72.20
9 20 392.70 349.10 3.40 91.10

10 4000 10 1.10 25.60 0.00 25.60

11 15 19.90 109.50 0.00 55.10

12 20 79.70 218.40 0.00 68.70

Table 2 Results when stock is allowed according to the conditions presented in Table 7

Group A #crops Time (s) #plots Yoresid Yoextra
1 500 10 52.60 52.60 17.90 77.50
2 15 99.70 90.40 43.00 97.30
3 20 406.80 110.40 66.60 97.60
4 1000 10 11.60 38.70 3.50 67.30
5 15 272.40 184.70 15.90 93.20
6 20 220.70 120.20 46.50 99.90
7 2000 10 2.50 21.40 0.10 49.40
8 15 154.40 155.40 0.60 75.40
9 20 918.30 313.40 2.80 93.50

10 4000 10 1.10 15.80 0.00 40.80

11 15 9.00 49.80 0.00 61.90

12 20 61.10 105.40 0.00 72.80

Table 3 presents a summary of the results. The average figures are presented for each
value of the available arable land. We compare the results obtained with and without the
possibility of stocking. The results for the case of stocks are presented in relative terms
with respect to the case without stocks. This can be seen in columns %cp. plots, %cp. resid
and %cp. extra which indicate the percentage comparative number of plots, unmet demand
and extra production. From the table, it becomes clear the enabling stocks was responsible
for reducing the unmet demand while still obtaining an increase in the extra production. In
average terms, a reduction of 5.35% was obtained in the unmet demand with an increase of
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8.97% in the extra production. Note, however, that the value 5.35% is mainly due to the large
reduction obtained for the small residual demand of the case with A = 2000. Considering the
absolute average values without and with the use of stocks (16.54 and 16.40, respectively),
a relative average reduction of 0.85% is observed. If the same calculations are done for the
absolute average values corresponding to extra production, the percentage increase is still of
about 8%.

Table 3 also shows that the solutions obtained when stocks were allowed had a smaller
number of plots. This characteristic is particularly desired since solutions with a very high
number of plots might be impractical in real-life situations (Santos et al. 2010a).

5.2 Results for the stochastic model

To analyze the effect of considering the uncertainty in demands via the recourse model pre-
sented in (22)—(30), we run a series of additional computational tests. Three other scenarios
were generated, considering increases in demand of 20%, 50% and 80% from the data of de-
mand used in the tests for the deterministic problem. Again, two situations were considered:
with and without the possibility of keeping stocks.

When stochastic characteristics are incorporated in a model, it may be important to de-
termine if the recourse model is really justified or, on the contrary, if the uncertainty can
be ignored. To properly investigate this, two measure of uncertainty effects, namely, the ex-
pected value of perfect information (EVPI) and the value of stochastic solution (VSS) are
reported in this paper. Both measures are compared to the optimal objective function value
of the stochastic model, namely, RP value.

The measure EVPI indicates the maximum amount the decision maker is willing to pay
in order to obtain the value of a random variable before making his decision (Birge and Lou-
veaux 1997; Avriel and Williams 1970). It is computed by evaluating the recourse model and
the ‘wait-and-see’ solutions, as follows: (1) solve one problem for each scenario s and ob-
tain the so called wait-and-see solutions, where the first stage decisions are taken to optimize
a single scenario; (2) calculate the expectation over the set of scenarios of the wait-and-see
solutions, WS; (3) compute the estimated value of perfect information as EVPI = WS — RP.

The measure VSS represents the added value of using a stochastic model (Birge 1995).
It compares the solution of the recourse model with the deterministic solution obtained
by replacing all random variables by their expectations. VSS can be computed as follows:
(1) solve the mean scenario problem, EV, where the random variables are replaced by their
expectations; (2) solve the problem with the first stage variables fixed according to EV opti-
mal solution, and obtain the optimal value EEV; (3) determine VSS = RP —EEV. If VSS <€
(where € is a given tolerance), then the stochastic model can be approximated by the EV
problem. Otherwise, there is a profit in using the stochastic model instead of considering
the expected value problem. It is also possible to determine EEV from the solution of the
most probable scenario (Liua et al. 2009) or the scenario that generates the minimum total
revenue in a worst case perspective, for instance.

For both measures EVPI and VSS, we can also define relative statistics, as follows:
VSSr = (RP — EEV)/RP and EVPIr = (WS — RP) /RP.

Tables 4 and 5 summarize the obtained results for the cases without and with stocks,
respectively. In both tables, we present, for each group of instances, the results in terms of the
time spent by the algorithm for solving the recurse problem (time), the percentage of unmet
demand (%resid), the percentage of production over the demand (%extra), EVPI(EVPIr) and
VSS(VSSr) in percentage.

Note that, as in the deterministic case, the model with the possibility of keeping invento-
ries usually presents smaller percentages of unmet demand. This is particularly true for the
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Table 4 Summary of results for model (22)—(30) when stocks are not allowed

Group A Crops Time (s) #plots  %resid  %extra EVPI EVPIr VSS VSSr
1 500 10 66.80  71.90 29.40 78.58 78.88 037 1135.10 3.00
2 15 108.60  99.80 56.13 95.98 121.75 020 1894.10 2.75
3 20 471.00 114.00 73.96 95.86 205.34 042 1457.20 2.23
Average 21547 9523 53.16 90.14 13532 033 1495.50 2.66
1 1000 10 4130  79.10  9.80 66.66 780.77 0.78 1691.80 2.79
2 15 166.00 155.80 29.15 90.70  1413.10 1.16 2949.10 2.48
3 20 21522 127.33  60.95 99.06 182.32 0.12 407520 2.78
Average 140.84 120.74 33.30 85.47 792.05 0.69 2905.40 2.68
1 2000 10 2440 70.70  1.39 53.07 178.20 0.17 4091.80 4.08
2 15 600.00 294.00 7.7505 82.162  564.76 0.29 9999.20 5.94
3 20 1318.80 363.10 23.27 93.54 806.77 0.35 10688.00 4.10
Average 647.73  242.60 10.80 76.26 516.58 0.27 8259.80 4.71
1 4000 10 2.10  33.00 0.02 40.27 0.00 0.00 234820 2.69
2 15 175.10 195.50  0.15 64.82 242.73  0.07 14090.00 5.64
3 20 1102.70  436.20  0.67 76.67  1541.80 0.38 27770.00 7.45
Average 426.63 221.57 0.28 60.59 594.84 0.15 14736.00 5.26

case with the larger area A = 4000, where the percentage of unmet demand drops from 28%
to 20% when stocks are allowed.

With respect to the stochastic efficiency measures EVPI and VSS, the results suggest
that the resolution of a stochastic programming model can effectively help coping with the
uncertainty in demands. Indeed, in most cases the positive figures for both VSS and EVPI
seems to justify the use of this stochastic model instead of the simpler strategy of solving
the problem for the expected demand. Exceptions are found, for example, in group 1 of area
A = 4000, for which the EVPI was null. In these cases, wait-and-see solutions are a good
approximation for the recourse problem.

In all cases, both with and without the possibility of keeping products in inventory, the
VSS figures were positive, with VSSr reaching a gain of 5.2% when A = 4000 and stocks
are not allowed. Moreover, VSS and VSSr values were usually higher for the cases without
stocks, indicating that the ability of keeping stocks can also be used to cope with uncertain-
ties, as it is natural to expect. Also, the average performance of VSS and VSSr was better
for larger areas, suggesting that the expected problem EV gives a bad approximation of the
recourse problem especially in theses situations.

Finally, the figures in the table show once again the efficiency of the proposed column
generation algorithm, which was still able to obtain results in computational times that can
be considered reasonable for a strategic-level planning problem such as the one dealt with
in this article.
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Table 5 Summary of results for model (22)—(30) when stocks are allowed

Group A Crops Time (s) #plots  %resid  %extra EVPI EVPIr VSS VSSr
1 500 10 71.00 6430 28.79 84.24 76.96 0.29 34228 2.18
2 15 14530  90.60 55091 96.72 153.52 024 391.21 0.80
3 20 517.70  112.30 73.89 96.53 260.60 0.49 342.69 0.74
Average 244.67  89.07 52.87 92.49 163.69 0.34 358.73 1.24
1 1000 10 110.10  64.90  9.04 66.51 532.69 0.55 1705.50 2.80
2 15 222.00 14590 28.52 90.04  1270.59 1.02 1578.80 1.60
3 20 288.22 122.44 60.88 99.44 24372 0.17 766.67 0.52
Average 206.77 111.08 32.81 85.33 682.33 058 1350.30 1.64
1 2000 10 31.10 43,50 1.26 54.55 144.67 0.14 4374.60 3.89
2 15 1511.00 277.10  7.50 83.04 427.71 021 8692.40 5.50

20 172450 342.50 23.02 93.48 814.99 0.34 4642.80 2.06
Average 1088.90 221.03 10.59 77.02 462.46 0.23 5903.30 3.82
1 4000 10 430 21.30 0.01 39.27 0.00 0.00 1391.60 1.49
2 15 700.70 161.10  0.11 64.28 154.66 0.04 14224 5.89
3 20 3767.00 376.10  0.49 77.51 1126.35 0.28 27941 7.47
Average 1490.70  186.17  0.20 60.36 427.00 0.11 14519 4.95

6 Conclusions

In this paper, we have studied a vegetable crop rotation problem with demand constraints.
In this problem, given a set of heterogeneous arable lands, one must decide what and when
to produce, while respecting some ecologically-based production constraints. The main new
feature introduced by our model is the possibility of stocking harvested crops. We use time-
dependent variables to cope with the fact that products are perishable and present losses
after each period in inventory. To solve the model, a column generation algorithm has been
developed and tested on a set of instances adapted from real-world data. We also analyzed
the effect of considering uncertainty in demands via a two-stage stochastic programming
with recourse model. The results suggest that the possibility of keeping stocks increases
the ability of the model to meet the demand and that it might be advantageous to take into
consideration uncertainty in demands. Extensions of this research might contemplate both
practical and theoretical aspects. In a practical point of view, the development of graphical
interfaces and open-source versions of the developed codes is necessary in order to give
more autonomy to the cooperatives in using the developed tools. In a more theoretical re-
search line, one might study the consideration of risk into the model to determine robust
production plans, via the use of robust optimization in the sense of Mulvey et al. (1995) or
Bertsimas and Sim (2004), as well as the explicit analysis of other sources of uncertainty
such as prices and, mainly, crop yields given by the stochastic nature of the weather.
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Table 6 Data for the 23 crops: name, botanic family, appropriate planting periods and production time

Crop Botanic family Planting period Production
beginning end time

1 Crisp head lettuce 1 Asteraceae all year round 7

2 Loose leaf lettuce 1 Asteraceae all year round 7

3 Butter head lettuce 1 Asteraceae all year round 7

4 Endive 1 Asteraceae all year round 9

5 Collards 2 Brassicaceae February September 32

6 Broccoli 2 Brassicaceae February October 20

7 Cauliflower 2 Brassicaceae March October 18

8 Beet 3 Chenopodiaceae February September 11

9 Spinach 3 Chenopodiaceae February September 20
10 Zucchini 4 Cucurbitaceae October February 14
11 Pumpkin 4 Cucurbitaceae November January 19
12 Cucumber 4 Cucurbitaceae September March 13
13 Garlic 5 Alliaceae March April 24
14 Onion 5 Alliaceae March July 24
15 Leek 5 Alliaceae April April 12
16 Okra 6 Malvaceae November January 27
17 Tomato 7 Solanaceae all year round 24
18 Carrot 8 Apiaceae all year round 16
19 Parsley 8 Apiaceae October February 21
20 Black velvet bean 9 Leguminosae October January 16
21 Jack bean 9 Leguminosae October February 12
22 Lupine 9 Leguminosae March July 18
23 Hairy vetch 9 Leguminosae March July 20
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Appendix

For the computational experiments, we selected 23 crops which are cultivated at an organic
farming unit in Barbacena, Brazil. Crops 20-23 are used for green manuring. The discretiza-
tion time is one week. Data listed in Tables 6 and 7 are approximations of the real values.
The production time for each crop includes the estimated planting and harvesting periods.
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