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a b s t r a c t

There are increasing numbers of rivers with large storages, resulting in changes to environmental con-
dition downstream. In these systems, environmental flow regimes that are specifically designed to meet
environmental management objectives, whilst continuing to support economic needs, may be the best
approach. A challenge remains as to how best to design these novel flow regimes. Decision support tools
such as optimization provide a potential tool to achieve this. In existing tools environmental outcomes
are not represented with sufficient realism and this is a major barrier to successful adoption by decision-
makers. Here, we employ conditional probability networks as a promising approach that provides both
ease of modelling and a direct link to ecological outcomes and processes. We present a generic model
that can be used to represent any ecological endpoint within a river system. We then demonstrate the
approach using two fish species in the Yarra River, Victoria.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The worlds water resources are becoming increasingly stressed
as human demand for water increases (Vorosmarty et al., 2010).
Many of the worlds rivers are managed through infrastructure such
as dams to help secure a reliable human resource for agriculture
and urban centers, to manage flooding risk, and to support hy-
dropower. Although estimates vary, there are currently in the order
of 50,000 large dams worldwide (defined as those higher than
15 m), capturing around 20% of the natural river discharge to the
worlds oceans (ICOLD, 2007). There are also a considerable number
of smaller dams (Lehner et al., 2011), and in the order of 3700 new
major dams in planning (Zarfl et al., 2015).

At the same time, there is a growing awareness of the impacts of
these impoundments on instream environments, often as a result
of altered water regimes (Dudgeon et al., 2006; Poff et al., 1997).
These systems require managers to balance the human livelihood
objectives supported by water and river development and the
ongoing sustainability of the river ecosystems.

In these modified systems, the downstream environments
orne).
remain valuable, but are significantly modified from their natural
state. It therefore may be more appropriate to an environmental
flow regime that meets the multiple objectives (consumptive and
environmental) of the system rather than basing environmental
flows on the natural flow paradigm (Acreman et al., 2014). The idea
of being able to define and quantify the components of the flow
hydrograph and assemble them into an environmental flow regime
that meets a particular set of ecological and social objectives can be
thought of as a designer approach, producing environmental flows that
support desired ecosystem states or provide desired ecosystem services
(Acreman et al., 2014, p 486).

A significant challenge however remains as to how to design and
manage a flow regime to ensure that the complex needs of the
environment are supported in the longer term (Acreman et al.,
2014; Arthington et al., 2006; Arthington, 2012; Harman and
Stewardson, 2005). This will require a trade-off between different
river-level objectives (e.g. agriculture, hydropower, urban and
environmental), and indeed between different elements of the
environment (e.g. fish and vegetation). A water resource manager
will need to decide how to operate the water resource system and
its storages to achieve the best overall outcome for the environ-
ment and society (Poff et al., 2016). This challenge has been high-
lighted in Australia with the implementation and active and
ongoingmanagement of environmental water rights, which require
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an environmental manager to decide upon and implement flow
releases continually throughout the year.

Optimization provides one approach for systematically and
transparently developing a designer flow regime and assessing
tradeoffs within a system. Indeed, an increasing number of studies
have already applied optimization to the challenge of designing an
environmental flow regime (for a review of these studies refer to
Horne et al., 2016).

The consistent challenge for these studies is how best to
incorporate and model the environmental objectives (Horne et al.,
2016). An optimization tool must be able to assess the relative
benefit of providing water to the environment at one time-step or
location over another, between different environmental endpoints,
or between the environment and other water users (depending on
the model objective) (Horne et al., 2010).

While human water uses such as hydropower and agricultural
water are generally trying to maximize relatively simple endpoints
(e.g. electricity production, irrigated crop production), it is more
complicated to develop a measure of ecological outcome from a
flow regime. The approach must recognize the complex interaction
between flow components and the nature of the non-linear flow
responses (Horne et al., 2016, 2010). To date, methods have either
allowed for non-linear flow responses but grossly simplified the
aggregation of flow components (Chen, 2011; Horne, 2009) or have
assumed a linear-flow response (Chang et al., 2010; Han et al., 2012;
Ringler and Cai, 2006; Shiau and Wu, 2013).

Understanding relations between flow and ecology has
improved in recent decades (Arthington, 2012). The highly complex
and dynamic dependencies of aquatic flora and fauna, ecological
processes and the multiple components of a flow regime (and the
challenges in defining them) are discussed in an extensive and
rapidly expanding literature (Arthington, 2012; Poff and
Zimmerman, 2010; Webb et al., 2010). A clear challenge exists in
translating or incorporating this complex knowledge into models
that can inform management decisions.

In this paperwe highlight the challenges and critical elements in
representing ecological outcomes to support the design of novel
environmental flow regimes. We then address the key question of
how environmental outcomes can be incorporated into
optimization-based decision support tools in a way that allows
trade-off decisions. We propose Conditional Probability Networks
(CPNs) as a possible way forward for representing ecological re-
sponses in such tools, and this is demonstrated through a case
study.

2. The challenge of representing ecological outcomes

Optimization tools to support environmental flow design are
mostly structured to include a model or representation of the
physical water resource system and operational constraints, a
model of ecological outcome or response to flow for each relevant
species, and an objective function that links these species outcomes
together considering spatial and temporal information. Here, we
focus on the challenge of representing ecological outcomes and any
implications for the objective function (shown in grey in Fig. 1).
There is a clear trade-off between representing the ecosystem
response in all its complexity, and developing a model that is
manageable in its data requirements, implementation, computa-
tional complexity and interpretation of results. Ideally, we require
an approach that:

� Shows the flow-ecology cause effect relationship (including the
relationship between flow components)

� Shows the marginal benefit of flow
� Allows for links between ecological endpoints or species
� Allows for temporal sequences or changes in ecological outcome
arising from past flow conditions and those likely to occur in the
near future

� Is sufficiently computationally tractable to allow multiple end-
points or species to be considered simultaneously

A number of different approaches have been used to represent
environmental outcomes in optimization-based decision support
tools for management of flow regimes. Horne et al., (2016)
reviewed optimization models where the environmental flow
was part of the decision (i.e. where it is included as a decision
variable). They found that most existing studies have adopted hy-
drological indicators as a surrogate for environmental outcomes
(25 out of 40 papers). This most common approach to representing
environmental outcomes is the simplest to implement (requiring
no ecological data), but also the least ecologically realistic, with a
number of limitations when applied within optimization (Horne
et al., 2016). Firstly, in the context of developing a designer
regime, hydrological indicators compare key elements of the
regime to a target flow regime, usually based on the natural flow
regime. The very premise of a designer regime is that a natural or
unimpacted conditions are not necessarily an appropriate objective
in systems heavily regulated by large storages /citepAcreman2014.
Secondly, there is an implicit assumption of a linear response to
changes in flow; for a given indicator of the flow-regime (usually a
characteristic of the readily-available discharge flow time-series).
For example, a high flow event might be characterised by the
peak flow magnitude or total flow volume during the event, but
this assumes that half the flow provides half the benefit. However,
we know in reality that there will be non-linearities and thresholds
(for example exceeding the height of the river channel) that affect
the benefit of any component of the flow regime (Turner and
Stewardson, 2014). This is a major limitation for trade-off de-
cisions, because the shape of the marginal benefit curve (i.e. the
benefit of each additional unit of water at a particular time) has
considerable influence on how limited water is allocated between
flow components (Horne et al., 2010). An assumption of linearity
will affect this.

Ecological responses have been modelled directly using flow-
response curves (Young et al., 2003). These relate a metric of
ecological performance to variation in a single flow component.
Such curves can include thresholds and non-linearities not possible
with hydrological indicators. However, most ecological responses
will be driven by combinations of different flow response curves,
and flow components are rarely independent in their effects upon
an individual species. A challenge of using flow-ecology response
curves is how best to combine responses to individual flow com-
ponents to provide an overall outcome for a particular species.
Existing studies that have linked flow-ecology response models
together have primarily used a geometric mean or the minimum of
component measures as representing the most limiting factor
(Marsh et al., 2007; Bryan et al., 2013). Other tools allow combi-
nation methods based on expert judgement usually in the form of
weighting response curves (Young et al., 2003).

A limitation in these approaches is the failure to recognize event
connectivity or interactions between species (Lester et al., 2011). To
demonstrate this, consider how an optimization model would
decide between a flow to trigger fish spawning and a flow to trigger
recruitment back into the system. If the benefits of these two flow
components are averaged, the model would assume the same
outcome is achieved when providing one flow component and not
the other as providing half of each. However, in reality, there will be
no benefit of providing a fish recruitment flow if there has not
previously been spawning. A further limitation is the assumption
that the environmental response will remain constant over time.



Fig. 1. Overview of optimization model structure to support environmental flow regime design downstream of a storage.
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However, species respond differently to flow depending on their
antecedent condition and resilience.

The approach to representing ecological outcomes to inform the
design of a flow regime downstream of storage requires both a
representation of the marginal value of flow events at different
times and locations (analogous to flow-response curves), but also
needs to allow for the complex interaction between flow compo-
nents and species (the way in which the curves are combined). A
small number of studies have addressed the challenges outlined
through the use of population demographic models where the
focus is on abundance or densities, usually of a single fish species
(for example Jager, 2014; Jager and Rose, 2003). However the dif-
ficulty of the modelling, the advanced ecological knowledge
required, and sheer computational complexity for the optimization
mean that it is unlikely that such an approach would be possible in
systems where multiple environmental objectives exist.

The existing approaches therefore present a dilemma. In the
majority of cases, environmental outcomes are not captured with
sufficient realism and complexity to allow the trade-off required to
design a flow regime. However, a process-based model such as a
population demographic approach is computationally infeasible or
too knowledge and data intensive for most multi-objective appli-
cations. We believe that conditional probability networks provide a
wy of navigating this dilema.

3. Do conditional probability networks (CPNs) provide a way
forward

Broadly, a Conditional Probability Network represents the
probabilistic cause-effect relationships between driver variables (in
this context, flow and other ecological drivers) and one or more
outcomes (here, ecological condition). The most familiar use of
CPNs is within Bayesian network models (Pearl, 2000). The
network is represented by a series of nodes and links. For each node
there is a predefined conditional probability table with a finite set
of input states and output states. These probabilities define the
outcome of that node given the condition of the parent nodes that
feed into it (Hart and Pollino, 2009).

This approach to representing the relationship between flow
regime and ecological outcomes lends itself to decision making and
can be embedded within an optimization tool. Importantly, these
networks explicitly represent the interactions between multiple
flow components to produce a single ecological outcome (i.e. each
flow component is a separate parent node). This approach highly
flexible to represent ecological knowledge concerning these in-
teractions in contrast to the common simplification of using an
average value. In the context of optimization, this means that the
environmental outcome is defined based on the full structure of the
node-link network. The predefined conditional probability tables
for each link-node relationship also allow the inclusion of non-
linear responses.

The benefits of CPNs include that they (Henderson et al., 2008):

� show cause-effect relationships through a simple graphical
structure;

� are easily constructed, extended and modified;
� incorporate uncertainty in relationships through the use of
probabilities;

� allow the conditional probabilities between variables to be
constructed using either observed data, other models, or expert
knowledge (or any combination of these); and

� are an accessible and intuitive modelling approach.

The use of CPNs within Bayesian network models is increasing
in natural resource management (McCann et al., 2007), and the use
of such models in environmental flows is also gaining momentum
(Hart and Pollino, 2009; Arthington et al., 2010). To date, the use of
Bayesian networks for environmental flows has been for multi-year
flows planning (for example Chee et al., 2005; Pollino et al., 2007;
Stewart-Koster et al., 2010), using a constant set of rules over a long
term flow sequence where the resulting flow release recommen-
dations remain the same each year. Here, we are proposing to use
CPNs within an optimization framework to inform within-year
decision making for active flow management. By embedding a
CPN within an optimization framework, the optimization tool can
identify the flow release decisions that would lead to the best
predicted outcome, trading off multiple endpoints, and taking into
account the specific climatic conditions being experienced at the
time. This approach also allows seasonal and annual decisions to
vary each year to favour different species or objectives.

The probabilistic relationships within CPNs can be populated
using data and information from a number of sources. When
extensive data are available, algorithms such as the expectation
maximization (Dempster et al., 1977) algorithm embedded in the
Netica Bayesian Network software can be used to populate a CPN
directly. Where data are lacking, expert knowledge can be used to
parameterize relationships. Formal expert elicitationmethods (for
example Speirs-Bridge et al., 2010) can be employed to reduce the
bias and overconfidence that often affects expert-based estimates,
and methods have been developed specifically aimed at eliciting
flow-ecology relationships (de Little et al., 2012). Interpolation of
linear relationships among multiple discrete states in nodes can
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be used to reduce the number of questions needed for elicitation,
thereby reducing expert fatigue (Cain, 2001). Ideally, knowledge
of the relationships in a CPN builds over time, with new infor-
mation able to be used to update the probabilities via application
of Bayes rule.

4. How can CPNs be included within optimization models of
environmental flow decisions?

We present a generic model using Mixed Integer Programing
(MIP), focusseson therepresentationofCPNs (the constraintsused to
determine the link-node relationships) and incorporationwithin the
objective function.Wehave chosenMIPas it is one of the lessflexible
optimization methods that have been used in previous studies
(Horne et al., 2016), and if CPNs can be implemented within anMIP-
based optimization, they should be amenable to other optimization
algorithms as well. The case study (Section 5) and supplementary
material provide detail of this generic model as applied to a real
catchment, and provide the complete MIP model (including water
resource system constraints applying to the case study) that opti-
mizes the design of the environmental water releases.

The design of an environmental flow regime, in the context of
optimization, can be considered as a series of decisions around
which flow components to provide, at which time of year, and to
what duration and magnitude. A conditional probability network
for a given species provides the relationship between the provision
of flow components (for example, low flows or high pulse events)
and the overall ecological outcome for the species (for example,
condition of adult population) through a set of nodes and directed
links. The nodes represent the flow components and other
ecological state variables relevant to the life history of the species
(for example, spawning) and directed links represent cause-effect
relations between “parent” nodes and “child” nodes. Each node in
the CPN can be in a finite number of states. In the case of parent
nodes, for example, a flow pulse event node could include a
number of different possible flow thresholds. The states of these
nodes can be described relative to natural flowmetrics (NFM), with
different percentile flows relevant to each flow component. Each
node representing an intermediate ecological stage (for example,
habitat quality or spawning condition) also has a set number of
possible states. For example, a node describing instream habitat
may be “adequate” or “inadequate”, or similarly a node repre-
senting spawning may be “triggered” or “not-triggered” etc. The
nodes representing the overall ecological outcome of a species
could have states such as “good, average or poor” condition or
“increasing, decreasing or maintained” population. The CPN in-
cludes a conditional probability table (CPT) for every node, which
quantifies the strength of the cause-effect relation between the
parents of that node and the node itself. The CPT for a node spec-
ifies, for each possible combination of states of its parent nodes, the
probability of the given node being in various states.

Using the node link structure and the underlying CPTs of a CPN,
the probability distributions for the final ecological outcomes can
be derived once the probability distributions of the flow compo-
nent nodes are known. Different environmental water release
schedules will lead to different probability distributions of the flow
component nodes, and hence will imply different distributions for
the nodes representing the final outcomes for that species.

Below, we show how the CPNs for all relevant species or
environmental endpoints can be incorporated within an MIP
optimization model to inform the design of environmental flow
releases (including volume and timing). The aim is to produce a
flow series such that the nodes representing the flow compo-
nents in the CPN of each ecological endpoint have probability
distributions that lead to the maximal outcome across the
different species and locations at which these occur. There are
three key steps:

� Based on the flow regime in the river reach (the sum of environ-
mental releases and “exogenous” flows provided for consumptive
and other purposes) the optimization model must calculate the
probability distribution for the parent node Section 4.1

� The distributions for the parent node must be propagated
through the CPN to derive the overall ecological outcome for a
given species (Section 4.2)

� Outcomes for individual species are combined in the objective
function (Section 4.3).

4.1. Determining probability distribution for the parent (flow
component) nodes

Broadly, flow components can be divided into two main classes
(1) base flows (for example low flows in summer or winter) that
provide continuous instream flow over a season, or (2) pulse events
(sometimes referred to as ‘freshes’ or ‘spells’) which are a higher
pulse of flow through the river, described in terms of both magni-
tude and frequency. The implementation of these two classes of
flow components differs.

4.1.1. Base flow components
Many species require a continuous river flow throughout the

year, often distinguished into two seasons (for example, summer
andwinter low flow requirements). A CPN node representing a base
flow component has a number of states defined by various flow
thresholds (derived hydrologically for the species and the river
reach). The probability distribution for nodes representing base
flow delivery would be based on the distribution of flows during
the relevant season in the planning horizon. Specifically, the
probability of the base flow node in a particular state in a reach is
given by the proportion of days the flow in the reach lies between
the flow thresholds defining the state. These probabilities can be
computed within a MIP model with the help of following set of
constraints, where Constraints (1)e(3) count the number of days
the low flow lies in each state, and Constraints (4) calculate the
probability of low flow node in each of its states.

xad⩾bqaibqadi c i2S qaðLFÞ; a2Aq
r ; d2D qðLFÞ; q2Q LF (1)

xad⩽bqaðiþ1Þ

þM
�
1� bqadi

�
c i2S qaðLFÞ; a2Aq

r ; d2D qðLFÞ; q2Q LF

(2)

X
i2S qðLFÞ

bqadi ¼ 1 c a2Aq
r ; d2D qðLFÞ; q2Q LF (3)

r
ðLFÞ
qa ðiÞ ¼ 1���D qðLFÞ

���
X

d2D qðLFÞ

bqadi c i2S qaðLFÞ; a2Aq
r ; q2Q LF

(4)

where Q LF is the set of species or endpoints requiring the low flows,
A q

r is the set of river reaches that are relevant to species q, S qaðLFÞ
is the set of states for the summer low flow node for species q2Q Lf
in reach a2A q

r , bqai is the flow threshold defining state i2S qaðLFÞ,
D qðLFÞ is the set of days relevant for low flows for species q, M is a
sufficiently large real number, and bqadi are bookeeping binary
variables that take value one only if the total flow in reach a2A q

r on
day d2D qðLFÞ, denoted by xad, lies in the ith state, i.e.,
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bqadi ¼
�
1; if bqai⩽xad⩽bqaðiþ1Þ
0; otherwise:

4.1.2. Pulse or fresh events
Fresh or pulse events are defined as periods where flow exceeds a

certain threshold for a minimum duration. The states of the nodes
representing the fresh flow components are defined by the flow
thresholds, and frequencies at which a fresh event for a species
wouldhaveapositive effecton itsoverall condition.Theoptimization
model chooses a release pattern, and this will result in exactly one
scenario from the possible combinations of frequency and magni-
tudeof freshevents. Thus, themodelwill knowdefinitively that there
are X fresh events over threshold Y. Thus for each release pattern,
each node representing a freshflowcomponent (fresh threshold and
fresh frequency) one state will have a probability of one and the
remaining stateswill have probability zero. In anMIPmodel, this can
be captured with the help of the following set of constraints.

Constraints (5) and (6) note whether the total flow in a reach is
above or below the given flow thresholds. Constraints (7)model the
minimumduration of a fresh event. These constraints require that if
in reach a, a fresh event above threshold t starts on day d for species
q and fresh flowcomponent n, then the flowmust remain above the
threshold t for the minimum duration of the fresh event after day
d as required by species q for the flow component n. Constraints (8)
impose that a fresh event for species q and fresh flow component n
happens within relevant days (for example, autumn freshes must
occur within March to May for Australian grayling - one of the fish
species modelled in the case study presented below). Constraints
(10) model the independence of two fresh events requiring that the
flow must fall below the threshold for a given number of consec-
utive days immediately before the beginning of next independent
fresh event. Constraints (11) count the number of independent
fresh events above all suitable thresholds for each species and flow
components in reaches relevant for species q, and finally Con-
straints (12) gaurantee for every node in the CPN corresponding to
a fresh flow component node only one state can have a probability
of one and all other states have a probability of zero.

xad⩾taadt c d2D at ; t2T a; a2A r (5)

xad⩽t þMaadt c d2D at ; t2T a; a2A r (6)

PdþFMinDur
qan �1

p¼d
aapt⩾FMinDur

qan Zqantd c t2T qan; a2A q
r ;n2N q; q2Q ;

d2D qn : dþ FMinDur
qan � 1⩽ max

d2D qn

d

(7)

Zqantd ¼ 0 c t2T qan; a2A q
r ;n2N q; q2Q ;

d2D qn : dþ FMinDur
qan � 1> max

d2D qn

d (8)

XdþFI
qan

p¼dþ1

Zqantp⩽1� aadt c t2T qan;a2A q
r ;d2D qn;n2N q;q2Q

(9)

PdþFMinDur
qan þFI

qan�1

p¼d
Zqantd⩽1 c t2T qan;a2A q

r ;n2N q;q2Q ;

d2D qn :dþFMinDur
qan þFIqan�1⩽ max

d2D qn

d
(10)
P
d2D qn

Zqantd⩾
P
k0 > k

Wqantk0 c t2T qan; a2A q
r ;n2N q; q2Q ;

k2
n
0;1;…; FMaxNum

qan

o
(11)

X
t2T qan

XFMaxNum
qan

k¼1

Wqantk ¼ 1 c a2A q
r ;n2N q; q2Q (12)

where N ¼ fAutumn freshes; Spring freshes; Bankfull eventsg is
the set of fresh flow components, N q4N is the set of flow com-
ponents in N that are relevant for species q, D qn is the set of days
relevant for flow component n2N q for species q, T qan is the set of
thresholds relevant for species q in reach a2A q

r for provision of
flow component n2N q, T a is the set of thresholds that are rele-
vant for the reach arc a2A r , which is given by union of all
thresholds in reach a over all species q2Q and flow components
n2N q, D at is the set of days relevant for threshold t in reach a,
FMinDur
qan denotes theminimum duration of a fresh event for species q
and flow component n2N q in reach a, where FIqan is the minimum
number of fresh independence days required by species q, and
FMaxNum
qan is the maximum frequency of fresh events for species q in
reach a. Here we have used the following three types of binary
variables to compute the probability distributions of CPN nodes
representing fresh flow components:
� aadt which can be one only if the flow in reach a is above
threshold t on day d,

� Zqantd which can be one only if a fresh event over threshold t
starts on day d for species q and flow component n2N q, and

� Wqantk which are used to select the optimal states for the flow
events for each species q in each relevant reach a2A q

r and flow
component n2N q (Wqantk can be one only if at least k events
over threshold t2T qan are selected for flow component
n2N q).
4.2. Linking the nodes: constraints for evaluating ecological
outcomes

Assume that three flow components (for example summer
low flow, spring fresh magnitude and frequency) affect the
likelihood of good habitat and likelihood of spawning, which in
turn influence the probability of recruitment for a fish species.
The probability distribution of the recruitment node ðRÞ thus
depends on the probability distributions of the Habitat node ðHÞ
and the Spawning node ðSÞ, the nature of which are affected by
the probability distribution of the summer low flow node ðSLFÞ,
and the probability distributions of spring fresh threshold and
frequency node respectively. Using the knowledge of flow drivers
outline above, we can obtain the probability of the recruitment
node being in a given state using the following constraints. Note
that the left hand side of the following constraint is bounded by
the value of the first term on the right hand side corresponding
to the combination of threshold and frequency for the spring
fresh for which the binary variable W takes value one. Since the
objective is to improve overall recruitment, the model will
choose that combination of spring fresh threshold and frequency
that maximizes the objective:

where r
ðRÞ
qa ðiÞ is the probability the recruitment node in the CPN

of species q is in state i in reach a.



r
ðRÞ
qa ðiÞ ⩽

P
h2S qðHÞ

P
s2S qðSÞ

PðHÞqa ðhÞPðSÞq ðsjt; kÞPðRÞq ðijh; sÞ þM
�
1�Wqankt

�

¼ P
h2S qðHÞ

P
s2S qðSÞ

 P
j2S qaðSLFÞ

r
ðSLFÞ
qa ðjÞPðHÞq ðhjjÞ

1
APðSÞq ðsjt; kÞPðRÞq ðijh; sÞ þM

�
1�Wqankt

�

c i2S qðRÞ; k2
n
0;…; FMaxNum

qan

o
t2T qan; a2A q

r ;n ¼ Spring fresh

(13)
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4.3. Designing an objective function

Each species may be located at multiple locations throughout a
river system. The objective function must ensure an appropriate
aggregation of this spatial information. For example, for bird
breeding, it may be sufficient to ensure that appropriate breeding
conditions occur at one location within the catchment. This could
be represented in an objective function as the maximum breeding
outcome across all locations in the catchment. In contrast, the
objective for fish species may be to ensure a health population
throughout the river channel, and so averaging of outcomes across
spatial locations may be more appropriate. Every river system has a
number of key species and assets that environmental water man-
agers are seeking to protect or restore. This results in a multi-
objective consideration of the problem of optimizing the environ-
mental water releases. One approach adopted in the Water re-
sources management literature is to combine the multiple
objectives into a single objective by taking a weighted average of
the outcomes of the multiple objectives (Horne et al., 2016). We
have adopted this approach to design an objective function for the
MIP optimization model. The main challenge then is to determine
Fig. 2. Map of the Ya
the weights for the species. This is informed by management and
stakeholder priorities within the system.

While maximizing overall ecological outcomes in the river is the
primary objective in optimizing environmental water releases in a
river, it must be noted that different release patterns can potentially
lead to the same ecological benefit. In this case, the optimal release
pattern is one that uses the least volume of water to achieve the
optimal benefit. This can be achieved using a two-step approach. At
step 1, one solves the optimization model to obtain the optimal
ecological benefit. Then at step 2, an additional constraint is added
to themodel requiring that the overall ecological benefit be same as
the one obtained at step 1, and the optimization model is then
solved again with the objective of minimizing the total volume of
the environmental releases.

5. Demonstration - native fish in the Yarra River, Victoria,
Australia

The Yarra River originates in a steep forested region and extends
120 km downstream to Port Phillip Bay in the city of Melbourne,
Victoria, Australia (Fig. 2). The catchment is highly regulated with a
rra River system.
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number of large urban storages that provide water supply for
Melbourne. There are also a number of irrigation diversions along
the river. This level of development has altered in-stream flow, with
annual flow at some locations reduced to half the pre-development
flow (SKM, 2012).

The Victorian government holds an environmental water enti-
tlement in the Yarra system that is actively managed to achieve
multiple environmental outcomes. However, a range of delivery
constraints apply to different parts of the system (Water, 2014).
Within these constraints, the manger must decide when to release
environmental water from the various storages to achieve best
environmental outcomes downstream. Environmental outcomes
are represented by two key reaches: Yering Gorge and Millgrove
(Water, 2014). The Yarra River supports a range of environmental
values, including a number of nationally significant fish species
(Water, 2014). This paper focuses on two of these fish species; River
Black fish (Gadopsos marmoratus) and Australian Grayling (Proto-
troctes maraena).

5.1. Development of the Yarra optimization model

The optimization model developed for the Yarra River is struc-
tured as shown in Fig. 3. The detailed optimization model and
constraints are provided in supplementary material. Importantly,
the modelling of the water supply system was limited to those
allow representation of reaches of environmental significance (thus
the urbanwater supply networkwas not necessary to include in the
model). The model was implemented using the Mosel XPRESS
program. The constraints to represent the CPNs and objective
function follow the approach outlined in Section 4.

5.2. Ecological assets in Yarra river and their conditional probability
networks

River Blackfish are potamodromous, spending their entire life in
freshwater (Koster and Crook, 2008). They spawn in spring
(October to January) when water temperatures exceed 16 �C
(Lintermans, 2007). Spawning is likely triggered by temperature
and habitat type rather than a specific flow event (Koehn et al.,
1994). Once hatched, larvae remain in the area for around three
weeks. During this time, it is important that flows do not flush
Fig. 3. Structure of the Yarra River Enviro
larvae from the nursery habitats (SKM, 2005).
In contrast, Australian Grayling are diadromous, moving to and

from the marine environment. Movement of adults downstream
and subsequent spawning is triggered by fresh or pulse flow events
in autumn (specifically in April or May) (O'Connor and Mahoney,
2004) and a fall in water temperature (Shenton et al., 2011).
These same flow events also transport eggs and larvae downstream
to the estuary (SKM, 2005). Juveniles are then believed to return
upstream in response to a spring fresh event, four to six months
after spawning (Koster et al., 2013). Australian Grayling are
panmictic and spawning and recruitment do not necessarily occur
in the same river (Shenton et al., 2011).

Shenton et al. (2011) developed Bayesian network models for
Australian Grayling and River Blackfish based on expert elicitation
and existing conceptual models (Chee et al., 2009). These models
have been adapted for use within the optimization tool. It is
important to note that the parent nodes (i.e. descriptors of flow) of
the Bayesian network models include probabilities based on long-
term analysis of flow data and models. As noted in 4, this is a
point of differentiation when adopting this model in an optimiza-
tion model for seasonal environmental watering decisions. In the
optimization model, the conditional probability relationships that
link elements of the ecological responsemodel are retained, but the
long-term probability distributions for flow conditions at parent
nodes are replaced by specific representations of the flow regime at
that time step. The flow regime is the decision variable in the
optimization model; optimization searches for an environmental
flow delivery pattern that will provide the best result given the
conditional probabilities that links flow to ecological outcome.

Fig. 4 shows the conceptual models that underlie the Shenton
et al. (2011) Bayesian network models. The conditional probabil-
ity tables used to populate this model were taken from Shenton
et al. (2011) without modification. The assessment is based on
daily flow requirements. In these models, there are four relevant
flow components: Autumn Fresh, Spring Fresh, Summer Low and
Winter Bankfull. There are seven possible states for flowmagnitude
for each component (the median natural flow (NFM), NFM minus
10 percent, NFM minus 20 percent etc.) and four possible states for
frequency (three, two, one and none). These flow components are
represented as parent nodes in the networks. Each transitional
node (in-stream habitat, pre-spawning condition, transport larvae,
nmental Water Optimization model.



Fig. 4. Conceptual models for Australian Grayling and River Blackfish (adapted from Shenton et al. (2011)). Q50 refers to the 50th percentile flow, Q95 to the 95th percentile flow
and Q5 to the 5th percentile flow for the corresponding time period. Darker grey boxes represent parent nodes and bold bordered boxes represent child nodes. *Note that Autumn
water temperature is taken to refer to temperature at the time of the autumn fresh event (Anabranches and Runners refer to sections of a river or stream that divert from the main
channel and rejoin further downstream).
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etc.) has two possible states (adequate/inadequate, good/poor,
triggered/not triggered, etc.) The CPNs in our application have only
one child node for each species, representing the recruitment of the
fish species, which has three possible states: increasing, decreasing
and maintained.

Water temperature is a key element in the conceptual models
for both Australian Grayling and River Blackfish. For River Blackfish,
summer water temperature is aimed at maintaining adequate
habitat, and is therefore included in the model a parent node
populated using the distribution of temperature over summer. For
Australian Grayling water temperaturewas included as a constraint
for an autumn fresh event. This reflects that spawning is triggered
with a rise in flow and drop in temperature occurring concurrently
(Shenton et al., 2011), rather than the average autumn temperature.
Fig. 5. The overall environmental outcome for Australian Grayling and River Blackfis
6. Results and analysis

The optimization model was run for the six years where flow
and corresponding water temperature data are available for the
Yarra River system (1998e2003). These years represent the water
planning year which runs from July to June, encompassing the
Australian summer peak irrigation season (ie. 1998 represents the
water year from July 1998 to June 1999). The years 2000 and 2003
experienced close to the average annual flow in the Yarra River,
while the other years in this period were drier than average. No
water temperature data were available that corresponded to a year
with high annual flow.

We investigate the benefits of providing additional environ-
mental water in different years by looking at the overall
h in different years with increasing volumes of environmental water available.
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environmental outcome with increasing volumes of environmental
water available. Fig. 5 shows how the overall environmental
outcome (a combined score across the two species shown on the y-
axis) changes as more water is provided (with volume of environ-
mental water shown on the x-axis). Each curve in the figure rep-
resents the outcomes from a different year of flow data. The slope of
the curve shows the marginal value (the additional environmental
outcome per unit of additional water); where the curve is steep
there are large gains for a small additional amount of water and
where the curve flattens there is little marginal gain. The figure
shows that for these two species, the majority of environmental
outcome is achieved with only 10 GL of water with little returns for
additional volumes.

Fig. 5 shows clear variation between the overall outcome in the
different years. This can not readily be explained by the annual
stream flow for each of these years. To look at this further, Table 1
shows how water is used in each year when the environmental
entitlement of 17 GL is available. Note it is only the years 1998, 2001
and 2002 that the full 17 GL is required to achieve the optimal
environmental outcome based on the requirements of the two fish
species (noting that in reality Melbourne Water also manages the
system for a number of other environmental objectives). The table
Table 1
Targeted flow components for each year (1998e2003) (Shaded cells indicate that the full p
achieved, Reach 2 refers to Millgrove and Reach 5 refers to Yerring Gorge).

Year 1998 1999

Amount of water used 17 13.73
Total Benefit 0.390 0.379

Flow components provided Reach
Autumn Fresh Threshold 2 Q50 Q50

5 Q50 Q50
Autumn Fresh frequency 2 3 3

5 3 3
Spring Fresh threshold 2 Q50 minus 20% Q50 m

5 Q50 Q50
Spring Fresh frequency 2 3 1

5 1 1
Bankfull threshold 2 * *

5 * Q50 m
Bankfull frequency 2 * *

5 * 1

Australian Grayling outcome
Probability of adequate habitat 2 0.950 0.950

5 0.950 0.950
Probability that spawning is triggered 2 0.889 0.889

5 0.889 0.889
Probability that larvae transport occurs 2 0.895 0.895

5 0.895 0.895
Probability that recruitment increases 2 0.542 0.470

5 0.542 0.542
Probability that recruitment maintained 2 0.139 0.184

5 0.184 0.184
Maximum possible prob. of recruitment increasing* 2 & 5 0.631 0.631

Blackfish outcome
Probability of adequate instream habitat 2 0.950 0.950

5 0.950 0.950
Temperature � 16� 2 0.856 0.769

5 0.933 1.000
Probability that spawning is triggered 2 0.679 0.615

5 0.736 0.785
Probability of natural slackwater habitat 2 0.283 0.283

5 0.283 0.335
Probability that recruitment increases 2 0.356 0.335

5 0.375 0.396
Probability that recruitment maintained 2 0.234 0.225

5 0.241 0.249
Maximum possible prob. of recruitment increasing* 2 0.411 0.386

5 0.433 0.452
shows that across all years, the recommended number and
magnitude of Autumn freshes are provided in the Millgrove reach,
with a relatively fewer number of events provided in Yerring Gorge
but at the recommended threshold. Spring freshes are then pro-
vided usually at a reduced threshold and frequency and highly
dependent on the timing and duration of exogenous flow pulses in
the river upon which such freshes can be “piggy-backed”. Bankfull
events at a reduced threshold (50% of the recommended volume)
are provided in a number of years, againwhere there is a significant
exogenous flow pulse event in July that can be used to achieve a
smaller top-up volume from the environmental water account. The
way in which environmental releases take advantage of exogenous
flow patterns and opportunistically add fresh events is shown in
Fig. 6.

In 2001, there is a reduced frequency of autumn freshes in
Yerring Gorge, and a reduced frequency of spring freshes in the
Millgrove reach, both of which contribute to a lower probability of
Australian Grayling recruitment. This is similar to the year 2002
where reduced frequency and magnitude of spring freshes limits
recruitment. On this basis, the overall probability of a good envi-
ronmental outcome in these years remains below that of other
years. The table shows that the outcomes for Australian Grayling
ossible flow recommendation or probability of environmental outcome has not been

2000 2001 2002 2003

10.94 17 17 15.18
0.399 0.347 0.325 0.400

Q50 Q50 Q50 Q50
Q50 Q50 Q50 Q50
3 3 3 3
2 1 2 2

inus 20% Q50 Q50 Q50 minus 40% Q50
Q50 Q50 Q50 minus 20% Q50
2 1 1 3
3 3 1 3
Q50 minus 60% Q50 minus 60% Q50 minus 60% Q50 minus 50%

inus 50% Q50 minus 50% Q50 minus 60% Q50 minus 60% *
1 1 1 1
1 1 1 *

0.950 0.950 0.950 0.950
0.950 0.936 0.799 0.936
0.889 0.889 0.889 0.889
0.768 0.628 0.715 0.763
0.895 0.895 0.895 0.895
0.672 0.458 0.629 0.668
0.587 0.542 0.390 0.631
0.487 0.348 0.346 0.484
0.184 0.184 0.184 0.139
0.117 0.096 0.144 0.117
0.631 0.631 0.631 0.631

0.950 0.950 0.950 0.950
0.950 0.936 0.799 0.936
1.000 0.722 0.889 0.945
1.000 1.000 1.000 1.000
0.785 0.581 0.703 0.745
0.785 0.781 0.740 0.781
0.283 0.283 0.283 0.335
0.335 0.283 0.283 0.283
0.391 0.324 0.364 0.382
0.396 0.389 0.368 0.389
0.248 0.220 0.237 0.244
0.249 0.247 0.238 0.247
0.452 0.372 0.420 0.436
0.452 0.452 0.452 0.452



Fig. 6. Exogenous flow and environmental releases in Millgrove (reach 2) and Yerring Gorge (reach 5) for the year 2003, with varying levels of environmental water available.
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are affected more significantly by the environmental watering than
Blackfish. This analysis highlights one of the advantages of repre-
senting ecological outcomes using CPNs- the ability to track how
individual flow components are affecting the probability of
adequate habitat, spawning and ultimately recruitment.

It is important to note that the maximum possible probability of
recruitment for both species is less than one, that is, the CPN
specifies that even if all flow components are provided, there is still
a reasonable probability that recruitment will not occur. For
Blackfish, the maximum possible probability of recruitment varies,
depending on the summer temperature for that year. If tempera-
tures during summer are low, additional flow will not improve the
likelihood of spawning. The maximum possible outcomes are
shown in Table 1.

7. Discussion and conclusions

Managing environmental flows downstream of storages pre-
sents a particular set of challenges. In these systems, an environ-
mental flow regime that is designed to achieve a specific set of
environmental objectives may be more appropriate than a flow
regime based on the natural flow paradigm. Translating these
management objectives into a designer flow regime requires an
understanding of the relative benefits of providing flow at different
times and places throughout the year. Decision support tools such
as optimization can play a role in informing the design and
implementation of these novel flow regimes, but representing
ecological outcomes within these models has been a challenge. The
CPN approach illustrated here offers potential as an approach that
provides a representation of how flow release decisions link to a
given management objective and include information on the
marginal value of flow at different times. These models directly
predict the ecological effects, rather than having to rely on surro-
gates like hydrology.

There are a number of advantages we see in the use of CPNs
within environmental flow decision support models. As the infor-
mation within the conditional probability network can be revised
over time as new knowledge becomes available, the approach lends
itself to adaptive management and allows a degree of flexibility
that has been lacking in previous approaches. Indeed, the outcomes
from the optimization model can be used with an expert group to
assess whether the conceptual model is behaving as expected in
terms of the recommended flow release patterns, and this infor-
mation can then be used to revise the models as required. They can
also incorporate data and information from multiple sources.

CPNs are transparent and provide useful outputs for commu-
nication and analysis. For example, they allow the tracking of how
individual flow components are affecting the probability of
adequate habitat, spawning and ultimately recruitment. This may
be particularly relevant when comparing multiple environmental
endpoints with competing needs at a particular time of year. The
case study also demonstrated the ability to incorporate tempera-
ture as another factor influencing environmental outcome. The CPN
structure supports analysis to understand whether flow or another
environmental driver is the limiting factor for a particular outcome.

A potential limitation of the CPN approach is that the tabular
format creates a piece-wise linear relationship that risks creating
thresholds on what would otherwise be a smooth response func-
tion. This effect can be reduced by having a larger number of states
in the node, but this might make the conditional probability table
difficult to parameterize. The potential effect of discretization
would require investigation at the model development stage to test
the sensitivity of the model outcomes to the number of states in
each node.

The process outlined in this paper (and implemented in the case
study with the two fish species in the Yarra) includes only two
species and a relatively simple spatial network (two reaches in
series). The two species are separate and independent ecological
endpoints. In many cases, there will be multiple ecological end-
points and it is likely that at least some of these ecological end-
points will not be independent of one another (for example, frogs
might rely on adequate riparian vegetation, which would require a
link between vegetation and frog models). Developing these more
complex interactions and river networks and implementing them
within an optimization tool to determine environmental watering
decisions is an area for further research. It will increase the
computational complexity, and the CPNs themselves may be more
challenging to parametrize. However, these are just extensions of
the approach demonstrated here, rather than being qualitatively
more difficult. In particular, the concept of interaction between
ecological endpoints is straightforward using CPNs.

A key limitation of the Bayesian networks that have previously
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been adopted in natural resourcemanagement applications, is their
inability to consider temporal sequencing (Hart and Pollino, 2009).
Incorporating a CPN within an optimization approach can over-
come this, as feedback loops and time series of flow can be incor-
porated. Temporal sequencing would be included by adding an
antecedent ecological condition node to the network. If ecological
condition for an endpoint starts out in a good state, then providing
flows might only cause a small extra increase. In contrast, if
ecological condition starts out poor, ecological improvements will
be greater, and flows will be more highly prioritized. In this way,
temporal sequencing within CPNs will facilitate year-to-year
changes in priority among endpoints, focusing on those that need
water the most for the current time period. There is a major op-
portunity to refine this approach and consider how antecedent
conditions and resilience can be considered when designing envi-
ronmental flow regimes downstream of major storages.

The results from the Yarra case study clearly show that there is
variation across years in how environmental water can be used for
best ecological effect. This shows the importance of considering
individual years rather than long term averages when determining
release patterns and designer flow regimes. It also suggests that
there may be advantages in considering hydrological forecasting
approaches when determining environmental water use for the
coming season, rather than relying on historical long-run average
information. Analysis of a longer period of recordwould help assess
this in more detail, and it may be possible to move to a stochastic
modelling framework to address these challenges.

The real success of optimization models in supporting the
design of environmental flow regimes will only be tested when
such models are used by water managers. While CPNs can be
readily updated and used within an adaptive management context,
the models need to be translated into usable tools and work within
the institutional settings that are present. This will require ongoing
collaboration with water resource managers to ensure the
modelled decisions and objectives align with their management
needs.
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