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Each selected link must receive one of two types of edge facilities and the connection of different edge
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We consider the two-level network design problem with intermediate facilities. This problem consists

of designing a minimum cost network respecting some requirements, usually described in terms of the

which heuristically obtains tentative solutions for the vertex facilities number and location and use

these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method

on instances of the power system secondary distribution network design problem. The results show

that the method is efficient both in terms of solution quality and computational times.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Network design problems concern the selection of edges and
vertices in a graph in order to satisfy, at minimum cost, some
requirements, usually expressed in terms of the connectivity of
the obtained network or its ability to allow a certain flow between
source and demand vertices.

Several variants of network design problems have been proposed
in the literature. They differ in terms of the number of commodities
that must be transported, the existence of vertex or edge capacities,
the presence of fixed or variable costs and the restrictions on the
desired graph topology, to cite a few characteristics.

We consider that a single commodity must be transported
from a root vertex to several demand vertices, via a radial
network. There are two types of edge facilities which allow for the
flow of the commodity, named primary and secondary. Primary
edge facilities have higher fixed costs but smaller variable costs,
when compared to secondary edge facilities. We call primary
(secondary) flow, the flow of the commodity occurring in a
primary (secondary) edge facility. The following additional
restrictions must be respected:
(a)
 The root vertex must be connected to the network only
through primary edge facilities.
ll rights reserved.
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(b)
 Demand vertices must be connected to the network only
through secondary edge facilities.
(c)
 Primary flow can be converted in secondary flow only in
vertices containing a costly and capacitated vertex facility.
Moreover, some vertices might not be able to receive such
facilities.
We name this problem the two-level network design problem

with intermediate facilities (TLNDP-IF). The TLNDP-IF describes
well an application in the context of electrical distribution
networks. This problem will be detailed in the next section and
is the main motivation for this work. Variants of the TLNDP-IF in
which one or more of constraints (a)–(c) are slightly modified
appear in many other network-engineering settings including,
e.g., the design of telecommunication networks [1–6], the design
of computer networks [7–9] and the design of reverse logistics
networks [10,11].

In the design of telecommunication networks, the goal is to
deliver broadband network services such as high-speed internet
access, telephony or cable TV. The two-level structure appears due
to the availability of different technologies such as optical fibers
and coaxial links and the fact that intermediate facilities must be
used to connect both technologies. In general, the demand
vertices are served with coaxial links which originate at inter-
mediate facilities. The intermediate facilities are, in turn,
connected to a central root vertex by means of optical fibers.
The used intermediate facilities can be of many types depending
on the required capacities and functions. The design problem
objective is to minimize the total cost of edge and vertex facilities
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that are used. As this problem is proved to be NP-complete,
the solution techniques usually rely upon heuristics that
hierarchically decompose the problem into smaller subproblems
[5]. Lagrangian relaxation [12,13] and branch-and-cut [14]
approaches have also been used.

In the design of computer networks, one is concerned with the
definition of the topology of the network and with the traffic
routing. The information must flow from central vertices to
demand vertices through intermediate transmission facilities. The
crucial decision is often where to install these intermediate
facilities and how to connect them both to the central vertex(ices)
(primary network) and to the demand vertices (secondary
network). As before, a commodity or service has to be delivered
from one or many source vertices to demand vertices through a
two-level network, which has to be designed. In the primary part
of the network, economies of scale induce the installation of large
capacity edges—called the backbone or trunk network—while the
delivery of the commodity to the demand vertices is made
through less costly secondary edges, after a conversion is made
in intermediate vertices. In these vertices a costly conversion
capacitated facility must be installed. The quantity and location of
these conversion vertices are also decisions that must be made
during the network design.

As mentioned before, most of the solution techniques for these
problems are heuristic approaches since the majority of the
applications define hard combinatorial optimization problems.
Very frequently the problem hardness forces a suboptimal
hierarchical decomposition scheme, which means that the
problem is hierarchically split into smaller interdependent
subproblems. Details on hierarchical network design problems
modeling and solution techniques can be found in [15–17].

In this work, we first propose a formal mathematical model for
the TLNDP-IF. The model is used within a commercial MIP solver
to obtain optimal solutions for small benchmark instances. In
order to deal with real-world instances, the model is integrated
into an efficient hybrid solution approach. We use a problem
decomposition method which allows the obtention of good
approximation for the locations of the conversion facilities by
means of a Lagrangian surrogate technique. The heuristic solution
is then used to restrict the number of candidate locations for the
installation of intermediate facilities, in the flavor of what has
been done in the context of vehicle-routing problems [18]. The
restricted model is finally solved to optimality via a branch-and-
cut method.

In the next section we present the application that has
motivated this work: the planning of power system secondary
distribution networks. Then, in Section 3, a mixed-integer linear
formulation is proposed for the problem. In Section 4, we describe
the developed hybrid decomposition heuristics, which are
tested in Section 5. The paper ends with some conclusions in
Section 6.
Substation
Demand vertex
Secondary demand vertex
Street transformer
Subtransmission line
Primary network
Secondary network
New demand area(enlarged)

Fig. 1. Distribution network.
2. Application of two-level networks to the planning of power
system distribution networks

We are particularly interested in an application appearing in
the context of electrical distribution networks. The TLNDP-IF
models well the situation faced when designing the so-called
power system secondary distribution networks. In this section we
describe the problem and present a brief literature review.

2.1. Problem definition

Distribution networks are the part of the power systems
that connect the generation and transmission subnetworks
to the final consumers. The voltage level is a criterion usually
used to subdivide the distribution system network. In an upper
level there is the primary distribution system and in a lower level,
the secondary distribution system. These levels operate at
different voltages, 13.8 KV and 220 V, for example, and are
connected via street transformers. Fig. 1 shows the two levels
schematically.

The secondary network design problem can be viewed in the
enlarged new demand area in Fig. 1. Basically, the problem of
planning such a system consists in defining (a) the transformers
locations and nominal capacities, (b) the primary network links
connecting the substations to the transformers and (c) the
secondary network links connecting the transformers to the
demand points.

The problem can be defined as a TLNDP-IF, where both levels
are connected by the transformers. Therefore, a suitable location
for the transformers plays a key role in the problem: they define
the demand vertices for the upper level (primary network) and
the source vertices for the lower level (secondary network). The
three special constraints (a)–(c) presented in Section 1 are clearly
required here, since:
(a)
 The substation delivers energy at medium voltages and,
therefore, must be connected to the network through primary
edge facilities.
(b)
 The consumers must receive the energy at low voltages
(typically around 127 or 220 V) and, therefore, must be
connected to the network via secondary edge facilities.
(c)
 The voltage conversion requires an electrical transformer,
which has a capacity and a significative cost. These transfor-
mers can be installed in some of the electric posts.
Several notes are in order. (1) In the context of secondary
network planning, vertices that do not allow for the installation of
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Fig. 3. Corresponding graph.

Table 1
Transformers costs according to their nominal capacity.

Capacity (kVA) Cost (US$) Cost/capacity (US$/kVA)

15 178.8 11.92

30 240.6 8.02

45 276.7 6.15

75 348.9 4.65

112.5 468.3 4.16
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transformers are called flying-tap vertices. These vertices
correspond to aerial connections and not to real electric posts
and have no associated demand. (2) The size of the primary
network that is dealt with in the secondary network design
problem is relatively small when compared to the total size of the
primary network. For this reason and also for the fact that the
primary network operates at much higher voltages, the variable
costs can be safely neglected in this network, in the context of this
problem. (3) The variable costs of the secondary network are
nonlinear but convex. These are usually the only costs considered
in the secondary network since, for physical stability and
operational reasons, all the secondary edges are installed
(although many of them are kept disconnected from the network
in order to ensure its radial structure). Notes 2 and 3 above
indicate that, in the context dealt with in this article, only fixed
costs are considered in the primary network and only variable
costs are considered in the secondary network. This respects the
general TLNDP-IF concept that says that primary networks have
fixed costs that are higher and variable costs that are smaller,
when compared to secondary networks.

Fig. 2 shows the sketch of a new demand area. The forecasted
demand of each future consumer is known, as well as the
electrical post to which each new consumer will be connected.
Fig. 3 shows the graph that corresponds to the demand area under
study. In the figure, note that the electrical posts that are already
served by the primary network (in the case of Fig. 3, only the
uppermost electrical post) will constitute the set of source
vertices.

In Fig. 3 one can see a hypothetical demand associated with
each post assuming that each consumer has a demand of 2 KVA. It
is also shown all their possible interconnections. The optimal
solution for this problem consists in the minimum cost
network that supplies the forecasted load. Total cost includes
the equipment costs (e.g., transformer and cable costs) and the
nonlinear operation costs due to the electrical losses in the
secondary network.

In order to compare solution alternatives comprising equip-
ments with different lifetimes (transformers, cables) and taking
into consideration the cost of losses, it is convenient to adopt the
equivalent annual worth as a comparison measure. Table 1
presents the transformer costs for different transformer sizes as
used by a Brazilian distribution utility [19].

For the transformers, it is interesting to note that the ratio
cost/capacity experiences a huge drop when one goes from small
nominal capacity transformers to greater ones. Therefore, con-
sidering only the transformers cost, it would be interesting to
have a few large transformers in the network. However, a small
number of transformers presupposes long secondary feeders
(with higher losses cost). The optimal solution is, therefore, a
trade-off dictated by the number of transformers and the length
of the secondary network, as expressed in Fig. 4.

One possible solution for the secondary network design
problem is shown in Figs. 5 and 6. Fig. 5 shows the new
Existing primary feeder

Future Consumers
posts

Fig. 2. New demand area.
primary network feeders, connecting the existing primary
network (represented by the uppermost vertex) to the
transformers while Fig. 6 illustrates the secondary network, i.e.,
the low voltage feeders connecting the transformers to the
demand points.
2.2. Literature review

A few authors have dealt with this problem. Aoki et al. [20]
obtain a solution by limiting the candidate vertices for receiving
conversion facilities. This oversimplification allows the authors to
obtain feasible solutions by performing a local search on the
edges. Carneiro et al. [19], in turn, divide it into the problem of
taking three interrelated decisions, modeled as interdependent
subproblems: (a) the location of the conversion facilities, (b) the
routing, using primary-edge facilities, between the root vertex
and the conversion facilities and (c) the routing, using secondary-
edge facilities, between the conversion facilities and the con-
sumers. The subproblems are solved by means of a k-median

problem, a minimum spanning tree problem and a shortest-path
problem, respectively. This division proved to be an intelligent
choice allowing the authors to obtain good results in small
computation times. The results obtained by Carneiro et al. [19] are
used as a benchmark.

Similar problems have been solved by other authors. Diaz-
Dorado et al. [21] have presented a dynamic programming
approach that can only be used to solve situations with a small
number of demand vertices while Diaz-Dorado et al. [22]
developed an evolutionary algorithm, which deals with a popula-
tion of forests. Each tree in the forest corresponds to a subnetwork
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containing a single conversion facility and edges with secondary
facilities. The evaluation of an individual is obtained by connect-
ing the individual trees with primary edge facilities via a
minimum spanning tree. Note that this is somehow similar to
what has been done by Carneiro et al. [19], only that the authors
use a different (and integrated) methodology for solving subpro-
blems (a) and (c). Finally, Cossi et al. [23] propose an evolutionary
algorithm for a similar planning problem which includes,
however, some additional electrical constraints.
3. Mathematical formulation

The network design problem can be formulated as a mixed-
integer nonlinear optimization program with a large number of
integer variables. In order to do so, let us define the problem on a
graph G¼ ðN [ o;AÞ, where N is the set of original vertices, o is an
artificial vertex, and A is the set of edges. The subset F �N defines
the flying-tap vertices (which are, as defined before, vertices that
have no associated demand and which cannot hold a conversion
facility). Expressions (1)–(13) present a mathematical formulation
for the power system secondary network design problem. In this
formulation, we approximate the nonlinear costs associated with
the electrical losses in the secondary edge facilities by a piecewise
linear function.

Min
X

ði;jÞAA;io j

f 1
ij y1

ijþ
X
iAN

XNt

e ¼ 1

f eze
i þ

X
ði;jÞAA
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ijp ð1Þ

S.t.
Flow conservation and transformer capacity
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Link capacities

x1
ij rM1y1

ij 8ði; jÞAA; io j; ð7Þ

x1
ji rM1y1

ij 8ði; jÞAA; io j; ð8Þ

x2
ijprM2

p 8ði; jÞAA; p¼ 1 . . .Np: ð9Þ

Variable bounds

x1
ij Z0 8ði; jÞAA; ð10Þ

x2
ijpZ0 8ði; jÞAA; p¼ 1 . . .Np; ð11Þ

y1
ijAf0;1g 8ði; jÞAA; io j; ð12Þ

ze
i Af0;1g 8iAT; e¼ 1 . . .Nt ; ð13Þ

where xij
1 is the flow in edge (i,j) at level 1 (primary flow), xijp

2 the
flow in the piecewise linear approximation segment p of edge (i,j)
at level 2 (secondary network), yij

1 the binary variable associated
with primary edge construction; yij

1 = 1 if primary edge (i,j) is built
and 0 otherwise, zi

e the binary variable associated with transfor-
mer installation; zi

e=1 if a e-type transformer is installed at vertex
i and 0 otherwise, cijp

2 the variable cost of edge (i,j) in the segment
p (linearization for the secondary edge facilities). These costs
increase as p increases. fij

1 is the installation cost of primary edge
(i,j), fe the installation cost of a e-type transformer, se the e-type
transformer capacity, dþ ðiÞ the set fjjði; jÞAAg, d�ðiÞ the set
fjjðj; iÞAAg, M1 the primary edges capacity. M1, is assumed to be
large enough to supply the whole demand. Nt is the number of
transformers types, Mp

2 the upper limit for the secondary flow in
segment p of the linearization for the secondary edge facilities
variable cost, Np the number of linear segments in the linear
approximation, di the demand at mode i.

The artificial vertex is connected with zero cost to all vertices
representing electrical posts which are reached by the primary
network (see Fig. 1). The production of this vertex is equal to the
demand of all other vertices in the graph, i.e. ðd0 ¼�

P
hAN dhÞ, as

stated in Eq. (2).
The objective function (1) minimizes the fixed installation

costs associated with the primary edges and to the vertex
conversion facilities, and the variable costs associated with the
flow in the secondary edges. Constraints (2) guarantee the flow
conservation. Constraints (3) and (4) assure that the transformer
capacity is respected and that the flow transformation occurs
always from level 1 (primary network) to level 2 (secondary
network). Constraints (5) limit to one the number of transformers
installed in a vertex and restrictions (6) forbid the installation of
transformers in flying-tap vertices.

Constraints (7)–(8) deal with the edge capacities and ensure
that there only exists primary flow in constructed edges. Since all
secondary network is constructed, constraints (9) state that the
flow on these edges can always exist, as long as the linearization
limits are respected for each variable xijp

2 . Constraints (10) and
(11) forbid negative flows and (12) and (13) define variables yij

1

and zi as integers.
As mentioned before, all secondary feeders must be installed,

representing, therefore, an investment cost that cannot be
optimized. This reflects in the formulation by the fact that there
are no binary variables associated with secondary edge facilities.
Nevertheless, the way the demand points and transformers are
connected determines the flows in the secondary edges and,
consequently, the secondary losses cost. Note that formulation
(1)–(13) can be easily extended to the more general case
presented in Section 1 with the inclusion of binary variables yij

2,
representing the installation of a secondary edge.
4. Solution methodologies

In this section we describe three methodologies to solve the
low voltage distribution planning problem. The first strategy
(exact approach) is simply the resolution of formulation (1)–(13)
via a branch-and-cut algorithm available in a commercial or
open-source packages. As pointed out in previous works
[19,21,22] the problem complexity induces a decomposition
approach in which decisions are made in a hierarchical fashion.
Following these ideas, the second methodology (decomposition
approach) decomposes the problem into subproblems to obtain
an initial solution and then uses a local search procedure to
consider the interrelations between subproblems. Finally, the
third resolution method (hybrid approach) tries to capture the
best features of each one of the two first methodologies, by using
the decomposition approach to reduce the size of the mixed-
integer formulation, enabling its resolution with one of the
mentioned optimization softwares.
4.1. Exact approach

The mixed-integer problem (1)–(13) can be solved with the aid
of a mixed-integer algorithm. Due to the problem complexity,
only small instances can be solved. The optimal solution values
are used as benchmarks for evaluating other methods, as shown
next in the computational comparisons.
4.2. Decomposition approach

The decomposition approach is based on the obtention of three
interrelated sets of decisions: (D1) location and sizing of
transformers, (D2) routing of primary feeders and (D3) routing of
secondary feeders. These three decisions are hierarchically
connected as shown in Fig. 7.

As depicted in Fig. 7, the main decision is the location and
sizing of the transformers. Indeed, once the transformers are
fixed, the two auxiliary routings can be effected. The primary
network routing sees the transformers as demand points while
the secondary network routing has the transformers as the source
vertices.

It is easy to integrate decisions D1 and D3 into the same
solution approach with the aid of a k-median problem. Decision
D2, in turn, will be obtained with the aid of a Steiner tree problem.
After a first initial solution is obtained, an improvement heuristic
tries to change the position of the transformers in order to reduce
the global cost. All these strategies are detailed in the following.
4.2.1. Obtaining D1 and D3

The first step of the method is to obtain D1 and D3. The
k-median problem consists in finding the k best positions for the
facilities (in our case, transformers) to serve the demand points.
Each demand point is allocated to the closer median. The
k-median cost is given by the sum of all ‘‘distances’’ from
the demand vertices to the corresponding medians. As ‘‘distance’’,
we do not use the distance from the vertex to the median but the
electric momentum (distance to the median1

� vertex demand).
This is a very natural choice since the real cost in Eq. (1), cijp

2 xijp
2 ,

considers not only the distance (implicit in coefficients cijp) but
also the flow xijp. The k-median problem is formally presented
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in Eqs. (14)–(18).

Min
Xn

i ¼ 1

Xn

j ¼ 1

dijtij ð14Þ

S:t:
Xn

j ¼ 1

tij ¼ 1 8iAN; ð15Þ

Xn

j ¼ 1

tjj ¼ k; ð16Þ

tijrtjj 8i; jAN; ia j; ð17Þ

tijAf0;1g 8i; jAN; ð18Þ

where n is the number of vertices and N¼ f1; . . . ;ng; k the number
of medians; dij the electric momentum between a demand vertex i

and a median j; tijðia jÞ the binary variable associated with
allocation; tij = 1 if the demand vertex i is served by median
vertex j and 0 otherwise; tjj the binary variable associated with
the medians; tjj=1 if the j th vertex is a median.

The transformer location/sizing decision is the core of the
whole method. Therefore, a good solution to the k-median

problem is crucial to produce good global solutions. On the other
hand, (14)–(18) is still a NP-hard problem, which suggests the use
of a heuristic approach. In this work we use a Lagrangian
relaxation approach [24,25].

The rationale behind the Lagrangian relaxation is the observa-
tion that the k-median problem is a simple problem complicated
by a small group of constraints. Indeed, if one dualizes constraints
(15), the following problem results:

Min
Xn

i ¼ 1

Xn

j ¼ 1

ðdijþliÞtij�
Xn

i ¼ 1

li S:t: ð16Þ; ð17Þ and ð18Þ: ð19Þ

The problem of minimizing (19) subject to (16)–(18) can be
easily solved by inspection. The obtained solution (most likely
infeasible) is a lower bound to the original problem. Moreover, we
can apply a simple feasibility algorithm to obtain a feasible
solution for the original problem.

The lower bound is improved by means of a subgradient
procedure and when the difference between the lower and the
upper bound attains a pre-specified error the method stops. The
solution obtained by this algorithm indicates the k vertices that
must receive a transformer. The size of a transformer is
determined by the sum of the demands of the vertices allocated
to the corresponding median in the k-median solution.

One must recall that the number of transformers k is also an
optimization variable. To include this decision in the process
while keeping the simplicity of the k-median approach, a batch is
created and problem (14)–(18) is solved for a fixed k, starting at
the minimum value necessary for a feasible solution (see Fig. 4)
and repeating the procedure for k+1, kþ2; . . . ; kþn, where n is a
number large enough to include the optimal region of Fig. 4. Note
that n can be obtained iteratively: the whole network configura-
tion is obtained for k transformers, k+1, and so on. When the cost
of the network increases for two successive interactions k+m and
k+m+1, for example, we can stop the simulation, since the total
cost curve in Fig. 4 is relatively well conditioned and resembles an
unimodal function.

4.2.2. Obtaining D2

Once the transformer locations are known, all entry data for
the primary routing is available. Indeed, the decision of determin-
ing the primary network can then be modeled as the problem of
connecting the transformer vertices to the primary source points
(the electrical posts of the new area that already receive the
primary network). As mentioned before, the variable costs
associated with the primary network are neglected. Therefore,
the goal associated with decision D2 is to connect the source
points to the transformers with the shortest possible network,
which can be seen as the classical Steiner problem: given a graph
where N is the set of vertices and P is a subset of these vertices,
construct a minimum cost tree spanning vertices in P, using the
vertices in N when convenient.

The Steiner tree problem has been solved with a simple
procedure: first a complete graph with vertices P is considered.
The distance between two vertices of this graph is given by the
shortest path between the two vertices in the original graph. In
this complete graph, a minimum spanning tree problem is solved,
yielding an initial solution. This solution is then improved by
inserting Steiner points, i.e., points in N that are not in P, but that
can reduce the total length of the network. The procedure for
searching and inserting Steiner points is rather straightforward:
the algorithm scans all vertices in N\P with degree greater than 3
and analyzes the cost of the new tree including these vertices, one
by one. The vertex leading to the best improvement (if any) is
inserted in the tree and the remaining vertices are again scanned
and their insertion cost computed. The procedure continues until
no insertion improves the current network cost.

4.2.3. Improving the solution

Two major drawbacks of the approach just described are (1)
the obtention of the important decisions D1 and D3 via an
approximate k-median model and (2) the lack of integration on
the obtention of the interdependent set of decisions D1 and D3

with the obtention of D2.
The goal of this improvement phase is to cope with the second

drawback. This is done by carrying out a local search considering
the global cost of the problem, expressed by objective function
(1). The local search uses a pairwise-interchange procedure to
modify the position of the transformers and recalculates the
global cost. If an improvement is verified the solution is updated,
otherwise the changes are discarded, as shown in Fig. 8.

The way the transformers neighborhood is visited is guided by
the Lagrangian relaxation solution to the k-median problem.
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Indeed, for each vertex i, the term ðbi ¼ dijþliÞ in the objective
function (19) of the relaxed problem is somehow related to the
quality of the vertex as a candidate for receiving a transformer.
The pairwise-interchanges are made, therefore, giving priority to
the vertices with the lower bi values.

Once all possible changes have been tried since the last
improvement, the algorithm is terminated.
4.3. Hybrid method

The exact approach presented in Section 4.1 gives the best
possible solution for the problem formulated by expressions
(1)–(13). However, this is done at an extremely high computa-
tional cost, prohibitive even for medium-sized instances. On the
other hand, the decomposition approach presented in Section 4.2
is computationally efficient (as we shall see in Section 5 but
obtains only near-optimal solutions.

The idea of the hybrid method is to combine the solution
quality of the first method with the low computational times of
the second. After a careful examination of the solutions obtained
by the two methods, we came to the following conclusions:
�
 The transformer locations obtained by the k-median method
were very close to the ones obtained by the optimal method.

�
 However, the k-median approach failed to obtain good

secondary networks, because it does not explicitly consider
the costs of electrical losses.

�
 Most of the time consumed by the optimal algorithm was due

to the large number of integer variables related to the primary
network selection and, in particular, to the transformers
location/sizing.

These observations lead to the development of a hybrid
algorithm that tries to use the good locations obtained by the
decomposition algorithm to reduce the number of variables in the
formulation to be used by an exact solution approach.
In a first stage, the k-median problem is solved and an
approximative solution for the transformer locations is obtained.
These locations and their closer neighbors become the only
candidate locations when solving formulation (1)–(13), dramati-
cally reducing the computational burden. This approach is similar
to the notion of granularity introduced by Toth and Vigo [18] in
the context of vehicle routing problems.

Fig. 9 exemplifies the idea: in Fig. 9(a) we see a sample solution
obtained by the k-median algorithm. This solution is used to
generate the candidate solutions that will be considered by the
hybrid algorithm as shown in Fig. 9(b).

Three ways of defining the neighborhood were tested: (a) by
considering all vertices directly connected to the solution vertices
of the k-median problem (as in Fig. 9), (b) by considering all
vertices located inside circles of ray r centered at the k-median

solution and (c) by considering the k closest vertices to each
solution-vertex in the k-median solution. Method (a) was found to
be simpler and more efficient than the others and is used in this
work.

The primary network is constructed as before, and therefore,
the binary variables associated with the primary network are also
eliminated in the ‘exact part’ of the hybrid method. It is worthy
noting that eventual modifications on the primary network cost
must be done during the solution of the hybrid formulation. This
happens because the primary network is constructed based on the
transformer locations obtained in the k-median problem, but
these locations are not always kept during the branch-and-cut
(one of its neighbors may be selected instead). Fig. 10 exemplifies
all possible situations.

In Fig. 10, the locations selected by the k-median are
represented by black triangles. The candidate solution vertices
are represented by white triangles. The lines connecting the
transformers compose the primary network. The three possible
situations are:
(1)
 Higher cost: For instance, by choosing vertex 7 instead of 4, the
primary network will have to be longer. The cost of the
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Fig. 9. Creation of a ‘cloud’ of candidate solutions surrounding the k-median locations. (a) DFsolution of the k-median problem. (b) DFsolution candidates in the hybrid

algorithm.
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4
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7

Original Solution from the k-median problem.

Solution Candidate.

Original primary network.

Fig. 10. Changes on the primary network according to the transformer locations

selection.

Solve Decomposition Approach

for various values of k

Choose Best Solution

Solve reduced formulation

to optimality

‘Heuristic’Part

‘Exact’Part

Get
transformer
locations

End

Generate Candidate Locations

Fig. 11. Hybrid algorithm.
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primary feeder connecting vertex 7 to vertex 4 must be added
to the cost of selecting candidate location 4.
(2)
 Lower cost: By choosing, for instance, vertex 6 instead of
vertex 3, the primary network has its length reduced. The cost
of the primary feeder connecting vertices 3 and 6 must be
reduced from the cost of selecting candidate location 6.
(3)
 Same cost: By choosing vertex 5 instead of 2: the primary
network has its length and cost maintained.
Fig. 11 gives an overview of the hybrid algorithm. First, the
decomposition approach is applied. Then, the resulting
transformer locations are used to generate candidate solutions
for the transformers locations and the reduced version of
formulation (1)–(13) is solved to optimality.

4.3.1. Variants

An alternative to the algorithm presented in Fig. 11 would be
to generate and solve a reduced formulation for each value of k,
and not only for the value of k that yielded the best obtained
solution. In our tests, the results obtained by this version of the
algorithm proved to be slightly better but computationally much
more expensive.
Other variants are also possible. The first one, consists in
changing the first part of the algorithm. As depicted in Fig. 11, the
first part of the algorithm (‘heuristic part’) obtains a solution for
the transformers location/sizing problem. This can be done by any
method, since the only information needed by the second part is
the transformers tentative positions. We could use, for example,
the solution obtained by other methods found in the literature, as
the heuristic method proposed by Carneiro et al. [19].

Another reasonable variant of the proposed algorithm would
be to further reduce the computational effort needed to solve the
reduced formulation. One could think of reducing the size of the
neighborhood or of completely eliminating this neighborhood, by
considering as ‘candidates’ in the reduced formulation only the
transformer locations obtained in the ‘heuristic part’. The
consequences are clearly predictable: we obtain a less accurate
solution but in a shorter computational time.

In Section 5, in addition to the results obtained by the
proposed methodologies we also effect computational experi-
ments for three variants: (1) the hybrid algorithm using the
method proposed by Carneiro et al. [19] as ‘heuristic part’, (2) a
‘reduced hybrid method’ where the solution of the heuristic part
is fixed in the optimal resolution of the reduced formulation and
(3) a combination of these two variations: the solution of Carneiro
[19] is used in the reduced hybrid algorithm.
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Table 3
Test instances.

Instance Group jNj jAj Total dem. (kVA)

cba16 1 24 36 92.50

cba17 1 24 48 86.25

cba18 1 30 30 125.00

cba19 1 30 45 122.50

cba20 1 30 60 113.75
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5. Computational tests

In this section we present the results to the computational
tests that were carried out to evaluate the performance of the
proposed heuristics. In Section 5.1 the test instances are
presented, while in Section 5.2 the results themselves are
presented. All simulations were carried out in a Sun workstation
running Solaris.
reg04 2 4 4 15.00

reg09 2 9 12 45.00

reg12 2 12 17 55.00

reg16 2 16 24 80.00

reg20 2 20 31 100.00

reg25 2 25 40 100.00

reg30 2 30 45 150.00

reg35 2 35 58 175.00

grd1 3 100 100 51.56

grd2 3 173 192 750.00

grd3 3 143 153 605.00
5.1. Instance generation

We worked with three groups of instances. The first group is
composed by small test instances randomly generated according
to the methodology proposed by Aneja [26] in 1980. The used
procedure is described below:

Procedure for generating a test instance with jNj vertices and
jAj edges:
(1)
Tabl
Test

Ins

cb

cb

cb

cb

cb

cb

cb

cb

cb

cb

cb

cb

cb

cb

cb
Select jNj vertices in the plane.

Table 4
(2)
 Connect the vertices to form a tree.

Results for group 1.
(3)
Instance Opt. Car Dec Hyb. variants Hyb
Add complementary edges to the tree, until the desired
number of edges jAj is attained.
(4)
 Allocate a demand to each vertex.

Var3 Var2 Var1
(5)
 Choose some vertices to receive the primary network.
cba01 251.74 0.00 0.00 0.00 0.00 0.00 0.00

cba02 261.53 10.21 7.73 10.21 7.73 0.00 0.00

cba03 526.16 2.84 1.27 2.84 0.00 0.00 0.00

cba04 389.96 2.15 0.13 2.15 0.00 0.00 0.00

cba05 511.79 1.66 6.30 1.66 6.01 0.00 0.00

cba06 758.43 4.11 0.80 4.11 0.00 0.00 0.00

cba07 846.50 3.72 3.72 3.63 3.63 0.00 0.00

cba08 655.15 0.11 0.11 0.00 0.00 0.00 0.00

cba09 1134.53 1.02 1.02 0.70 0.70 0.00 0.00

cba10 759.05 3.40 5.39 1.10 3.19 1.10 0.71

cba11 1134.59 1.05 0.97 0.17 0.09 0.09 0.09

cba12 1694.57 1.51 0.27 1.44 0.27 0.27 0.27

cba13 1240.70 4.97 3.41 4.74 3.29 3.29 3.29

cba14 1380.57 3.32 3.32 1.30 1.30 0.00 0.00

cba15 2151.42 0.56 0.38 0.56 0.32 0.07 0.07

cba16 1641.10 2.70 1.18 1.05 0.00 1.05 0.00

cba17 1396.60 5.62 2.26 3.42 0.40 1.47 0.06

cba18 2666.29 2.64 0.99 1.85 0.00 1.15 1.15

cba19 1889.40 3.15 1.75 1.15 0.15 1.15 0.15

cba20 2106.99 1.69 3.70 1.16 0.00 0.00 0.00

Mean 2.82 2.24 2.16 1.35 0.48 0.29
The following criteria were used: (1) vertex coordinates are
limited to integer values in the interval [0,100]; (2) the first tree is
obtained in the following manner: vertex 1 is connected to vertex
2, which in turn is connected to vertex 3 and so on until vertex n is
reached; (3) a vertex demand is randomly chosen in the interval
[0,5]; (4) we assume that the primary network is always present
on vertices 1 and 2.

With this methodology 20 instances (Tables 2 and 3) have
been created and named cbaxx (where xx is the number of the
instance). Using model (1)–(13), optimal solutions have been
found. These values are then used as benchmarks to evaluate the
proposed heuristics.

The second group is composed of eight geometrically regular
small/medium-sized instances (Table 3). The idea is to represent a
common situation where electrical posts are distributed almost
uniformly in a grid. These instances are named regxx and were
also solved to optimality.

Finally, the third group (graxx) is composed by two real cases,
obtained from [19] and by one real network obtained from
Companhia Paulista de Forc-a e Luz, a Brazilian electricity distribu-
tion utility. These instances are presented in the end of Table 3.
e 2
instances.

tance Group jNj jAj Total dem. (kVA)

a01 1 4 4 20.00

a02 1 4 6 10.00

a03 1 8 8 42.50

a04 1 8 12 26.25

a05 1 8 16 37.50

a06 1 12 12 45.00

a07 1 12 18 43.75

a08 1 12 24 51.25

a09 1 16 16 46.25

a10 1 16 24 68.75

a11 1 16 32 53.75

a12 1 20 20 68.75

a13 1 20 30 60.00

a14 1 20 40 87.50

a15 1 24 24 88.75
5.2. Results

The two developed algorithms have been applied to the
instances presented in the last subsection and the results
compared to the optimal results (when available) and also to
the solutions obtained with the method by Carneiro et al. [19].
Moreover, the three variants described in Section 4.3.1 were also
analyzed.

Tables 4–6 present the results for the three groups of
instances. The columns in the tables represent the following:
Opt.
 The optimal solution obtained with the commercial
package Cplex (except for the two last rows of Table 6, for
which no optimal solution could be found and we use the
best value found by any of the other methods).
Car.
 Results of [19].

Dec.
 Results for the decomposition method of Section 4.2.

Hyb.
 Results for the hybrid method of Section 4.3.
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Table 5
Results for group 2.

Instance Opt. Car Dec Hyb.variants Hyb

Var3 Var2 Var1

reg04 164.00 2.29 2.29 2.29 2.29 0.00 0.00

reg09 448.50 0.56 0.28 0.00 0.11 0.00 0.00

reg12 686.50 1.18 1.18 0.00 0.00 0.00 0.00

reg16 824.50 12.95 0.61 6.60 0.61 0.61 0.61

reg20 613.75 3.67 3.95 0.10 0.43 0.10 0.10

reg25 1026.29 1.83 1.83 0.00 0.00 0.00 0.00

reg30 935.25 7.85 6.76 1.30 0.24 0.50 0.24

reg35 1057.75 19.40 8.27 10.13 0.30 1.49 0.00

Mean 6.22 3.15 2.55 0.50 0.34 0.12

Table 6
Results for group 3.

Instance Opt. Car Dec Hyb. variants Hyb

Var3 Var2 Var1

grd01 1301.98 4.27 4.27 2.08 2.08 0.00 0.00

grd02 7958.18 0.98 0.71 0.26 0.31 0.00 0.10

grd03 8029.24 2.90 1.44 1.25 0.73 0.84 0.00

Mean 2.72 2.14 1.20 1.04 0.28 0.03

Table 7
Computation times (s).

Instance Car Dec Hyb. variants Hyb

Var3 Var2 Var1

cba01 0.03 0.12 0.03 0.13 0.08 0.13

cba02 0.04 0.07 0.05 0.08 0.11 0.08

cba03 0.04 0.14 0.05 0.15 0.07 0.17

cba04 0.04 0.14 0.05 0.15 0.06 0.18

cba05 0.04 0.13 0.06 0.14 0.09 0.16

cba06 0.04 0.14 0.05 0.15 0.07 0.18

cba07 0.08 0.17 0.10 0.18 0.13 0.21

cba08 0.05 0.19 0.07 0.20 0.12 0.24

cba09 0.07 0.27 0.10 0.31 0.32 0.53

cba10 0.07 0.23 0.09 0.25 0.13 0.28

cba11 0.08 0.22 0.10 0.24 0.15 0.30

cba12 0.06 0.17 0.11 0.20 0.40 0.55

cba13 0.08 0.23 0.09 0.26 0.16 0.31

cba14 0.07 0.29 0.12 0.36 0.37 0.59

cba15 0.08 0.27 0.16 0.34 1.32 1.54

cba16 0.09 0.31 0.15 0.37 0.53 0.63

cba17 0.09 0.33 0.16 0.42 0.51 0.78

cba18 0.12 0.39 0.20 0.47 4.67 6.89

cba19 0.10 0.32 0.17 0.38 0.42 0.70

cba20 0.11 0.47 0.22 0.55 0.44 0.95

reg04 0.03 0.05 0.04 0.06 0.06 0.08

reg09 0.06 0.20 0.07 0.21 0.11 0.25

reg12 0.09 0.26 0.10 0.28 0.13 0.32

reg16 0.11 0.39 0.16 0.41 0.29 0.61

reg20 0.12 0.44 0.18 0.51 0.52 0.82

reg25 0.13 0.51 0.21 0.59 0.52 0.90

reg30 0.15 0.47 0.25 0.55 1.12 1.68

reg35 0.17 0.38 0.54 0.52 6.26 1.94
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Var1.

grd01 0.39 1.05 0.93 1.59 0.79 1.80

grd02 2.61 75.37 4.75 77.51 352.35 416.83

grd03 1.27 54.00 2.44 55.54 507.38 760.48
Variant 1 of the hybrid approach which consists in
obtaining the transformer positions with the method
presented in [19].
Var2.
 Variant 2 of the hybrid approach which consists in further
reducing the optimal formulation by fixing the transfor-
mers at the positions obtained by the heuristic method.
Var3.
 Variant 3 (mix of variants 1 and 2) of the hybrid approach
which consists in further reducing the optimal formulation
by fixing the transformers at the positions obtained by the
heuristic method, in this case the heuristic presented in
[19].
In the first column, the cost is presented in dollars while in the
other ones we present the percentage deviation from the
optimum.

Table 7 presents the computational times in seconds expended
by each method.

Table 4 shows that, in the average, our decomposition method
reduces the deviation in about 0.6% for instances of groups 1 and 3
and 3% for the instances of group 2.

The quality of the proposed solution approach can be also
observed by noting that the hybrid approach (and its variants)
obtains better results when its initial solution is used, in
comparison to the cases where it is initialized with the solution
obtained with the heuristic of Carneiro et al. [19]. Indeed, this can
be observed if one compares columns Var2 (reduced hybrid
approach starting with the proposed method) and Var3 (reduced
hybrid approach starting with the method of Carneiro et al. [19])
or columns Var1 (hybrid approach starting with Carneiro et al.
[19] heuristic) and Hyb (hybrid approach starting with the
proposed decomposition approach).

The price to be paid for these better results is a larger
computational time. However, the method is still very efficient
and can solve real instances in about 1 min. Note that this increase
in the computational time is present in all hybrid methods that
start with the proposed decomposition approach.

In what concerns the proposed hybrid approach, the method is
able to find 17 out of the 29 optima. Moreover, in 27 out of 31
instances, the hybrid approach was able to improve the solution
obtained by the decomposition method.

Regarding group 3, the hybrid method found a proved
optimum for the smallest real instance and very good solutions
(in comparison to the other methods) for the other two,
decreasing the deviation from the optimal solution in up to
4.27%, when compared to the results found in the literature. It is
interesting to note that the results used as benchmarks [19] had
already presented improvements of up to 13%, when compared to
the heuristic procedures used at the studied electricity distribu-
tion utility (CPFL).

Concerning the computational times, we note that they are
considerably increased by the resolution of the mixed integer
formulation. However, one must highlight that even for the
slowest method and the largest instance, the computational times
do not exceed a few minutes, which seems reasonable in a
strategic planning problem such as the one dealt with here.
6. Conclusions

We propose a hybrid decomposition approach for the planning
of two-level networks in which the two levels must be
interconnected through intermediate facilities. This problem
arises in many network-engineering contexts. Our approach
decomposes the problem in the location of the intermediate
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facilities, which is followed by routings in both network levels.
Since the location of the intermediate facilities is a critical
decision, we propose a hybrid exact–heuristic approach in which
the heuristic solution is used to restrict the number of variables in
the ‘exact’ part, obtaining a trade-off between solution quality and
computational time. We test our algorithms in the planning of
electricity distribution networks and the results show that the
proposed methodologies are relevant, obtaining gains of up to
4.27% in real networks when compared to the results presented in
previous works.
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