
Makespan Minimization on Parallel Processors:
An Immune-Based Approach

A. M. Costa, P. A. Vargas, F. J. Von Zuben, P. M. Franqa
School of Electrical and Computer Engineering State University of Campinas - UNICAMP

C.P. 6101 13083-270 Campinas - SP - Brazil
email: alyssonQdensis.fee.unicamp.br, pvargasQdca.fee.unicamp.br,

vonzubenQdca.fee.unicamp.br, francaQdensis.fee.unicamp.br

Abstract - This work deals with the problem of
scheduling jobs to identical parallel processors with
the goal of minimizing the completion time of the last
processor to finish its execution (makespan). This
problem is known to be NP-Hard. The algorithm
proposed here is inspired by the immune systems of
vertebrate animals. The advantage of combinatorial
optimization algorithms based on artificial immune
systems is the inherent ability to preserve a diverse
set of near-optimal solutions along the search. The
results produced by the method are compared with
results of classical heuristics.

I. INTRODUCTION

The problem of minimizing the makespan while
scheduling jobs to identical parallel processors is a clas-
sical combinatorial optimization problem. Following the
%field classification scheme proposed by Graham et al.
[l], this problem is denoted by PllCmaz. The goal is to
distribute the jobs amongst the processors, in a way that
the makespan, i.e., the ending time of the last job in the
most loaded processor, is as low as possible. In 1974,
Bruno et al. [2] showed that this problem is NP-Hard
and, therefore, there is no polynomial-time algorithm to
obtain the optimal solution.

Several heuristic methods have been proposed for this
problem, including the Longest Processing Time (LPT)
[3] and the Multifit [4], both classified as constructive
methods, i.e., heuristics that obtain solutions through
additive steps, trying to improve the current solution gain
at each step. Lee and Massey [5] hybridized these two
heuristics and obtained results always better than the
ones obtained by each heuristic individually.

Besides constructive heuristics, improvement heuris-
tics are also abundant in the literature. These heuristics
are designed for improving the results, via modifications
in an initial solution [6]-[B]. Ho and Wong [6] used meth-
ods based on lexicographic search, able to find the opti-
mal schedule in the two-processors case as an improve-

ment algorithm for the general case. FranGa et al. [B]
proposed a 3-phase algorithm that uses a new job clas-
sification scheme which avoids, in the constructive and
improvement phases, the use of sorting. Computational
tests showed that 3-phase found better results than LPT
and Multifit.

Classical heuristics strategies, like Tabu Search, have
also been adopted to search for near optimal solutions to
the problem. Piersma and Dijk [9], for instance, studied
the problem focusing on the effect of the tabu neighbor-
hood.

More recently, as for other combinatorial problems,
there has been a tendency toward using evolutionary al-
gorithms. Min and Cheng [lo] proposed a genetic algo-
rithm for this problem. Cheng and Gen [ll] proposed a
memetic algorithm to the extended problem of consider-
ing the jobs’ execution times sequence-dependent.

In this work, we present a new search algorithm for
the problem, based on the way the vertebrate immune
system works. Artificial Immune Systems (AIS) [12], [13]
are used in several domains of engineering, in particular
in scheduling problems [14]-[16]. In this work, we extend
the ideas proposed by De Castro and Von Zuben [17] to
adapt the AIS mechanisms to our scheduling problems.

The results obtained are compared with the results of
the following heuristics: LPT, Multifit (both followed by
a local search heuristic) and Simulated Annealing.

In the next section, we formally define the problem.
In section 3, we briefly present the heuristics to be com-
pared. In section 4, the proposed method is detailed.
The instance set and the computational results are pre-
sented in sections 5 and 6, respectively. Conclusions are
outlined in section 7.

11. PROBLEM DEFINITION

The problem of scheduling jobs to identical parallel
processors consists of executing n jobs in m identical par-
allel processors. All the jobs must be run once and the
completion time of the last processor to finish execution

0-7803-7282402l$10.00 02002 IEEE 920

must be the lowest possible.
In mathematical terms, given a set of n numbers, we

must group them into m subsets in a way that each num-
ber is in one and only one subset, and the sum of the
elements of the biggest subset is as low as possible.

A mathematical formulation is given below:

Minx M

It is clearly a mixed-integer optimization problem
where:

M is the makespan,

X is a n x n matrix with binary elements,

1,
xii = 0, otherwise

pi is the ith job size .

if job i is placed on processor j {
The first restriction assures that it4 is the makespan

of the problem while the second assures that all jobs are
executed only once.

111. THE HEURISTICS TO BE COMPARED

In this section, we briefly describe the heuristics used
for comparisons with the method to be proposed. The
constructive heuristics are presented first, followed by the
local search adopted to improve their performance. Fi-
nally, the Simulated Annealing method is outlined.

A. Longest Processing Time (LPT)

The constructive heuristic LPT consists in sorting the
jobs, by size, in a descending order and, then, scheduling
the jobs, one by one, to the processor with the current
least load.

B. Multifit

The Multifit heuristic, as the LPT, sort the jobs by size in
a descending order. However, instead of scheduling each
job to the least loaded processor, it tries to schedule the
jobs to the same processor, until it is not possible to put
jobs in the processor without exceeding its capacity C
(optimization parameter). Only then, it goes to the next
processor. The process continues until there is no more
processors or jobs, i.e.:

all the jobs have
been placed in one of the processors. It means the

1 - no more jobs to be placed:

makespan of the problem is less or equal to the
actual capacity C. C is reduced and the process
restarts, trying to find a smaller makespan.

2 - no more processors and still jobs to be placed: it
was not possible to execute all jobs considering that
the processors had a capacity C. C is increased and
the process restarts.

After N iterations the process terminates and the best
solution is chosen.

C. Local Search (LS)

A local search heuristic is used to improve the solutions
obtained by the constructive heuristics.

The neighborhood generation mechanism is defined
as all pairs of jobs, laying in processors with different
charges, one of which must be the most loaded one.

The local search consists in visiting the pairs of jobs
and accepting a change if it reduces the difference in
charge of the two processors. Once a change has been
made, the neighborhood is reconstructed and the search
is restarted.

The search is interrupted when the whole neighbor-
hood has been visited and no improvement was made
(local optimum).

D. Simulated Annealing (SA)

Search strategies based on SA are widely used as combi-
natorial problem solvers [18]-[20]. It consists of a search
strategy that, in a few words, allows the escape of local
optima by accepting changes that degrade the solution if
these changes satisfy one acceptation fuction.

The SA algorithm used in this work is presented bel-
low:

Simulated Annealing

Chose an initial Solution S = SO;
T = To, To 2 0; t = 0;
Repeat:

n=O;
Repeat:

Take the next element, S,,, in N (S) ;

if 6 < 0 then S = S,

else, do S = S,, with a probability e T ;
n = n + l ;

while n < N .
t = t + l ;

6 = f(SW) - f(S);
- 6

T = T (t) ;
while stopping criteria is not satisfied.

O-7803-7282402/% 10.00 @ZOO2 lEEE 92 1

The neighborhood N (S) is the same one adopted in
the local search and the initial solution used was given
by the LPT rule.

IV. ARTIFICIAL IMMUNE SYSTEMS

The Vertebrate Immune System acts defending the or-
ganism against invaders (antigens) and has several de-
sired features for optimization purposes, like robustness,
flexibility, learning ability and memory. These character-
istics are frequently useful in scheduling problems. Some
examples of applications of AIS to scheduling can be
found in [14]-[16].

Mori et 01. [14] used an AIS for controlling a semicon-
ductor production line. In their work, the control of the
production line was done by a set of agents (named de-
tector, mediator, inhibitor and restoration agents). Each
agent interacted with the production line and with the
other agents. The way this interaction occurred was
based on the vertebrate immune system.

Hart et a2. [15] worked with the job-shop problem,
with the goal of minimizing the maximum tardiness.
Each solution (a complete schedule) was an antibody.
The proposed algorithm constructed these antibodies
from a set of libraries. These libraries were previously
evolved using a genetic algorithm. Once the libraries
were defined, 1000 individuals were evaluated and 1000
clones of the best individual found were generated. The
clones were mutated and the best clone found was se-
lected as the solution of the problem.

Russ et al. [16] created an AIS model for task allo-
cation in computer systems. The goal was to design a
system capable of adapting to a changing environment.
This was done in a way similar to the one proposed in
[14]. Agents interacted with the system and amongst
themselves as the B-cells and T-cells do in the natural
immune system.

In this work, as in [15], we map the scheduling pos-
sibilities in a string of integers, and use these strings as
antibodies of our AIS. The evolution of these antibod-
ies in the AIS follows, basically, two principles: Clonal
Selection (CS) and Affinity Maturation (AM). The CS
principle dictates that the best defense cells (antibodies)
should be selected to be cloned. The newly generated
cells undergo hypermutation (a mutation with high prob-
ability) and receptor editing [21], [22], guiding to a pro-
cess of Afsnity Maturation. This principle is so called
because the processes of mutation with high rates, to-
gether with selection, allow the immune system cells to
improve their affinities with the recognized antigens. The
number of clones is proportional to the antibody afFmity
(level of antigen matching), while the rate of mutation
is inversely proportional to the affinity of the parent cell

with the recognized antigen.
The CS and the AM principles are processes that occur

simultaneously: during the CS process, each newly gener-
ated cell goes through a blind variation process, whereas
during the AM process, the ones that best match the
invaders (antigens) are selected.

Optimization operators may be modeled based on
these principles. In this paper, we used an adaptation of
one of the proposals of the literature, known as CLON-
ALG [17]. In this algorithm, candidate solutions for a
problem are coded. After that, selection and mutation
operators are applied. The simplified algorithm is de-
scribed below :

Algorithm for Clonal Selection and Affinity Maturation
Create a population of k antibodies (feasible solutions to
the problem);

For each generation, do:
For each antibody, do:

decode the antibody;
determine the antibody affinity;

determine the number of clones of each antibody;
determine the number of mutations;
do cloning and mutation;
For each clone, do:

decode the clone;
determine the clone f f i i ty ;
if dn(c1one) > &(antibody) + antibody =

clone;
while stopping criterion = false.

For the PIIC,,, problem, each feasible solution, i.e.,
a complete schedule, was coded in a string of fixed size n
(n = number of processes). Each position on the string
is associated with a process. The value of each position
i indicates the machine where the process is allocated.

Each antibody (solution) of the population has an
affinity. This affinity, as illustrated in the equation bel-
low, reflects the quality of the solution.

LB
Affinity(k) =

(1 + M (k) - LB)

where
M (k) is the makespan of the solution represented by

the antibody IC and LB is a lower bound of the problem.
In this paper, we have used the solution to the problem

with preemption (i.e., allowing the split of jobs into two
or more processors) as lower bound. This lower bound is
calculated by the sum of all job processing times divided
by the number of processors.

The denominator in the d n i t y expression states that
for solutions where M(k) is closer to LB - i.e., the solution

0-7803-7282-4/02/$10.00 82002 IEEE 922

Difference between the affinity
of antibody k and the affinity
of the current best antibody.

> 0.003

Numb. of mutations
per antibody

9

....~

< 0.00001 I 2

.

0.002 - 0.003
0.001 - 0.002
0.0005 - 0.001
0.0004 - 0.0005
0.0003 - 0.0004

0.00001 - 0.0003

TABLE I
NUMBER OF MUTATIONS PER ANTIBODY

8
7
6
5
4
3

The number of clones was given by the following equa-
tion:

N C (k) = 5 . - N M (k)) + 1

Where N C (k) is the number of clones of antibody k,
Nm,, is the maximum number of mutations that can
be applied to a cell (9, in this paper), and N M (k) is the

number of mutations of each cell generated from antibody
k .

This expression was chosen in order to give the less
evolved individuals, i.e., with higher number of muta-
tions (see Table I), a few clones and vice versa. The
numbers were selected in a way that the individuals with
the maximum mutation rate had just one clone and indi-
viduals with the minimum mutation rate had 36 clones.
Intermediary individuals had a number of clones between
these two values.

The use of the antibodies affinity t o estimate the num-
ber of newly generated cells and the mutation rate to be
adopted for each cell is an inherent aspect of an immune-
based approach.

The stopping criterion was a given number of genera-
tions with no improvement on the best solution. Another
criterion used was the end of the available time for each
instance, as explained in section VI.

V. INSTANCE SET GENERATION

For the computational experiments, two groups of in-

In the first group, for each combination of
keK, with i < j, we generated 10 instances

stances were used.

i d , jd,
as described below:

the instance has i processors;
the instance has j jobs;
the processing time of the jobs obeys an uniform

In this paper, we worked with the sets I = {5,10,25},
J = {10,50,100,500,1000} and K = {100,1000,10000}.
We generated 10 instances for each possible combination,
yielding a total of 390 instances. Optimal solutions for
these instances were obtained by solving a sequence of
bin packing problems within a bisection search scheme
(see F’ranca et al. [8] for details). We also worked with
another five instances with a stepwise distribution, pro-
posed by Graham [3]. This distribution generates worst-
case instances for the LPT algorithm.

The second group of instances has been borrowed from
a similar problem, the number partitioning problem, in
which there are only two processors. The set of instances
was especially generated in a way that the best local min-
ima - and consequently the optima - are located in very
deep valleys.

These instances are expected to be very difficult to
solve for many algorithms, especially because of the val-
ues of the jobs’ processing times (in the order of 10 digits
long) [23]. We used 25 instances, all with two processors
and 15, 35, 55, 75 or 95 jobs.

distribution in the interval [l, k] .

0-7803-7282~lO2B 10.00 02002 IEEE 923

VI. RESULTS

The maximum computational time for the optimiza-
tion of each instance was given by 13 . Zog(13) Zog(n2),
where n is the number of jobs of the instance. This time
only limits the execution of the Artificial Immune Sys-
tems. All the other heuristics had execution times lower
than the maximun time given.

The algorithms were coded in JAVA and executed in
a Sun workstation Ultra 1.

Table I1 shows the results (% of optimal solutions
found) for the first group of instances. The number of op-
timal solutions found by each method appears in paren-
thesis. The table also shows the total time used for the
optimization of all instances in this group.

Method I % optima I Total time (9)]

Multifit
22 % (88)

1986
AIS 88 % 1346) 10402

r I Simulated Annealins I Art. Immune Systems I I

TABLE I11
RESULTS FOR THE SECOND GROUP OF 25 INSTANCES,

PRESENTED IN TERMS OF THE LOAD DIFFERENCE BETWEEN
THE TWO PROCESSORS (ALL VALUES HAVE BEEN DIVIDED BY

105).

TABLE I1
RESULTS FOR THE FIRST GROUP OF 395 INSTANCES.

Amongst the constructive heuristics, the LPT has
shown to be better than the Multifit. The local search
(LPT + LS) improved the LPT result from 22% to 63%
while for the Multifit the improvement (Multifit + LS)
raised from 19% to 35%.

The table also shows that the proposed heuristic, AIS,
for this group of instances, obtained results that are sim-
ilar to the results of the Simulated Annealing, but with
a much larger computational time.

Table I11 presents the results obtained by the best two
heuristics' when applied to the second group of instances.
In this table, we show the final load difference between
the two processors. The table shows the statistical anal-
ysis (mean and standard deviation) for the SA and the
AIS, after five runs2.

In the table, the bold values indicate the best val-
ues found. The last column shows the optimal solu-
tions found by Korf's exact algorithm [24], used here as
a benchmark, given that it is very time-consuming and
not comparable to heuristics. ' ,

The first conclusion that can be taken is that this group
of instances is much harder than the first one. For this
group of instances, the proposed heuristic was much more

'The other heuristics were not able to find any reasonable result.
2As a matter of fact, the SA did not use all the time allowed,

converging to a solution before the end of the simulation time. In
order to make a fairer comparison, the SA algorithm was allowed
to run again and again until the time was over.

efficient than the Simulated Annealing. This can be seen
not only by the best results obtained (see columns Best)
but also by the robustness of the method, showed by
the columns Mean and Std. The explanation for this
different behavior lies on one inherent characteristic of
combinatorial optimization algorithms based on AIS: the
maintenance of the diversity of the population.

For the first group, the diversity was not essential,
once there is a large number of global optima for each
instance, scattered across the search space. Every time a
job, belonging to a processor, is equal to the sum of some
jobs belonging to another processor, we can exchange the
jobs obtaining equivalent solutions. The number of these
equivalent solutions is very high for the first group of in-
stances, since we have an uniform distribution. However,
for the second group, one can hardly find two equivalent
solutions in different points of the search space. Diversity
is, therefore, fundamental for an effective exploration of
the search space. Additionally, it is well known the diffi-
culty of SA to solve instances with local optima located
in deep valleys, or said in other words, with rugged land-
scape.

VII. CONCLUSION

In this work, one algorithm based on the way the ver-
tebrate immune system works was proposed to the prob-
lem of makespan minimization, when scheduling jobs to
identical parallel processors. The results produced by
the proposed algorithm, when compared with alterna-

0-7803-7282-4/02J$10.00 02002 IEEE 924

tive strategies, indicate that immune-based algorithms
applied to makespan minimization are effective in deal-
ing with instances characterized by the presence of jobs
with long processing times and a small number of ma-
chines. This kind of instances present a small set of good
solutions through the search space, leading to a poor per-
formance when single-solution strategies are considered.

The proposed strategy is based on a population of can-
didate solutions at each iteration, and the maintenance
of diversity is considered the distinctive aspect to explain
the better performance.

ACKNOWLEDGEMENTS
Fernando J. Von Zuben (proc. number 300910/96-7)

and Paul0 M. F’ranqa acknowledge CNPq, and Alysson
M. Costa and Patricia A. Vargas acknowledge CAPES
for their financial support.

References
R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rin-
nooy Kan, “Optimization and approximation in deterministic
sequencing and scheduling: A survey”, Ann413 of Discrete
Mathematics, vol. 5, pp. 287-326, 1979.
J. Bruno, E.G. Coffman, and R. Sethi, “Scheduling indepen-
dent tasks to reduce mean finishing time”, Communications
of the ACM, vol. 17(7), pp. 382-387, 1974.
R. L. Graham, “Bounds on multiprocessing timing anoma-
lies”, SIAM J.Applied Mathematics, vol. 17, pp. 416429,
1969.
E. G. Cof€man, M. R. Garey, and D.S. Johnson, “An appli-
cation of bin-packing to multiprocessor scheduling”, SIAM J .
Comput., vol. 7, pp. 1-17, 1978.
C. Lee and J. D. Massey, “Multiprocessor scheduling combin-
ing LPT and multifit”, Discrete Applied Mathematics, vol.

J.C.Ho and J.S.Wong, “Makespan minimization for m parallel
identical processors”, Naval Research Logistics, vol. 42, pp.
935-948, 1995.
J.H. Blackstone Jr., “An improved heuristic for minimizing
makespan among m identical parallel processors”, Comp. and
Indust. Engn, V O ~ . 5, pp. 279-287, 1996.
P.M. Fransa, M. Gendreau, G. Laporte, and F.M. Muller, “A
composite heuristic for the identical parallel machine schedul-
ing problem with minimum makespan objective”, Computers
8 @“S Research, vol. 21(2), pp. 205-210, 1994.
N. Piersma and W. V. Dijk, “A local search heuristics for
unrelated parallel machine scheduling with efficient neighbor-
hood search”, Mothematic Comput. Modelling, vol. 24, pp.

L. Min and W. Cheng, “A genetic algorithm for minimizing
the makespan in the case of scheduling identical parallel ma-
chines”, Artificial Intelligence in Engeneering, vol. 13, pp.
399-403, 1999.
R. Cheng and M. Gen, “Parallel machine scheduling problems
using memetic algorithms”, Comp. and Indust. Engn, vol. 33,

D. Dasgupta (ed), Artificial Immune Systems and their Ap-
plications, Springer Verlag, 1998.

20, pp. 233-242, 1988.

11-19, 1996.

pp. 761-764, 1997.

[13] S. A. Hofmeyer and S. Forrest, “Architecture for an artificial
immune system”, Evolutionary Computation, vol. 7(l) , pp.
45-68, 2000.

[14] M. Mori, M. Tsukiyama, and T. Fhkuda, “Artificial immu-
nity based management system for a semiconductor produc-
tion line”, Pmc. of the IEEE Systems, Man and Cybernetics
Conference, pp. 851-855, 1997.

[15] E. Hart, P. Ross, and J. Nelson, “Producing robust schedules
via an artificial immune system”, ICEC, pp. 464-469, 1998.

[16] S. H. Russ, A. Lambert, R. King, R. Rajan, and D. Reese, “An
artificial immune system model for task allocation”, Pmc. of
the Symposium on High Performance Distributed Computing,
1999.

“The clonal selec-
tion algorithm with engineering applications”, GECCO 2000

[18] K. C. Tan and R Narasimhan, “Minimizing tardiness on a
single processor with sequencedependent setup times: a sim-
ulated annealing approach”, Omega, Znt. Journal Mgmt. Sci-
ence, vol. 25 (6), pp. 61-34, 1997.

[19] K. K. Lai and J. W. M. Chan, “Developing a simulated an-
nealing algorithm for the cutting stock problem”, Comp. and
Indust. Engn, vol. 32(1), pp. 115-127, 1997.

“A semi-infinite programming model
for earliness/tardiness production planning with simulated an-
nealing”, Mathematical and Computer Modelling, vol. 37(1-2),

[21] S. Tonegawa, “Somatic generation of antibody diversity”, Na-
ture, vol. 302, pp. 575-581, 1983.

[22] S. Tonegawa, “The molecules of the immune system”, Scien-
tific American, vol. 253(4), pp. 104-113, 1985.

[23] R. Berreta and P. Moscato, The number partitioning problem:
an open challenge for evolutionary computation ?, Chapter
17 of New ideas in optimization, D. Come, F. Glover, and M.
Dorigo, (eds.), MacGraw Hill, 1999.

[24] R Korf, “A complete anytime algorithm for number partition-
ing”, Artificial Intelligence, vol. 106(2), pp. 181-203, 1998.

[17] L. N. De Castro and F. J. Von Zuben,

- Workshop proceedings, pp. 36-37, 2000.

[20] Y. Li and D. Wang,

pp. 277-280, 1997.

0-7803-7282-4/02/$10.00 02002 IEEE 925

