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a b s t r a c t 

High school timetabling consists in assigning meetings between classes and teachers, with the goal of 

minimizing the violation of specific soft requirements. This family of problems has been frequently con- 

sidered in the literature, but few strategies employing parallelism have been proposed. In this exploratory 

study, we consider two different parallel frameworks and present a thorough computational study in or- 

der to understand algorithmic decisions that are closely related to performance. Our best algorithm out- 

performs state-of-the-art algorithms for variants of the problem considered, indicating both the efficiency 

and the flexibility of the method. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Educational timetabling problems consist in scheduling encoun-

ers between teachers (or exams) and students. Specific situations

ive origin to different problems, with a richness of characteris-

ics. The scientific literature has branched this family of problems

n three main sub-areas: University course timetabling Di Gaspero,

cCollum, and Schaerf (2007) ; Lewis (2008) ; Lewis, Paechter, and

cCollum (2007) , examination timetabling ( McCollum, McMullan,

urke, Parkes, & Qu, 2007; Qu, Burke, McCollum, Merlot, & Lee,

009 ) and high school timetabling ( De Werra, 1985; Pillay, 2014;

ost et al., 2012; Schaerf, 1999 ). Each of these three families con-

ains their own set of specific constraints. 

In this article, we address the high school timetabling problem

HSTP). A restricted decision version of the HSTP was shown to be

P-complete by polynomial reduction of the 3-SAT problem ( Even,

tai, & Shamir, 1975 ). Instances originating from practical contexts

aturally extend the requirements of this idealized problem. Ex-

ra requirements are usually associated with pedagogical prefer-

nces and social/cultural particularities. Examples of these extra

equirements are the need to assign double lessons (two consecu-

ive lessons) for some classes subjects and the need to obtain com-

act schedules for teachers ( Pillay, 2014 ). 

The HSTP is usually modeled by mixed-integer programming

MIP) models ( Al-Yakoob & Sherali, 2015; Dorneles, de Araújo,

 Buriol, 2014; 2017; Kristiansen, Sørensen, & Stidsen, 2015;

antos, Uchoa, Ochi, & Maculan, 2012; Sørensen & Dahms, 2014 ).
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he resolution of these models for most medium and large prac-

ical instances are known to be still a challenge for actual black-

ox MIP solvers, which may be why most of the literature is

oncerned with metaheuristic techniques ( Pillay, 2014 ). The main

oal in these metaheuristic studies is to develop strategies to gen-

rate good quality solutions within reasonable computational ef-

orts. Recently proposed metaheuristics can be found in Dorneles

t al. (2014) ; Fonseca and Santos (2014) ; Fonseca, Santos, and Car-

ano (2016a) ; Fonseca, Santos, Toffolo, Brito, and Souza (2016c) ;

aviniec, Constantino, Romão, and Santos (2013) . These heuristics

re shown to be efficient in the sense that near-optimal solutions

re consistently found for different input instances. 

In this article, we aim to investigate parallel metaheuristics for

he HSTP, in which different solution methods (agents) are run

oncurrently in different processor threads. The motivation is two-

old. On one hand, the availability of multi-processor machines and

ppropriate coding schemes make the use of parallel algorithms

ore accessible than ever. On the other hand, although the litera-

ure is abundant in parallel solution methods for similar complex

roblems ( Subramanian, Drummond, Bentes, Ochi, & Farias, 2010;

o ̇zejko, Pempera, & Smutnicki, 2013; Sánchez-Oro, Sevaux, Rossi,

artí, & Duarte, 2015; Luque & Alba, 2015 , e.g.), very little atten-

ion has been given to the design of parallel methods for the HSTP

 Abramson, 1991; Abramson & Abela, 1992; Srndic, Pandzo, Dervi-

evic, & Konjicija, 2009 ). The reader is referred to Section 3 for a

loser look at these contributions. 

As an exploratory study, our goal is to investigate a number of

uestions related to the design of parallel metaheuristics in the

ontext of the HSTP. The main research questions can be sum-

arized as: (1) What are good parallel strategies for the HSTP?

2) Can these strategies improve the performance of stand-alone

http://dx.doi.org/10.1016/j.ejor.2017.07.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.07.029&domain=pdf
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(14) 
metaheuristics? (3) Are the proposed parallel metaheuristics com-

petitive with state-of-the-art methods? 

In order to provide some insight into these questions, we

propose a thorough computational study that tests all paral-

lelization schemes resulting from combinations of the following

characteristics: 

Agents cooperation: we wish to test the effect of allowing the

agents to cooperate, by sharing good solutions among threads. 

Diversification: we wish to test the effect of using all agents as

search intensification mechanisms or allowing at least one agent to

diversify the search. 

Agents diversity: we wish to test homogeneous and heteroge-

neous algorithms. An algorithm is homogeneous when all threads

execute the same metaheuristic, and heterogeneous otherwise. 

As stand-alone metaheuristics, we use the iterated local search

from Saviniec et al. (2013) and adapt versions of tabu search, sim-

ulated annealing, and late acceptance strategy. We compare the

performance of the different parallel algorithm variants against

each other, against the stand-alone metaheuristics and against

two state-of-the-art algorithms for close variants of the problem

Dorneles et al. (2014) ; Fonseca et al. (2016a) . 

The remainder of this paper is organized as follows.

Section 2 describes the problem both in plain language and

with the help of a formal mixed-integer programming formula-

tion. Section 3 gives an introduction to different parallelization

schemes and reviews the existing parallel algorithms for the HSTP.

Section 4 explains our parallel metaheuristics. Section 5 presents

our computational experiments and Section 6 concludes this paper

with final remarks and suggestions for further investigations.

An appendix completes this article with details on the used

metaheuristics and their parameter setting procedures. 

2. The high school timetabling problem 

We focus on a real HSTP motivated by Brazilian high schools

timetabling rules. In this context, classes are disjoint groups of stu-

dents enrolled in the same set of subjects (mathematics, chemistry,

e.g.) and with no free periods during the week. The school also has

a set of teachers in its workforce and the goal of the problem is to

obtain weekly timetable specifying the schedule of meetings for

class/teacher pairs. 

Definition 1 (HSTP instance) . A HSTP instance is the input data for

the timetabling construction in a particular shift. It is represented

by the following parameters: 

• C : a set of classes. 
• T : a set of teachers. 
• D : a set of weekdays. 
• H : a set of periods per day. 
• H td : the set of periods in day d ∈ D for which teacher t ∈ T is

available. 
• RL ct : the number of weekly required lessons to be taught by

teacher t ∈ T to class c ∈ C . 
• LM ct : the daily limit for the number of lessons between teacher

t ∈ T and class c ∈ C . 
• RDL ct : the number of consecutive double lessons required for a

pair ( c ∈ C , t ∈ T ). 

An output for the problem can be represented by a set of binary

variables x ctdh for each ( c , t , d , h ) ∈ C × T × D × H . A feasible solution

is an assignment of values to these variables that respects the fol-

lowing hard requirements: 

1. Meeting of weekly required lessons : all required lessons must be

assigned. ∑ ∑ 

x ctdh = RL ct ∀ c ∈ C; t ∈ T (1)
d∈ D h ∈ H 
2. No clashes in classes’ schedules : each class c ∈ C must attend ex-

actly one lesson per period. ∑ 

t∈ T 
x ctdh = 1 ∀ c ∈ C; d ∈ D ; h ∈ H (2)

3. No clashes in teachers’ schedules : each teacher t ∈ T must teach

at most one lesson per period. ∑ 

c∈ C 
x ctdh ≤ 1 ∀ t ∈ T ; d ∈ D ; h ∈ H (3)

4. No assignment of teachers in their unavailable periods : teachers

must not be assigned to periods in which they are unavailable.

∑ 

c∈ C 
x ctdh = 0 ∀ t ∈ T ; d ∈ D ; h ∈ H \ H td (4)

An optimal solution is a feasible solution that minimizes the

enalties associated with the following soft requirements: 

5. No daily workload violation for class/teacher pairs : each

class/teacher pair should meet no more than LM ct times in a

day. For each pair ( c ∈ C , t ∈ T ), daily workloads greater than LM ct

can be measured by auxiliary variables E ctd . 

E ctd ≥
∑ 

h ∈ H 
x ctdh − LM ct ∀ c ∈ C; t ∈ T ; d ∈ D (5)

E ctd ≥ 0 ∀ c ∈ C; t ∈ T ; d ∈ D (6)

6. No holes in schedules of class/teacher pairs : Meetings for a pair

class/teacher should be consecutive within days. A hole is a

period that splits the lessons of a pair class/teacher in non-

consecutive meetings within the same day. For each pair ( c ∈ C ,

t ∈ T ), a hole in period h ∈ { 1 , . . . , | H| − 2 } is flagged by the aux-

iliary variables J ctdh . 

J ctdh ≥ x ctdi − x ctdh + x ctdj − 1 ∀ c ∈ C; t ∈ T ; d ∈ D ;
h = 1 , . . . , | H| − 2 ;
i = 0 , . . . , h − 1 ;
j = h + 1 , . . . , | H| − 1 (7)

0 ≤ J ctdh ≤ 1 ∀ c ∈ C; t ∈ T ; d ∈ D ; h = 1 , . . . , | H| − 2 (8)

7. Meeting of double lessons for class/teacher pairs : All weekly dou-

ble lesson requirements should be met. For each pair ( c ∈ C ,

t ∈ T ), auxiliary variables U ct count the number of unmet weekly

double lessons. 

U ct ≥ RDL ct −
∑ 

d∈ D 

| H|−1 ∑ 

h =1 

W ctdh ∀ c ∈ C; t ∈ T (9)

U ct ≥ 0 ∀ c ∈ C; t ∈ T (10)

In these inequalities, additional auxiliary variables W ctdh are

equal to 1 if a double lesson for pair ( c ∈ C , t ∈ T ) ends in pe-

riod h ∈ { 1 , . . . , | H| − 1 } in day d ∈ D , and equal to 0 otherwise.

These variables can be linked with the original assignment vari-

ables with the following linear constraints: 

W ctdh ≤ x ctdh ∀ c ∈ C; t ∈ T ; d ∈ D ; h = 1 , . . . , | H| − 1 

(11)

W ctdh ≤ x c,t,d,h −1 ∀ c ∈ C; t ∈ T ; d ∈ D ; h = 1 , . . . , | H| − 1 

(12)

W ctdh ≤ 1 − W c,t,d,h −1 ∀ c ∈ C; t ∈ T ; d ∈ D ;
h = 2 , . . . , | H| − 1 (13)

0 ≤ W ctdh ≤ 1 ∀ c ∈ C; t ∈ T ; d ∈ D ; h = 1 , . . . , | H| − 1 
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8. No idle periods in teachers’ schedules : teachers should not have

idle periods while in the school. An idle period is a period dur-

ing which the teacher is not busy, but is busy in earlier and

later periods within the same day. For each teacher t ∈ T , an

idle period in period h k ∈ H td ( k = 1 , . . . , | H td | − 2 ) in day d ∈ D

is flagged by variables J ′ 
tdk 

. 

J ′ tdk ≥
∑ 

c∈ C 
x c,t,d,h i 

−
∑ 

c∈ C 
x c,t,d,h k 

+ 

∑ 

c∈ C 
x c,t,d,h j 

− 1 ∀ t ∈ T ; d ∈ D ;

k = 1 , . . . , | H td | − 2 ;
i = 0 , . . . , k − 1 ;
j = k + 1 , . . . , | H td | − 1 ;
h i , h k , h j ∈ H td (15) 

0 ≤ J ′ tdk ≤ 1 ∀ t ∈ T ; d ∈ D ; k = 1 , . . . , | H td | − 2 (16) 

In these inequalities, unavailable periods are not computed as

idle periods. Inequalities (15) are similar to inequalities (7) ,

which identify holes for class/teacher pairs, except that we omit

variable J ′ for periods in which the teachers are unavailable. For

example, consider that the set of periods is H = { 0 , 1 , 2 , 3 , 4 }
and suppose that a teacher t ∈ T is not available to teach at pe-

riods 0 and 1 within a day d ∈ D , then H td = { 2 , 3 , 4 } . Now, only

variable J ′ 
t,d, 3 

and related constraints are considered. 

9. Minimum number of weekly working days for teachers : Teachers

should be scheduled to come to school the minimum possible

number of days. For each teacher t ∈ T , auxiliary variables ̂ D td 

flag if he/she works in day d ∈ D . 

̂ D td ≥
∑ 

c∈ C 
x ctdh ∀ t ∈ T ; d ∈ D ; h ∈ H td (17) 

0 ≤ ̂ D td ≤ 1 ∀ t ∈ T ; d ∈ D (18) 

0. Balancing on teachers’ unnecessary working days : the compact-

ness on working days should be balanced among teachers. This

requirement can be modeled by several strategies, as discussed

in Burget and Rudová (2016) . We consider the worst schedule

among teachers. An auxiliary variable β measures the maxi-

mum number of extra days of work among all teachers’ sched-

ules. The extra days of work for teachers are the difference be-

tween the number of days they are assigned to work and the

minimum number of days that they could be assigned and still

meet their teaching requirements. We use a lower bound on

the minimum number of working days for a teacher t , given by

MD t = 

⌈ ∑ 

c∈ C RL ct 

| H| 
⌉ 

. 

β ≥
∑ 

d∈ D 

̂ D td − MD t ∀ t ∈ T (19) 

β ≥ 0 (20) 

The goal of the problem is to minimize the weighted sum of the

iolations of soft requirements. A complete mixed-integer program

an thus be written as 

inimize α5 

∑ 

c∈ C 

∑ 

t∈ T 

∑ 

d∈ D 
E ctd +α6 

∑ 

c∈ C 

∑ 

t∈ T 

∑ 

d∈ D 

| H|−2 ∑ 

h =1 

J ctdh +α7 

∑ 

c∈ C 

∑ 

t∈ T 
U ct 

+ α8 

∑ 

t∈ T 

∑ 

d∈ D 

| H td |−2 ∑ 

k =1 

J ′ tdk + α9 

∑ 

t∈ T 

∑ 

d∈ D 

̂ D td + α10 · β (21) 
t  
Subject to 

(1) − (20) 

 ctdh ∈ { 0 , 1 } ∀ c ∈ C; t ∈ T ; d ∈ D ; h ∈ H (22) 

n which weights α5 –α10 are adjusted to represent the school

references. 

The formulation is an adaptation of the one proposed by Souza

20 0 0) , with the addition of soft requirements 6 (no holes in

lass/teacher meetings) and 10 (balancing on teachers’ unneces-

ary working days). Also, unlike in Souza (20 0 0) , the daily workload

imit for class/teacher pairs is considered as a soft requirement. 

We also use the additional cuts (23) proposed by Souza (20 0 0) ,

hich specify that a teacher t cannot work less than the minimum

umber of working days MD t . 
 

d∈ D 

̂ D td ≥ MD t ∀ t ∈ T (23) 

. Existing parallel algorithms for the HSTP 

Metaheuristics can be classified into population-based (PB) and

rajectory-based (TB) methods ( Alba, Luque, & Nesmachnow, 2013 ).

opulation-based metaheuristics are characterized by keeping a

ool of solutions (genetic algorithms, ant colony optimization, and

article swarm optimization, e.g.). The method starts with an ini-

ial population and employs, at each step, stochastic operators to

volve toward better quality populations. According to Alba et al.

2013) , two classical parallel algorithm frameworks have been used

or population-based metaheuristics 

• Parallel individuals evaluation (PB-PIE) : each individual in the

population can be evaluated in parallel. 
• Parallel islands (PB-PI) : the initial population is split into a set

of subpopulations (islands) in which a sequential algorithm can

be employed. In this framework, the islands often exchange in-

dividuals among each other to diversify the subpopulations and

prevent early convergence. 

Trajectory-based metaheuristics are characterized by methods 

hich employ a single current solution. The method starts with

n initial solution and at each step, goes through neighborhoods of

he current solution tracing trajectories in the search space of the

roblem. Some well-known metaheuristics in this class are: sim-

lated annealing, tabu search, iterated local search, and variable

eighborhood search. Three classical parallel algorithm frameworks

ave been used in the literature for trajectory-based metaheuristics

ccording to Alba et al. (2013) : 

• Parallel moves (TB-PM) : the neighborhood of a current solution

is explored in parallel. This is usually implemented by a man-

ager/workers technique. At each step, the manager replicates

the current solution to a set of parallel workers, each worker

then computes the objective function of one of the neighboring

solutions and returns it to the manager, who takes decisions. 
• Move acceleration (TB-MA) : the objective function of a single so-

lution is evaluated in parallel. This framework is an attractive

approach when the sequential function evaluation is both time-

consuming and can be decomposed into small parts to be com-

puted in parallel. 
• Parallel multi-start (TB-PMS) : several asynchronous threads of

trajectory-based methods run simultaneously to compute high-

quality solutions. These threads may be homogeneous (same

method) or heterogeneous (distinct methods). They may or may

not cooperate with each other. Also, they may start from the

same solution seed or from different ones. 

Luque and Alba (2015) state that parallel strategies for

rajectory-based methods have been less studied than for
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Fig. 1. Parallel multi-start metaheuristic frameworks. 
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population-based ones. For HSTP, we have found only three stud-

ies related to parallel metaheuristics. Abramson (1991) proposed

a simulated annealing which employs a series of locks to en-

able several processes to perform simultaneous moves in the same

timetable data structure (TB-PM). Abramson and Abela (1992) pro-

posed a genetic algorithm that, at each step, generates and eval-

uates individuals in parallel (PB-PIE). Srndic et al. (2009) proposed

a genetic algorithm approach in which the global population is di-

vided into small subpopulations that are managed by different pro-

cesses (PB-PI). 

In this paper, we focus on trajectory-based methods. Specifi-

cally, we propose parallel multi-start methods for the HSTP using

as agents a sequential iterated local search ( Lourenço, Martin, &

Stützle, 2003 ), a tabu search ( Glover, 1990 ), a simulated annealing

( Kirkpatrick, Gelatt, & Vecchi, 1983 ) and a late acceptance strategy

( Burke & Bykov, 2008 ) metaheuristics. Details of these metaheuris-

tics are presented in the Appendix. In the next section, we concen-

trate on the parallel algorithms. 

4. Proposed parallel metaheuristics 

The proposed algorithms follow the trajectory-based parallel

multi-start (TB-PMS) scheme described in the previous section and

employ manager/workers strategies with shared memories. We

propose the use of two main strategies. The first is based on cen-

tral memory ( Crainic, Gendreau, Hansen, & Mladenovi ́c, 2004 ) and

the second is based on diversification and intensification memories

( Jin, Crainic, & Løkketangen, 2014 ). 

4.1. Central memory based 

The central memory based (CMB) framework, shown in Fig. 1 (a),

has a central memory which keeps up to X solutions, a manager

procedure, N metaheuristic worker agents and two synchroniza-

tion buffers, input and output. The main idea in this framework

is that a group of metaheuristic agents can execute concurrently

while possibly cooperating with each other by means of an ex-

change of current solutions. This exchange is done via the central

memory, which keeps a set of elite solutions. 

Each agent pulls a solution from the input buffer, operates on it

for a parameter-defined amount of time, and then returns the best

found solution to the output buffer. The manager is responsible for

implementing the policies which will determine the exchange of

solutions between the two intermediate buffers (input and output)

and the central memory. 
In our implementations with this framework, the following

olicies are adopted: 

• Memory initialization : the central memory is initialized with

solutions generated by the constructive heuristic described in

Algorithm 1 , see the Appendix. 
• Input selection : a solution is randomly selected from the central

memory and put into the input buffer whenever requested by

an agent. 
• Output acceptance : when the manager retrieves a solution Z r 

from the output buffer, the solution Z r is compared sequen-

tially with solutions in the central memory. A first improve-

ment strategy is adopted, i.e., the first visited solution that is

worse than or equal to Z r is replaced. If no solution meets this

criterion, then Z r is discarded. 
• Agents’ execution time : each of the N agents is allowed to run

for Y seconds before pushing its best solution into the out-

put buffer and requesting a new solution from the input buffer.

Short execution times define high levels of cooperation among

agents while long execution times define more independent

agents. 

.2. Diversification-intensification memory based 

The diversification-intensification memory based (DIMB) frame-

ork, shown in Fig. 1 (b), is an extension of the CMB framework.

he central memory is now divided into a ‘diversification memory’

nd an ‘intensification memory’. The first memory keeps a set of

on-elite solutions to diversify the search while the second keeps

 set of elite solutions. 

One agent is responsible for providing diversified solutions

o the diversification memory while all others aim at finding

ood quality solutions. The details of our implementation are as

ollowing: 

• Memory initialization : the two memories are initialized with

solutions generated by the constructive heuristic described in

Algorithm 1 . 
• Input selection : whenever requested by an agent, a solution is

selected from the diversification memory with probability ρ
and from the intensification memory with probability ( 1 − ρ). 

• Output acceptance : when the manager retrieves a solution Z r 
from the output buffer, it accepts the solution into the inten-

sification memory if it is better than or equal to a solution

randomly chosen in the intensification memory, otherwise Z r is

discarded. 
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• Agents’ execution time : each of the N − 1 intensification agents

is allowed to run for Y seconds before pushing its best solution

into the output buffer and requesting a new solution from the

input buffer. 
• Diversification memory update : The solutions of this memory are

continuously replaced by solutions with better or equivalent

quality generated by the diversifier agent during run-time. The

diversifier is, usually, a metaheuristic with slow convergence or

that quickly converges to poor local optima and keeps doing

plain moves (moving to other solutions with the same quality).

In our implementation, the diversifier agent is a late acceptance

strategy metaheuristic with plain moves and set with parame-

ters that lead to premature convergences. Whenever the late

acceptance strategy updates its current solution Z c , the solution

Z c is compared with a random solution Z d in the diversifica-

tion memory. If Z c is better or equal to Z d in terms of objective

value, the metaheuristic replaces Z d by Z c . 

In the next Section, we test these two frameworks with sev-

ral parameter configurations. We investigate cases in which the

gents are homogeneous or heterogeneous and with independent

r cooperative search. 

. Computational experiments 

In this section, we conduct a thorough computational study in

rder to evaluate the performance of the proposed parallel meth-

ds. All algorithms were coded in C++ and compiled with GNU

ompiler Collection 4.4.7. The experiments were made on a server

unning Red Hat Enterprise Linux 6.5 . The hardware is composed of

wo CPU Intel Xeon E5-2680v2 (2.8 gigahertz) and 128 gigabytes of

AM. To implement parallelism we employed the POSIX Threads

ibrary (Pthreads) available in the GNU Compiler Collection. The

roposed MIP model was implemented with Concert Technology

ibraries from IBM ILOG CPLEX 12.5. In all experiments reported,

he metaheuristics are allowed to execute during a time limit of

25 seconds and 25 trials (different seeds) are used for each in-

tance. The seeds were generated by standard C++ libraries and we

sed the same seeds for every metaheuristic configuration. 

The experiments have been set up in two phases: in Section 5.1 ,

e compare the different proposed methods against each other.

he following tests are executed (the appropriated subsection

here the results can be found is indicated): 

5.1.1 Tests with the CMB parallel framework proposed in

Section 4.1 . 

5.1.2 Tests with the DIMB parallel framework proposed in 

Section 4.2 . 

5.1.3 Tests comparing the best sequential and parallel algorithm 

configurations. 

Then, in Section 5.2 , we compare the best configuration found

ith results obtained by the MIP solver CPLEX applied to the

ormulation proposed in Section 2 . The best configuration is also

dapted and compared with state-of-the-art literature methods for

wo close variants of the problem proposed here: 

5.2.1 Tests comparing our best algorithm against CPLEX. 

5.2.2 We compare our best algorithm with the solver winner of

the Third International Timetabling Competition (ITC2011). 

5.2.3 We compare our best algorithm with approaches reported

to the HSTP proposed by Souza (20 0 0) . 

The interested reader is referred to the Appendix, where the

sed stand-alone metaheuristics are described along with the pro-

edure we used for setting the best parameters. 
.1. Comparisons among proposed methods 

For tests 5.1.1 –5.1.2 , we use the reduced set of six instances

rom Table A.4 , which were used to calibrate the sequential

etaheuristics in Section A.6 in the Appendix. For tests 5.1.3 , we

se all 34 instances described in Table A.4 . 

.1.1. Analysis of results for CMB parallel metaheuristics 

The two parallel frameworks CMB and DIMB described in

ection 4 generate different algorithms for different combinations

f metaheuristic agents. Also, agents with short execution times

parameter Y ) generate cooperative searches while agents with

arge execution times lead to independent searches. In this sec-

ion, we analyze algorithms which include homogeneous, het-

rogeneous, cooperative and independent agents. We assess how

uch these parallel algorithms are better than the sequential

nes and how cooperation can play a role in the quality of

olutions. 

We first analyze four cases of CMB parallel metaheuristics. In

ach case, the agents are homogeneous threads of one of the meta-

euristics ILS, TS, SA or LAS. For each case, we tested configura-

ions in which the central memory contains X = (1, 4, 8, 16, 32)

olutions and agent time Y = (1, 2, 5, 10, 30, 90, 315, 625) seconds.

ases with homogeneous (HM) ILS showed the overall best results.

Fig. 2 plots the best configurations with homogeneous ILS. In

his figure and all the remaining figures in this paper, the y -axis

epresent normalized objective values obtained as follows. Let Z j 
e a timetable solution for the j -th instance, then its normalized

bjective value is given by NOV (Z j ) = f (Z j ) / f (Z ∗
j 
) . Where f (Z ∗

j 
)

s a benchmark objective value for instance j , which can be a

ower bound or a best known solution. As at each point x , each

etaheuristic collects 25 samples for each instance, the final y -

alue in a point x is the median of the instances’ median sample.

n these charts, the reference line ( y = 1 ) represents the bench-

ark objective value f (Z ∗
j 
) . In other words, the charts summa-

izes the results for all instances and indicates, for each time point,

ow close or far the algorithm median solutions are from the

enchmark value, providing insights on the algorithm convergence

ates. 

The figure plots the two best configurations with cooperative

gents ( thin lines ) which were HM-ILS-1-30 with ( X , Y ) = (1, 30)

nd HM-ILS-4-30 with ( X , Y ) = (4, 30), the best configuration with

ndependent agents ( blue-thick line ) which is HM-ILS-4-625 with

 X , Y ) = (4, 625) and the best sequential metaheuristic, the stand-

lone ILS ( red-thick line ). These results indicate that parallel ver-

ions with homogeneous agents provide better quality solutions

n less computational time than sequential versions. We also ob-

erved this fact in the experiments using TS, SA and LAS as agents.

n Fig. 2 , we also observe that after 400 seconds, configurations

ith cooperative ILS agents perform slightly better than their in-

ependent counterparts. 

Fig. 3 plots the best configurations with homogeneous TS ( black

ines ) and LAS ( blue lines ). We also plot the results of the stand-

lone ILS in order to provide a common benchmark among differ-

nt charts. The figure shows that configurations with cooperative

gents ( thin lines ) perform significantly better than configurations

ith independent agents ( thick lines ). 

On the other hand, for SA, cooperative agents performed worse

han independent agents. This is shown in Fig. 4 , where the

hin line plots the best configuration with cooperative agents,

he blue-thick line represents the best configuration with inde-

endent agents and the black-thick line is the best sequential

A. These results probably indicate that more sophisticated tun-

ng procedures need to be used for the parallel SA, in order

o balance the diversification provided by the parallel contribu-
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Fig. 2. Best results for CMB with homogeneous ILS agents (4 threads). 

Fig. 3. Best results for CMB with homogeneous TS and LAS agents (4 threads). 
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characteristic. 
tion and the natural diversification structure of the SA for high

temperatures. 

For CMB algorithms with heterogeneous agents, we tested the

case in which there is one agent thread for each metaheuristic ILS,

TS, SA and LAS. 

The TS agent was set with parameters ( stSize , tbTime ) = (100,

100), SA with ( T 0 , α, stSize , ε) = (100, 0.9999, 25, 1) and LAS

with ( lsSize , stSize ) = (100, 100). These parameters were chosen

based on our sequential experiments and considering a trade-

off between fast convergences and good quality of solutions. As

before, we tested configurations with central memory sizes X =
(1, 4, 8, 16, 32) and agent times Y = (1, 2, 5, 10, 30, 90, 315, 625). In
ig. 5 , we plot the two best configurations with cooperative agents

 thin lines ) which were ( X , Y ) = (1, 10) and (1, 30) and the best con-

guration with independent agents ( blue-thick line ) which is ( X , Y )

 (1, 625). We observe that, configurations with cooperative agents

 thin lines ) perform better than configurations with independent

gents ( blue-thick line ). Nevertheless, no heterogeneous configura-

ion presented better results than the homogeneous ILS configura-

ion HM-ILS-1-30 , plotted in black-thick line in Fig. 5 . 

Finally, it is interesting to see how all best versions used the

entral memory with a single solution, indicating a strong elitism
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Fig. 4. Best results for CMB with homogeneous SA agents (4 threads). 

Fig. 5. Best results for CMB with heterogeneous agents (4 threads). 
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.1.2. Analysis of results for DIMB parallel metaheuristics 

In this section, we analyze a case of DIMB parallel metaheuris-

ics in which the intensifier agents are several threads of ILS, which

roved earlier to be the best sequential intensifier agent. As for di-

ersification, our preliminary tests showed that the LAS is able to

uickly converge to local optima with quality levels near to 10%

orse than the benchmark values and keep moving to other solu-

ions with the same quality. Based on these results, the LAS with

arameters ( lsSize , stSize ) = (10 0 0, 25) was chosen as our diversi-

er agent. 

The DIMB algorithm was tested with four intensifiers (with

 single solution in the intensification memory) and diversi-
cation memories with sizes X D = (1, 4, 8, 16, 32) com-

ined with probabilities ρ = (0.05, 0.10, 0.20, 0.25, 0.50).

he best result were obtained with configuration X D = 8

nd ρ = 0.05. We also tested this configuration with nine-

een intensifier threads. In Fig. 6 , we show these two config-

rations (algorithms DIMB-4I1D-8-0.05 and DIMB-19I1D-8-0.05) 

nd the best configuration of the CMB obtained earlier (algo-

ithm HM-ILS-1-30). Comparing algorithms DIMB-4I1D-8-0.05 and 

M-ILS-1-30, we observe that the scheme with diversification-

ntensification memories (DIMB) presents a better performance

han the scheme with central memory (CMB). Fig. 6 also shows
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Fig. 6. Best results for DIMB parallel metaheuristics. 

Fig. 7. Results of the best parallel algorithm DIMB-19I1D-8-0.05 compared to results of the best sequential ILS in all 34 instances from Table A.4 . The asterisk symbols ( ∗) 

represent outliers (best or worst solutions). 
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that increasing the number of threads has a beneficial effect on

performance. 

5.1.3. Sequential versus parallel metaheuristics 

Fig. 7 plots the distribution of the instances’ median samples

for parallel and sequential algorithms for the 34 instances from

Table A.4 . This analysis provides some insight on the algorithms’

robustness throughout the whole set of instances. 

The best solutions of the sequential ILS were used as bench-

mark values. We observe that, the parallel algorithm solutions af-

ter 81 seconds are statistically equivalent (supported by a Kruskal–

Wallis test for the equality of medians) to those of the sequential
LS algorithm after 400 seconds, which is the time when the se-

uential ILS stagnates. Apart from being faster, the parallel algo-

ithm is also more robust than the sequential one in all instances,

s it presents less scattered distributions. 

.2. Comparisons with state-of-the-art algorithms 

In this section, we aim to provide evidence that the proposed

arallel algorithm presents state-of-the-art results not only for the

igh school timetabling problem described in Section 2 , but also

or close variants of the problem which were already studied in

he literature. 
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Table 1 

Results of algorithm DIMB-19I1D-8-0.05 compared to results of CPLEX in all 34 

instances from Table A.4 . 

CPLEX (after 3 h) DIMB-19I1D-8-0.05 (after 625 s) 

ID LB UB Gap Median Gap Best Gap 

1 878 1275 31.14 970 9.48 950 7.58 

2 874 1190 26.55 970 9.90 950 8.00 

3 913 1295 29.50 1020 10.49 1010 9.60 

4 910 1270 28.35 10 0 0 9.00 990 8.08 

5 835 960 13.02 870 4.02 870 4.02 

6 1070 1390 23.02 1100 2.73 1080 0.93 

7 1642 2535 35.23 1880 12.66 1810 9.28 

8 950 950 0.00 1030 7.77 980 3.06 

9 1036 1320 21.52 1170 11.45 1130 8.32 

10 420 420 0.00 420 0.00 420 0.00 

11 1375 1895 27.44 1530 10.13 1450 5.17 

12 1396 2140 34.77 1600 12.75 1530 8.76 

13 420 420 0.00 420 0.00 420 0.00 

14 1176 1720 31.63 1360 13.53 1300 9.54 

15 395 395 0.00 395 0.00 395 0.00 

16 584 750 22.13 650 10.15 640 8.75 

17 529 670 21.04 590 10.34 580 8.79 

18 443 480 7.71 460 3.70 460 3.70 

19 350 360 2.78 360 2.78 360 2.78 

20 431 500 13.80 470 8.30 470 8.30 

21 1364 2235 38.97 1550 12.00 1480 7.84 

22 1012 1255 19.36 1095 7.58 1055 4.08 

23 2423 14085 82.80 2790 13.15 2670 9.25 

24 2526 11045 77.13 2970 14.95 2860 11.68 

25 1301 1610 19.19 1400 7.07 1340 2.91 

26 732 980 25.31 780 6.15 750 2.40 

27 716 890 19.55 750 4.53 730 1.92 

28 1458 2090 30.24 1620 10.00 1590 8.30 

29 1457 2090 30.29 1620 10.06 1590 8.36 

30 1451 2205 34.20 1640 11.52 1600 9.31 

31 1436 2200 34.73 1640 12.44 1590 9.69 

32 1270 2080 38.94 1440 11.81 1410 9.93 

33 1284 1930 33.47 1460 12.05 1430 10.21 

34 1268 2050 38.15 1450 12.55 1410 10.07 

Avg.: 26.23 8.68 6.49 
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.2.1. Comparison with CPLEX 

In this section, we compare the best parallel algorithm DIMB-

9I1D-8-0.05 with CPLEX results in the 34 instances from Table A.4 .

Table 1 shows the lower and upper bounds obtained by CPLEX

fter 3 hours of computational time, as well as the optimality gap.

t also shows the median and best solutions (out of 25 runs) of

he DIMB best configuration found earlier. CPLEX could prove op-

imality for instances 8, 10, 13 and 15 and presented small gaps

or instances 18 and 19. With the exception of instance 8, our al-

orithm median solutions showed gaps (computed using the best

ower bound provided by CPLEX after 3 hours) that are smaller

han or equal to gaps obtained by CPLEX. In average, our gaps (me-

ian case) are three times smaller than the CPLEX’s gaps. 

.2.2. The Brazilian HSTP solved in the ITC2011 

We compare our parallel algorithm DIMB-19I1D-8-0.05 with

he GOAL solver ( Fonseca et al., 2016a ). This method was the

inner of the Third International Timetabling Competition ( Post,

i Gaspero, Kingston, McCollum, & Schaerf, 2016 ) devoted to high

chool timetabling problems, ITC2011 1 . It provides a pool of meth-

ds to solve timetabling problems from different countries. The

atest version of this solver ( Fonseca, Santos, & Carrano, 2016b ),

hich was used for these comparisons, employs a three-phase

pproach. At the first phase, the KHE software library ( Kingston,

015 ) is employed to obtain a starting solution. This solution is

efined by a parallel Variable Neighborhood Search metaheuristic
1 https://www.utwente.nl/ctit/hstt/ . 
VNS) at the second phase. Finally, the output of VNS is further

efined with Fix-and-optimize MIP heuristics. 

In this experiment, we consider the Brazilian HSTP described in

nstances of the ITC2011, named here as XHSTT-BV. These instances

odel the requirements 1 to 6 as hard constraints and require-

ents 7 to 9 as soft constraints. As requirement 10 is not defined

n the XHSTT format, it is ignored here. We use weighting parame-

ers α3 = α4 = 10 0 0 0 0 , α5 = 10 0 0 0 , α6 = 50 0 0 , α7 = 1 , α8 = 3 and

9 = 9 . Our methods were adapted to cope with these modifica-

ions. 

Table 2 presents the results of 25 runs of both algorithms for

he 34 instances from Table A.4 . Both algorithms were set with 20

hreads and a time limit of 625 seconds. As suggested by the au-

hors of GOAL, additional parameters of their solver were set to

efault values (alg-timelimit = 62, form-timelimit = 62, initial-

oln = KHE, algorithm = SVNS, formulation = FIXOPT, formfixopt-

resources = 5 and formfixopt-optinarow = 5). The table also

ncludes the results of CPLEX (time limit of 3 hours) for the

IP program generated by the model from Section 2 adjusted to

he new variant. Bold fonts highlight the best solutions found.

hese results show that CPLEX solved to optimality only instances

 and 13 and proved infeasibility for instances 15 and 22. In-

tances 10 and 26 were proven optimal by using the heuristic

olutions. 

Table 2 also shows that our algorithm outperforms GOAL, both

n terms of median and best solutions. Our algorithm only per-

ormed worse than GOAL in instance 8. The probable reason is

hat this instance has a large number of teachers’ unavailable pe-

iods, in which it is expected that MIP neighborhoods (such those

mployed in GOAL) will perform better than conventional neigh-

orhood approaches (such the one employed in our algorithm).

e also note that the average gap of our median solutions (3.54

) is smaller than the average gap of the best solutions of GOAL

4.47 %). 

In Fig. 8 , we focus on the computational time spent by the

lgorithms. The chart shows the distribution of the instances’

edian solutions generated by DIMB-19I1D-8-0.05 after 25 and

25 seconds and the results of GOAL solver after 625 seconds. A

ruskal–Wallis test for the equality of medians was run and in-

icated that the solutions generated by our parallel strategy af-

er 25 seconds are of better quality than those of GOAL after

25 seconds. 

.2.3. The HSTP proposed by Souza (20 0 0) 

Finally, our best algorithm is adapted to deal with the HSTP

roposed by Souza (20 0 0) . As mentioned in Section 2 , in this prob-

em soft requirements 6 (no holes in class/teacher pairs) and 10

balancing on teachers’ unnecessary working days) are ignored and

equirement 5 is considered as a hard requirement. 

For these experiments, we consider a set of seven instances 2 

hich have been used in the literature ( Table 3 ). This problem

as been addressed in previous articles ( Dorneles et al., 2014;

antos, Ochi, & Souza, 2005; Santos et al., 2012; Saviniec et al.,

013; Souza, Ochi, & Maculan, 2003 ) which have contributed to

nding the instances optimal values. The state-of-the-art algo-

ithms for this problem are based on Fix-and-optimize heuris-

ics ( Dorneles et al., 2014 ) and sequential ILS based metaheuris-

ics ( Saviniec et al., 2013 ). The Fix-and-optimize heuristics were re-

orted to find optimal solutions in each instance, on time limits

ithin 10 to 60 minutes in a computer with processor Intel Core

5-2300 (2.8 gigahertz) and 4 gigabytes of RAM, running Linux OS.

he ILS metaheuristics were reported to find optimal solutions in

ach instance, on a time limit of 15 minutes in a computer with
2 http://labic.ic.uff.br/Instance/index.php?dir=SchoolTimetabling . 

https://www.utwente.nl/ctit/hstt/
http://labic.ic.uff.br/Instance/index.php?dir=SchoolTimetabling
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Table 2 

Results of algorithm DIMB-19I1D-8-0.05 compared to results of the GOAL solver in the XHSTT-BV problem for the 34 instances 

described in Table A.4 . 

CPLEX (after 3 hours) DIMB-19I1D-8-0.05 (after 625 seconds) GOAL (after 625 seconds) 

ID LB UB Gap Median Gap Best Gap Median Gap Best Gap 

1 682 810 15.80 710 3.94 700 2.57 730 6.58 716 4.75 

2 682 802 14.96 711 4.08 701 2.71 730 6.58 716 4.75 

3 717 926 22.57 749 4.27 743 3.50 770 6.88 762 5.91 

4 716 928 22.84 743 3.63 735 2.59 768 6.77 749 4.41 

5 629 648 2.93 631 0.32 631 0.32 648 2.93 642 2.02 

6 755 945 20.11 777 2.83 772 2.20 814 7.25 800 5.63 

7 1200 1376 12.79 1270 5.51 1239 3.15 1312 8.54 1297 7.48 

8 675 675 0.00 698 3.30 686 1.60 682 1.03 676 0.15 

9 799 865 7.63 827 3.39 814 1.84 838 4.65 829 3.62 

10 298 300 0.67 298 0.00 298 0.00 300 0.67 298 0.00 

11 943 1108 14.89 1005 6.17 985 4.26 1052 10.36 1024 7.91 

12 1002 1078 7.05 1044 4.02 1030 2.72 1048 4.39 1034 3.09 

13 273 273 0.00 273 0.00 273 0.00 273 0.00 273 0.00 

14 923 1029 10.30 954 3.25 939 1.70 971 4.94 949 2.74 

15 Infeasible 

16 475 523 9.18 484 1.86 481 1.25 498 4.62 490 3.06 

17 454 499 9.02 461 1.52 457 0.66 468 2.99 462 1.73 

18 310 325 4.62 319 2.82 319 2.82 324 4.32 319 2.82 

19 251 254 1.18 254 1.18 254 1.18 254 1.18 254 1.18 

20 310 349 11.17 325 4.62 325 4.62 328 5.49 325 4.62 

21 1041 1149 9.40 1074 3.07 1058 1.61 1107 5.96 1091 4.58 

22 Infeasible 

23 1791 2541 29.52 1910 6.23 1867 4.07 2013 11.03 1971 9.13 

24 1941 2615 25.77 2079 6.64 2038 4.76 2171 10.59 2128 8.79 

25 908 1086 16.39 944 3.81 926 1.94 987 8.00 966 6.00 

26 570 583 2.23 576 1.04 570 0.00 603 5.47 584 2.40 

27 551 569 3.16 556 0.90 552 0.18 566 2.65 560 1.61 

28 1101 1363 19.22 1150 4.26 1127 2.31 1183 6.93 1167 5.66 

29 1090 1371 20.50 1145 4.80 1127 3.28 1187 8.17 1168 6.68 

30 1111 1418 21.65 1164 4.55 1142 2.71 1203 7.65 1175 5.45 

31 1110 1371 19.04 1165 4.72 1137 2.37 1195 7.11 1181 6.01 

32 996 1221 18.43 1043 4.51 1024 2.73 1069 6.83 1063 6.30 

33 987 1308 24.54 1047 5.73 1034 4.55 1078 8.44 1060 6.89 

34 975 1250 22.00 1041 6.34 1015 3.94 1070 8.88 1056 7.67 

Avg.: 13.11 3.54 2.32 5.87 4.47 

Fig. 8. Results of algorithm DIMB-19I1D-8-0.05 after 25 and 625 seconds compared to results of the GOAL solver after 625 seconds in the XHSTT-BV problem. 
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Fig. 9. Results of algorithm DIMB-19I1D-8-0.05 on instances proposed by Souza (20 0 0) . 

Table 3 

Features of instances proposed by Souza (20 0 0) . The last three columns show the 

total number of required lessons, the total number of required double lessons and 

the optimal objective values, respectively. The objective function weighting param- 

eters are: α3 = α4 = 10 0 0 0 0 , α5 = 10 0 0 0 , α7 = 1 , α8 = 3 and α9 = 9 . 

ID | C | | T | | D | | H | �c ∈ C , t ∈ T RL ct �c ∈ C , t ∈ T RDL ct Optimal value 

1 3 8 5 5 75 21 202 

2 6 14 5 5 150 29 333 

3 8 16 5 5 200 4 423 

4 12 23 5 5 300 41 652 

5 13 31 5 5 325 71 762 

6 14 30 5 5 350 63 756 

7 20 33 5 5 500 84 1017 
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rocessor Intel Xeon E7-4860 (2.26 gigahertz) and 30 gigabytes of

AM, running Windows OS. 

In Fig. 9 , we analyze the distribution of the instances’ median

amples generated by our parallel algorithm DIMB-19I1D-8-0.05.

he instances optimal values described in Table 3 were used as

enchmark values. We observe that, in the median case, the algo-

ithm converges to optimal solutions in any instance within a time

imit of 49 seconds. These results show that our algorithm is very

obust to these instances and it is competitive with the state-of-

he-art approaches. 

. Conclusions 

In this paper, we conducted an extensive study with par-

llel trajectory-based metaheuristics for high school timetabling

roblems. Our study analyzed several aspects related to the de-

ign of these algorithms. In particular, we studied the homogene-

ty/heterogeneity of agents, the influence of intensification and di-

ersification memories, and the frequency of information exchange

mong agents. 

Our most efficient algorithm was obtained with the inclusion of

 diversification memory, a very elitist central memory (only the

est current solution was kept), short agent times which favored

xchange of information between threads with frequent restarts
nd multiple copies of the same metaheuristic agent (an Iterated

ocal Search procedure). This configuration was able to consistently

btain good quality solutions for the problem at hand and also out-

erformed state-of-the-art algorithms for two variants of it. These

ariants ignored specific requirements or considered some of them

s hard instead of soft constraints. 

These results suggest that the proposed method is efficient and

obust with respect to the enabling/disabling of constraints. This

atter characteristic is particularly envisaged for HSTP algorithms

ince practical problems usually contain specific requirements. Our

xploratory study limited itself to simulations with only four meta-

euristic agents in which the threads had static execution times.

urther research is aimed at exploring more flexible frameworks,

n which other metaheuristics can be included and the agents’ ex-

cution times can be self-calibrated according to the search history.
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ppendix A. Description and tuning of the stand-alone 

etaheuristics 

In this appendix, we describe our sequential metaheuristics

or the HSTP. We discuss the data structure proposed to encode

imetables, the neighborhood structure, the heuristic used to con-

truct initial solutions and the objective function evaluation. The

seudo-code for each metaheuristic and tuning procedures are also

resented. 

.1. Timetable encoding 

Trajectory-based metaheuristics frequently modify copies of the

urrent or global best solution. However, some algorithms do not

http://dx.doi.org/10.13039/501100005288
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Fig. A.10. Proposed timetable encoding for the HSTP. 
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modify the whole copy, keeping parts that are identical to that

of the previous solution. To avoid the duplication of unnecessary

data (parts of the data structure that are copied but not modified),

we designed a new timetable encoding to HSTP based on persistent

data structures ( Kaplan, 2005 ). In a persistent data structure, each

modification generates a new version of the structure, keeping the

previous version accessible. There are several consolidated meth-

ods to make a data structure persistent ( Driscoll, Sarnak, Sleator,

& Tarjan, 1989 ). One of these methods is based on structural shar-

ing . The idea is to share with the new copy, parts of the original

structure that remain unchanged. 

To apply this approach, we designed the encoding shown

in Fig. A.10 , in which S represents an array of all timeslots

( d , h ) ∈ D × H . Each position of S points to an array of integer val-
Fig. A.11. The TQ neighborhood generation w
es. In each of these arrays, the first position stores the ID of the

eacher assigned to class 0, the second position stores the teacher

ssigned to class 1, and so on. The next section explains how this

imetable encoding is applied to generate the used neighborhoods.

.2. Neighborhood structure 

We use a two-swap operator which, for a given class c ∈ C , ex-

hanges the teachers assigned to two different timeslots. Feasibility

n hard requirements 1 (meeting of weekly required lessons), 2 (no

lashes in classes’ schedules) and 3 (no clashes in teachers’ sched-

les) is maintained with the use of the Torque Neighborhood Oper-

tor (TQ) proposed in Saviniec et al. (2013) . The TQ acts as a Kempe

hain Interchange ( Lü, Hao, & Glover, 2011 ) that uses the idea of

onflict graph and effects a series of consecutive swaps until there

re no clashes in teachers nor classes’ schedules. 

Fig. A.11 shows examples of TQ moves with the encoding

cheme proposed in Section A.1 . The TQ operator is applied to a

artial solution Z shown in Figure A.11 (a). The conflict graph in

ig. A.11 (b) identifies valid moves (connected components) in or-

er to avoid clashes. The teachers assigned to classes c 0 and c 1 
re swapped between timeslots s 0 and s 1 . In the generated neigh-

oring solution Z 1 , timeslots s 0 and s 1 point to new arrays while

emaining timeslots share the current arrays. Note that the ar-

ays not changed in the move are shared between both solutions.

igs. A .11 (c) and A .11 (d) show that to operate or modify only times-

ots s 0 , s 1 and s 2 , we do not need to copy the whole solution Z . 

We employ this neighborhood generation scheme in all sequen-

ial and parallel metaheuristics proposed in this paper. 
ith the proposed timetable encoding. 
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Algorithm 3 Pseudo-code of the sequential TS. 

TS (Z 0 , t imeOut , t bT ime, stSize ) 

1 Z = Z 0 
2 Z ∗ = Z 0 
3 iter = 0 

4 while ( elapsedT ime < t imeOut ) { 

5 i = Take an integer in [0 , | SP | − 1] 

6 f best = ∞ 

7 i best = −1 

8 Z best = ∅ 
9 for ( j = 1 to stSize ) { 

10 Compute the connected components for lessons in 

timeslots pair sp i of Z 

11 for (each connected component) { 

12 Generate a new neighboring solution Z ′ from Z 

13 if ( f (Z ′ ) ≤ f best and 

IsNotTabu ( f (Z ′ ) , i, iter, tbT ime ) ) { 

14 f best = f (Z ′ ) 
15 i best = i 

16 Z best = Z ′ 
17 } 

18 } 

19 i = (i + 1) mod | SP | 
20 } 

21 Insert the tuple ( f (Z) , i best , iter) into the tabu list 

22 if ( f best ≤ f (Z ∗) ) { 
23 Z ∗ = Z best 

24 } 

25 Z = Z best 

26 it er = it er + 1 

27 } 

28 return Z ∗

 

b  

p

 

f  

t  

o  

t

 

l  

p

A

 

I  

(

 

0  

w  

a

A

 

s  

(  

t  

t  

e  
.3. Initial solutions 

Our initial solutions are constructed by the randomized heuris-

ic described in Algorithm 1 . This heuristic receives an input list

 of pairs ( c ∈ C , t ∈ T ), in which each entry represents one lesson

o be scheduled. At each iteration, the heuristic selects a lesson

rom the list and assigns it to a timeslot that is randomly selected

mong the free timeslots. This heuristic always generates solutions

hat are feasible for hard requirements 1 and 2. 

.4. Objective function evaluation 

Our metaheuristics are allowed to work in an infeasible space

lgorithm 1 Pseudo-code of the constructive heuristic. 

olution-Generator (L ) 

1 Initialize an empty solution Z 

2 for each ( e ∈ L ) { 

3 i = Take an integer in [0 , | S| − 1] 

4 while ( class e.c is busy in timeslot s i ) { 

5 i = (i + 1) mod | S| 
6 } 

7 Assign teacher e.t to class e.c in timeslot s i 
8 } 

9 return Z 

lgorithm 2 Pseudo-code of the sequential ILS. 

LS (Z 0 , t imeOut ) 

1 Z ∗ = Z 0 
2 while ( elapsedT ime < t imeOut ) { 

3 Z = Perturbation (Z ∗) 
4 do { 

5 best = f (Z) 

6 i = Take an integer in [0 , | SP | − 1] 

7 for ( j = 1 to | SP | ) { 
8 Compute the connected components for lessons

in timeslots pair sp i of Z 

9 for (each connected component) { 

10 Generate a new neighboring solution Z ′ 
from Z 

11 if ( f (Z ′ ) ≤ f (Z) ) { 

12 Z = Z ′ 
13 } 

14 } 

15 i = (i + 1) mod | SP | 
16 } 

17 } while ( f (Z) < best) 

18 if ( f (Z) ≤ f (Z ∗) ) { 
19 Z ∗ = Z 

20 } 

21 } 

22 return Z ∗

y relaxing constraints (3) and (4) and penalizing their violations

n the objective function with high penalties to enforce feasibility.

he objective function is augmented by 

inimize f (Z) = (21) + 

4 ∑ 

i =3 

αi · V i (A.1)
This expression is the objective function (21) plus the num-

er of violations V i , for hard requirements 3 and 4, weighted with

enalty parameters αi . 

As the constructive heuristic ( Algorithm 1 ) always generates

easible solutions with respect to hard requirements 1 and 2, and

his is maintained by the neighborhood operator TQ, then only vi-

lations of hard requirements 3 and 4 are considered in the objec-

ive function. 

In our implementations, we use incremental evaluation of so-

utions. The algorithms are designed to evaluate only the changed

arts whenever a new move is performed. 

.5. Sequential metaheuristics for HSTP 

Our sequential metaheuristics to the HSTP include versions of

terated Local Search (ILS), Tabu Search (TS), Simulated Annealing

SA) and Late Acceptance Strategy (LAS). 

We define SP as the array of all timeslot pairs ( s i , s j ), for i, j =
 , . . . , | S| − 1 and i 
 = j . Therefore, neighborhoods are defined by the

ay in which the timeslot pairs are explored in SP . Each of our

lgorithms may search this array in a different way. 

.5.1. Iterated local search 

The pseudo-code of the implemented sequential iterated local

earch is shown in Algorithm 2 . At each iteration of the outer loop

from line 2 to line 21), it makes a random perturbation (line 3) in

he current solution, followed by a local search (loop from line 4

o line 17). The local search starts in a random index i of SP and

valuates the next | SP | consecutive timeslot pairs. For each index,
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Algorithm 4 Pseudo-code of the sequential SA. 

SA (Z 0 , t imeOut , T 0 , α, stSize, ε) 

1 Z = Z 0 
2 Z ∗ = Z 0 
3 T = T 0 
4 while ( T ≥ ε and elapsedT ime < t imeOut ) { 

5 i = Take an integer in [0 , | SP | − 1] 

6 for ( j = 1 to stSize ) { 

7 Compute the connected components for lessons in 

timeslots pair sp i 
8 for (each connected component) { 

9 Generate a new neighboring solution Z ′ from Z 

10 � = f (Z) − f (Z ′ ) 
11 if ( � ≥ 0 ) { 

12 Z = Z ′ 
13 if ( f (Z ′ ) < f (Z ∗) ) { 
14 Z ∗ = Z ′ 
15 } 

16 } else { 

17 k = Take a continuous value in [0 , 1] 

18 if ( k ≤ e �/T ) { 

19 Z = Z ′ 
20 } 

21 } 

22 } 

23 i = (i + 1) mod | SP | 
24 } 

25 T = α · T 

26 } 

27 return Z ∗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 5 Pseudo-code of the sequential LAS. 

LAS (Z 0 , t imeOut , lsSize, stSize ) 

1 Z = Z 0 
2 Z ∗ = Z 0 
3 for ( j = 0 to lsSize − 1 ) { 

4 L j = f (Z 0 ) 

5 } 

6 v = 0 

7 while ( elapsedT ime < t imeOut ) { 

8 i = Take an integer in [0 , | SP | − 1] 

9 for ( j = 1 to stSize ) { 

10 Compute the connected components for lessons in 

timeslots pair sp i 
11 for (each connected component) { 

12 Generate a new neighboring solution Z ′ from Z 

13 if ( f (Z ′ ) ≤ f (Z) or f (Z ′ ) ≤ L v ) { 

14 Z = Z ′ 
15 if ( f (Z ′ ) < L v ) { 

16 L v = f (Z ′ ) 
17 } 

18 if ( f (Z ′ ) < f (Z ∗) ) { 
19 Z ∗ = Z ′ 
20 } 

21 } 

22 v = (v + 1) mod lsSize 

23 } 

24 i = (i + 1) mod | SP | 
25 } 

26 } 

27 return Z ∗
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it generates the connected components according to what was dis-

cussed in Section A.2 . If it finds a connected component that gen-

erates an improved solution, then the new solution is accepted.

These steps are repeated while an improved solution is found after

exploring | SP | consecutive indexes 3 . The Perturbation procedure,

in line 3, returns a random neighboring solution of the global best

solution Z ∗. This is equivalent to select a random index k of SP ,

construct the conflict graph for lessons assigned in timeslots sp k of

the solution Z ∗ and make a random TQ move with the associated

connected components. 

A.5.2. Tabu search 

The pseudo-code of the implemented sequential tabu search is

shown in Algorithm 3 . At each iteration of the outer loop (from line

4 to 27), the algorithm searches the best neighbor of the current

solution Z . The best neighbor is accepted if it is better or equal

to the global best solution Z ∗. The search starts in a random in-

dex i of SP , as in the ILS, and evaluates a strip of SP defined by

the next stSize consecutive timeslot pairs. Only moves that are not

tabu are accepted. A tabu move is a tuple ( f , index , iter ), where f is

the objective function value before the move, index is the index of

SP in which the move was made, and iter is the iteration in which

the move was made. The parameter tbTime is the number of itera-

tions in which a move remains tabu (the aspiration criterion). The

procedure IsNotTabu (line 13) checks if a move is tabu and also,

removes those moves in which the tabu time has expired. 
3 The algorithm iterates through the indexes of SP in a circular fashion as in a 

circular linked list. 

r  

S

 

i  
.5.3. Simulated annealing 

The pseudo-code of the implemented sequential simulated an-

ealing is shown in Algorithm 4 . The code follows a standard SA

ramework. However, instead of selecting each new neighboring

olution randomly, as in standard SA, the algorithm chooses a ran-

om index of SP , as a starting point, and searches the next stSize

onsecutive timeslot pairs. The outer loop (from line 4 to 26) con-

rols the temperature level and stops after a time-out is reached

r the temperature T reaches a small value given by parameter ε.

he remaining steps are those from a standard SA framework. Pa-

ameters T 0 and α are the initial temperature and the cooling rate,

espectively. 

.5.4. Late acceptance strategy 

The last sequential metaheuristic proposed is a late acceptance

trategy, for which a pseudo-code is presented in Algorithm 5 . The

AS is a recent metaheuristic approach ( Burke & Bykov, 2008 ) that

aintains a list L of size lsSize which records the objective values

f the last lsSize accepted solutions. The main idea of the LAS is

o compare the current solution with a previous current solution

ecorded in L ( Burke & Bykov, 2008 ). In our version of the LAS, the

eighborhood is searched by strips, as in our versions of TS and SA

escribed above. 

.6. Parameter tuning 

In this section, we report the computational experiments car-

ied out to calibrate the sequential metaheuristics described in

ection A.5 . 

Table A.4 presents a list of 34 instances to the HSTP described

n Section 2 . These instances were collected in 13 Brazilian high
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Table A.4 

Features of the 34 real instances from Brazilian high schools. The columns present the number of classes, teachers, days, periods per day, total number of required lessons 

and total number of consecutive double lessons required in each instance. 

ID Instance | C | | T | | D | | H | �c ∈ C , t ∈ T RL ct �c ∈ C , t ∈ T RDL ct 

1 CL-CEASD-2008-V-A 12 27 5 5 300 132 

2 CL-CEASD-2008-V-B 12 27 5 5 300 132 

3 CL-CECL-2011-M-A 13 31 5 5 325 144 

4 CL-CECL-2011-M-B 13 31 5 5 325 143 

5 CL-CECL-2011-N-A 9 28 5 5 225 107 

6 CL-CECL-2011-V-A 14 29 5 5 350 164 

7 CM-CECM-2011-M 20 51 5 5 500 234 

8 CM-CECM-2011-N 8 30 5 5 200 96 

9 CM-CECM-2011-V 13 34 5 5 325 142 

10 CM-CEDB-2010-N 5 17 5 5 125 60 

11 CM-CEUP-2008-V 16 35 5 5 400 192 

12 CM-CEUP-2011-M 16 38 5 5 400 192 

13 CM-CEUP-2011-N 3 15 5 5 75 36 

14 CM-CEUP-2011-V 16 34 5 5 400 169 

15 FA-EEF-2011-M 4 12 5 5 100 42 

16 JNS-CEDPII-2011-M 8 19 5 5 200 85 

17 JNS-CEDPII-2011-V 7 21 5 5 175 73 

18 JNS-CEJXXIII-2011-M 5 18 5 5 125 60 

19 JNS-CEJXXIII-2011-N 4 15 5 5 100 48 

20 JNS-CEJXXIII-2011-V 5 18 5 5 125 60 

21 MGA-CEDC-2011-M 19 37 5 5 475 210 

22 MGA-CEDC-2011-V 12 31 5 5 300 131 

23 MGA-CEGV-2011-M 31 62 5 5 775 352 

24 MGA-CEGV-2011-V 32 75 5 5 800 357 

25 MGA-CEJXXIII-2010-V 16 35 5 5 400 192 

26 MGA-CEVB-2011-M 10 21 5 5 250 108 

27 MGA-CEVB-2011-V 9 20 5 5 225 97 

28 NE-CESVP-2011-M-A 18 45 5 5 450 212 

29 NE-CESVP-2011-M-B 18 44 5 5 450 212 

30 NE-CESVP-2011-M-C 18 45 5 5 450 211 

31 NE-CESVP-2011-M-D 18 45 5 5 450 211 

32 NE-CESVP-2011-V-A 16 44 5 5 400 183 

33 NE-CESVP-2011-V-B 16 43 5 5 400 184 

34 NE-CESVP-2011-V-C 16 43 5 5 400 182 

Fig. A.12. Results of sequential TS for different parameter configurations. 
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Fig. A.13. Results of sequential SA for different parameter configurations. 

Fig. A.14. Results of sequential LAS for different parameter configurations. 
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schools in the State of Paraná ( Saviniec & Constantino, 2017 ). The

following weighting parameters are used in the objective func-

tion for these instances: α3 = α4 = 10 0 0 0 0 , α5 = 10 0 , α6 = 25 and

α7 = α8 = α9 = α10 = 10 . To these experiments, we select a subset

of the 34 instances to analyze and tune the sequential metaheuris-

tics. The reduced set of instances comprises: two small (10 and 13),

two medium (6 and 26) and two large (7 and 24) instances. 

Figs. A .12 –A .15 present charts of normalized objective values

over time for different algorithm configurations. The x -axis (time

in seconds) is in quadratic scale. Objective values were collected
 o  
or each time x = i 2 seconds, for i = 1 , ..., 25 . The y -axis are nor-

alized objective values obtained as follows. Let Z j be a timetable

olution for the j -th instance, then its normalized objective value is

iven by NOV (Z j ) = f (Z j ) / f (Z ∗
j 
) . Where f (Z ∗

j 
) is a benchmark ob-

ective value to instance j , which can be a lower bound or the best-

nown solution. As at each point x , each metaheuristic collects 25

amples for each instance, the final y -value in a point x is the me-

ian of the instances’ median sample. In these charts, the reference

ine ( y = 1 ) represents the benchmark objective value f (Z ∗
j 
) . In

ther words, the charts summarize the results for all instances and
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Fig. A.15. Best configurations for sequential metaheuristics. 
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C  
ndicate, for each time point, how close or far the algorithm me-

ian solutions are from the benchmark value, providing insights

nto the algorithm convergence rates. 

.6.1. Results 

We tested a number of different values to calibrate parameters

f TS, SA and LAS. The following values were tested: 

• TS: tbTime = (5, 10, 25, 50, 10 0, 20 0, 40 0, 60 0) and stSize = (5,

10, 25, 50, 100, 300, 600). 
• SA: T 0 = (10 0, 50 0, 10 0 0), α = (0.99, 0.9999), stSize = (1, 5, 10,

25, 50, 100, 300, 600) and ε = 0. 
• LAS: lsSize = (10 0, 50 0, 10 0 0, 50 0 0, 10 0 0 0) and stSize = (1, 5,

10, 25, 50, 100, 300, 600). 

We analyze the behavior presented by different combinations of

he above parameter values. Fig. A.12 shows the TS configurations

btained. The results indicate that the TS is very sensitive to the

ize of the neighborhood explored (parameter stSize ). Small and

arge values for stSize lead the TS to converge to poor quality so-

utions. An appropriated value is around 100. Also, the best values

or the tabu aspiration criterion (parameter tbTime ) were observed

o be between 10 and 100. These results suggest that the TS meta-

euristic must be carefully calibrated with respect to neighborhood

izes. 

Fig. A.13 shows the behavior of the SA for different configura- 

ions. The algorithm seems to be most sensitive to the cooling

ate parameter. A good choice was α = 0 . 9999 . We observed that

ven small negative perturbations in this value could worsen con-

ergence rates. Also, we observed that when the SA tended to be

urely random, with small values for parameter stSize , the SA con-

erged to poor quality solutions. On the other hand, when stSize

ended to large values, the SA converged to better solutions, al-

hough with a slower convergence rate. In Fig. A.13 we plotted only

onfigurations for α = 0.9999. Configurations for α = 0.99 per-

ormed as badly as purely random configurations. 

Fig. A.14 shows the LAS configurations. The results show that

AS is not sensitive to the way in which the neighborhood is

xplored, parameter stSize . On the other hand, its convergence
trongly depends on the length of the list of late accepted solu-

ions, parameter lsSize . Large size lists lead the algorithm to con-

erge to better quality solutions, however, the convergence is slow.

Fig. A.15 plots the best observed configurations for TS with ( tb-

ime , stSize ) = (25, 100), SA with ( T 0 , α, stSize ) = (100, 0.9999, 300)

nd LAS with ( lsSize , stSize ) = (50 0 0, 30 0) together with the ILS re-

ults. The benchmark value for an instance j is the objective value

f (Z ∗
j 
) of the best solution Z ∗

j 
found in the experiments with these

equential algorithms. The chart in Fig. A.15 shows that ILS and TS

resented better results than SA and LAS, in general. The median

bjective values of the four algorithms after 625 seconds of execu-

ion are 2.2% (ILS), 3.6% (TS), 6.8% (SA) and 8.3% (LAS) worse than

he benchmark values. While SA and LAS take 625 seconds to reach

olutions that are around 7 to 8% worse than the benchmark val-

es, ILS and TS compute solutions with the same quality in less

han 80 seconds. Also, we note that ILS perform slightly better in

uality than TS. 
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