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Abstract

We propose a stronger formulation of the precedence constraints and the station limits for the simple assem-
bly line balancing problem. The linear relaxation of the improved integer program theoretically dominates
all previous formulations using impulse variables, and produces solutions of significantly better quality in
practice. The improved formulation can be used to strengthen related problems with similar restrictions. We
demonstrate their effectiveness on the U-shaped assembly line balancing problem and on the bin packing
problem with precedence constraints.
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1. Introduction

Let (N, ≤) be a weak partially ordered set of tasks with integral execution time ti for i ∈ N. The
simple assembly line balancing problem (SALBP) is to find an assignment a : N → S of the tasks to
a linear sequence of stations S = {1, 2, . . . , m}, respecting the partial order, that is, all tasks i, j ∈ N
with i ≤ j satisfy a(i) ≤ a( j). The cycle time of an assignment is the largest time needed to execute
the tasks assigned to some station. The problem is said to be of type 1 (SALBP-1) when the goal is to
minimize the number stations for a given cycle time, and to be of type 2 (SALBP-2) when the goal is
to minimize the cycle time for a given number of stations. The decision version of both problems is
NP-complete, since without precedence constraints SALBP-1 reduces to the bin packing problem,
and SALBP-2 to the problem of minimizing the makespan of a schedule of the tasks on identical
parallel machines.

The SALBP has been extensively studied in the literature, and there are excellent constructive
and heuristic algorithms, as well as exact solution methods available (e.g., Scholl and Voß, 1996;
Scholl and Klein, 1999; Fleszar and Hindi, 2003; Blum, 2008; Sewell and Jacobson, 2012). A very
good overview of the methods can be found in the survey of Scholl and Becker (2006).
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The problem is of interest to researchers, as it forms the core of a large class of generalized
assembly line balancing problems. These include assembly lines of different layout, for example, U-
shaped lines, lines with assignment restrictions, varying task times, or setup times. Becker and Scholl
(2006) survey generalized assembly line balancing problems, and the ALB Research Group (2012)
provides a property-based search for information on these problems.

Results obtained for the SALBP can often be transferred to generalized problems. The purpose
of this paper is to show that this also applies to integer programming models for the SALBP.
Clearly, mathematical models solved by standard solvers are not competitive with state-of-the-
art methods. They are nevertheless useful since they frequently serve as benchmarks for bet-
ter methods, and are a tool for studying new general assembly line balancing problems, where
such methods are not yet available. Combined with reduction rules and heuristic solutions, inte-
ger programming models solved by standard solvers can be a reasonable, prototypical solution
method.

To obtain the best possible solution and to guarantee a fair comparison to other methods, it is
necessary to select the best model. In this paper, we address this problem comparing theoretically
and computationally several models for the SALBP from the literature, and some improved models
proposed in this paper. A survey of models for the SALBP can be found in Baybars (1986) and
Scholl (1999). To the best of our knowledge, no theoretical comparison of these models has been
published before. A computational study of some models has been provided by Pastor et al. (2007).

We argue that the results obtained for the SALBP can be generalized to other assembly line
balancing problems. This will be demonstrated by two case studies. We show how the model for
the U-shaped assembly line balancing problem (UALBP-1) proposed by Urban (1998) and the
model for the bin packing problem with precedence constraints (BPP-P), which has been recently
introduced by Dell’Amico et al. (2012) can be improved by the formulations proposed in this paper.
Urban’s model is widely used in the literature as originally proposed (Aase et al., 2003; Gökçen
and Aǧpak, 2004; Chiang et al., 2007; Erin, 2007; Kara and Tekin, 2009; Aǧpak et al., 2012), and
a better model may improve the results in these applications. In the case of the BPP-P, it turns
out that the best integer model is competitive with a sophisticated tailored branch-and-bound
algorithm, demonstrating its utility as a tool for obtaining a rapid, reasonable solution method for
new problems.

The remainder of this paper is organized as follows. In the next section we present a formal
definition, basic mixed-integer linear models of the SALBP-1 and the SALBP-2 and further models
from the literature. In Section 3, we propose improved formulations of the precedence constraints
and the station limits, and theoretically compare the resulting models with the existing ones. The
improved formulations are applied to related problems in Section 4. A computational study is
presented in Section 5 and we offer some conclusions in Section 6.

2. Integer programming models for the SALBP

In this section, we review mathematical models for SALBP-1 and SALBP-2 that have been proposed
in the literature. For a task i ∈ N, let Fi denote the set of its immediate followers, and Pi the set of
its immediate predecessors. Let S be the set of stations. In the following, we suppose that for the
SALBP-1 an upper bound m on the number of stations is known (|N| is such an upper bound), and
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that S = {1, . . . , m}. For the SALBP-2, the number of stations m is part of the problem instance. In
this case we set S = {1, . . . , m}.

There have been three kinds of models proposed in the literature. Bowman (1960) (in the revised
formulation of White, 1961) proposed two formulations, one using binary impulse variables and
another based on time variables, representing the starting time of the tasks. Scholl (1999) proposed
a formulation using binary step variables xsi, where xsi = 1 indicates that task i ∈ N is assigned to
station s ∈ S or some preceding station. Since the formulation using time variables has been found
inferior by Pastor et al. (2007) and the formulations using impulse variables are the most common
in the literature, we focus in the following on the latter.

2.1. Basic models for SALBP

To represent the assignment of tasks to station, we introduce impulse variables

xsi =
{

1, if task i ∈ N is assigned to station s ∈ S,

0, otherwise.
(1)

Any feasible allocation has to satisfy the occurrence constraints

∑
s∈S

xsi = 1, ∀i ∈ N, (2)

which ensures that every task is allocated to a single station, the precedence constraints

xt j ≤
∑

s∈S|s≤t

xsi, ∀i ∈ N, j ∈ Fi, t ∈ S, (3)

and the nondivisibility constraints

xsi ∈ {0, 1}, ∀i ∈ N, s ∈ S. (4)

These constraints have been first proposed by Bowman (1960) and their above form is due to White
(1961). For a given cycle time c and an upper bound m on the number of stations, the SALBP-1 can
be formulated as

(BW1 − 1) minimize
∑
s∈S

ys, (5)

subject to
∑
i∈N

tixsi ≤ cys, ∀s ∈ S, (6)

Equations (2) to (4), (7)

ys ∈ {0, 1}, ∀s ∈ S, (8)
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where the variables ys indicate the usage of station s ∈ S. For the SALBP-2 the cycle time c is
variable and the number of stations m is fixed. It can be formulated as

(BW 1 − 2) minimize c, (9)

subject to
∑
i∈N

tixsi ≤ c, ∀s ∈ S, (10)

Equations (2) to (4), (11)

c ∈ R. (12)

These formulations are due to Baybars (1986). In the following two subsections we present im-
provements of these models by adding station limits and better formulations of the precedence
constraints.

2.2. Station limits

For a given cycle time c and a given number of stations m one often can derive bounds on the
stations a task can be assigned to. For task i ∈ N, let Ei(c, m) be the earliest and Li(c, m) the latest
admissible station. (For the SALBP these bounds can be set, for instance, to Ei(c, m) = ⌈∑

j| j≤i t j/c
⌉

and Li(c, m) = m + 1 − ⌈∑
j|i≤ j t j/c

⌉
.) Then, we can restrict the domain of the decision variables,

substituting (4) by

xsi ∈ {0, 1}, ∀i ∈ N, Ei(c, m) ≤ s ≤ Li(c, m) (13)

in the formulation of the SALBP-1 and by

xsi ∈ {0, 1}, ∀i ∈ N, Ei(c, m) ≤ s ≤ Li(c, m) (14)

in the formulation of the SALBP-2, where m is an upper bound on the number of stations, and c an
upper bound on the cycle time (Patterson and Albracht, 1975).

The station bounds can be strengthened as follows (Pastor and Ferrer, 2009). In the case of the
SALBP-1, when taking into account the currently used stations,

xLi(c,s),i
≤ ys, ∀s ∈ S, i ∈ N (15)

is valid, since if station s is unused, we can assume that this also holds for all later stations and
therefore the latest possible station is now Li(c, s − 1) = Li(c, s) − 1.

For the SALBP-2 we can model the cycle time explicitly to obtain better bounds on the stations.
Let c be a lower bound on the cycle time and let C = [c, c] be the set of admissible cycle times. Then
we can represent the cycle time by

c =
∑
t∈C

trt, (16)
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t∈C

rt = 1, (17)

rt ∈ {0, 1}, t ∈ C. (18)

This allows the following inequalities to be added to the formulation of the SALBP-2:

xei ≤ 1 −
∑

t∈C|e<Ei(t,m)

rt, ∀i ∈ N, Ei(c, m) ≤ e < Ei(c, m), (19)

xli ≤ 1 −
∑

t∈C|Li(t,m)<l

rt, ∀i ∈ N, Li(c, m) < l ≤ Li(c, m). (20)

These inequalities are easily seen to be valid. Suppose, for example, that
∑

t∈C|e<Ei(t,m) rt = 1 in
Equation (19). Then station e comes before the earliest possible station for task i considering the
current cycle time, and therefore xei = 0. Similarly, if

∑
t∈C|Li(t,m)<l rt = 1 in Equation (20) station l

comes after the latest possible station for task i given the current cycle time, and therefore xli = 0.

2.3. Alternative formulations of the precedence constraints

Patterson and Albracht (1975) have proposed to formulate the precedence constraints as

∑
s∈S

sxsi ≤
∑
s∈S

sxs j, ∀i ∈ N, j ∈ Fi. (21)

Thangavelu and Shetty (1971) give the alternative formulation

∑
s∈S

(m − s + 1)(xsi − xs j ) ≥ 0, ∀i ∈ N, j ∈ Fi. (22)

Observe that both formulations are equivalent, since, by the occurrence constraints we have

∑
s∈S

(m − s)xsi +
∑
s∈S

sxsi = m.

3. Improved models for the SALBP

3.1. Station limits

We can strengthen the station limits proposed by Pastor and Ferrer (2009) as follows. In constraint
(15), when a task cannot be assigned to station Li(c, s), it also cannot be assigned to any later
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station. This justifies
∑

u∈S|u≥Li(c,s)

xui ≤ ys, ∀s ∈ S, i ∈ N. (23)

Similarly, in constraints (19) and (20) when a task cannot be assigned to a station earlier than e
this holds also for stations preceding e, and when a task cannot be assigned later than station l , this
holds also for stations following l . Therefore we can strengthen these constraints to

∑
u∈S|u≤e

xui ≤ 1 −
∑

t∈C|e<Ei(t,m)

rt, ∀i ∈ N, Ei(c, m) ≤ e < Ei(c, m), (24)

and ∑
u∈S|u≥l

xui ≤ 1 −
∑

t∈C|Li(t,m)<l

rt, ∀i ∈ N, Li(c, m) < l ≤ Li(c, m). (25)

3.2. Precedence constraints

We propose the following improved formulation of the precedence constraints:
∑

s∈S|s≤k

xsi ≥
∑

s∈S|s≤k

xs j, ∀i ∈ N, j ∈ Fi, k ∈ S. (26)

The two following propositions state the validity and the theoretical strength of these new con-
straints.

Proposition 1. Constraints (26) are valid for BW1-1 and BW1-2.

Proof. If
∑

s∈S|s≤k xsi = 1 the constraint is trivially satisfied, since
∑

s∈S xs j = 1. Otherwise, task i is
executed on station k + 1 or later. But since j ∈ Fi task j cannot be executed on a station preceding
station k + 1, that is,

∑
s∈S|s≤k xs j = 0. �

Proposition 2. Inequalities (26) strictly dominate inequalities (21) and (3). Inequalities (21) and (3)
are incomparable.

Proof. Patterson and Albracht’s inequalities (21) and the equivalent inequalities (22) of Thangavelu
and Shetty are aggregated versions of inequalities (26). Indeed, summing up inequalities (26) for
k ∈ S, we have, for all i ∈ N, j ∈ Fi,∑

k∈S

∑
s∈S|s≤k

xsi ≥
∑
k∈S

∑
s∈S|s≤k

xs j .

which can be easily rewritten as Patterson and Albracht’s inequalities (21) since∑
k∈S

∑
s∈S|s≤k

xsi =
∑
s∈S

(m − s + 1)xsi.
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Fig. 1. Relationships between models of the SALBP with different formulations of precedence constraints. They are
valid for the SALBP-1 as well as the SALBP-2 with the same station limits.

Table 1
Different formulations of the SALBP-1

Base model

Suffix Equations Var. Res.
−1 (2), (4), (5), (6), (8) m(n + 1) m + n
Precedence constraints Station limits

Name Equations Res. Name Equations Res.

PA (21) on2 1 – –
BW (3) on2m 2 (13) –
TS (22) on2 3 (13), (15) mn
NF (26) on2m 4 (13), (23) mn

Moreover, inequalities (26) also imply Bowman’s inequalities (3). Indeed, for all i ∈ N, j ∈ Fi, and
t ∈ S, the smaller terms of both inequalities compare as

xt j ≤
∑

s∈S|s≤t

xs j,

and since their larger terms are equal, inequalities (26) are lifted versions of (3).
The strict dominance of inequalities (26) over (21) and (3), and the incomparability of the latter

two can be seen by means of an example. Let N = {a, b}, a ≤ b and m = 3. It is easy to verify that the
fractional solution x1a = x2a = 1/2, x1b = 3/4, and x3b = 1/4 satisfies Equation (21), but neither
Equation (26) nor (3), and the fractional solution x1a = x1b = x2b = x3a = 1/2 satisfies Equation
(3), but neither Equation (26) nor (21). �

The results of Proposition 2 are summarized in Fig. 1, which shows the relationships between the
models.

Tables 1 and 2 give a summary of models with different precedence constraints and station
limits for the SALBP-1 and SALBP-2 and their number of variables and restrictions. We obtain a
different model for each combination of the precedence constraints, the stations limits and the base
model. For example, BW2-1 denotes the formulation of the SALBP of type 1, using the precedence
constraints of Bowman (3), and station limits (13). Note that Equations (13) and (14) do not increase
the number of restrictions, but reduce the number of variables. In both tables o denotes the order
strength of the instance, that is, the fraction of the at most

(n
2

)
precedence relations present in the

instance. The order strength of an instance is at most 1.
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Table 2
Different formulations of the SALBP-2

Base model

Suffix Equations Var. Res.
−2 (2), (4), (9), (10), (12) nm + 1 m + n
Precedence constraints Station limits

Name Equations Res. Name Equations Res.

PA (21) on2 1 – –
BW (3) on2m 2 (14) –
TS (22) on2 3 (14), (16) to (20) mn
NF (26) on2m 4 (14), (16) to (18), (24), (25) mn

4. Application to related problems

4.1. An improved model for the UALBP-1

U-shaped assembly lines are an alternative to the traditional linear layout, where tasks first pass all
stations in the forward direction, and then pass them again in the backward direction, in form of an
U. Therefore, the tasks assignable to a station include, besides tasks whose predecessors have been
assigned to a preceding station, also the tasks whose successors have been assigned to a preceding
station. This added flexibility can improve the line’s balance or reduce the number of required
stations. The problem of optimally allocating tasks to stations is known as the U-line balancing
problem (UALBP). Urban (1998) has proposed an integer linear program for solving the UALBP-1,
which is often used in studies of the UALBP (e.g., in Aase et al., 2003; Gökçen and Aǧpak, 2004;
Chiang et al., 2007; Erin, 2007; Kara and Tekin, 2009; Aǧpak et al., 2012).

Introducing decision variables

xsi =
{

1, if task i ∈ N is executed on station s ∈ S in the forward pass,
0, otherwise,

(27)

and

wsi =
{

1, if task i ∈ N is executed on station s ∈ S in the backward pass,
0, otherwise,

(28)

the UALBP-1 is solved by the integer linear program

minimize
∑
s∈S

ys, (29)

subject to
∑
s∈S

xsi + wsi = 1, ∀i ∈ N, (30)

∑
i∈N

ti(xsi + wsi) ≤ cys, ∀s ∈ S, (31)
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∑
s∈S

(m − s + 1)(xsi − xs j ) ≥ 0, ∀i ∈ N, j ∈ Fi, (32)

∑
s∈S

(m − s + 1)(wsi − ws j ) ≥ 0, ∀i ∈ N, j ∈ Pi, (33)

xsi ∈ {0, 1}, wsi ∈ {0, 1}, ys{0, 1}, ∀s ∈ S, i ∈ N. (34)

Due to the U-shaped layout every task may be assigned to the last station, and the station limits for
the last station do not apply. Therefore, Urban applies only the bound

Ei(c, m) = min

⎧⎨
⎩

⌈∑
j| j≤i

t j/c
⌉
,

⌈∑
j|i≤ j

t j/c
⌉⎫⎬
⎭ (35)

on the earliest station.
The above model uses precedence constraints as proposed by Thangavelu and Shetty (1971) for

the SALBP. It can therefore be improved by substituting Equations (32) and (33) by the precedence
constraints∑

s∈S|s≤k

xsi ≥
∑

s∈S|s≤k

xs j, ∀i ∈ N, j ∈ Fi, k ∈ S, (36)

∑
s∈S|s≤k

wsi ≥
∑

s∈S|s≤k

ws j, ∀i ∈ N, j ∈ Pi, k ∈ S. (37)

Furthermore, the station limits may be applied separately to the forward and backward pass

xsi ∈ {0, 1}, ∀i ∈ N, Ei(c, m) ≤ s, (38)

wsi ∈ {0, 1}, ∀i ∈ N, Li(c, m) ≤ s, (39)

where Ei(c, m) = ⌈∑
j| j≤i t j/c

⌉
and Li(c, m) = ⌈∑

j|i≤ j t j/c
⌉

.

4.2. An improved model for the BPP-P

The bin packing problem with precedence constraints asks to pack a set of items into the smallest
number of bins of a fixed size, with the additional restriction that an item cannot share a bin with
one of its predecessors or successors. It has been studied recently by Dell’Amico et al. (2012), who
propose a mathematical model, lower bounds, as well as heuristic and exact algorithms.

The BPP-P can be seen as a variant of the SALBP-1 with strict precedences. Therefore, the
improvements for SALBP-1 can be applied to the model for the BPP-P, substituting the precedence
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constraints (26) by their strict variant

∑
s∈S|s<k

xsi ≥
∑

s∈S|s≤k

xs j, ∀i ∈ N, j ∈ Fi, k ∈ S. (40)

The improved constraints for the station bounds (23) also apply to the BPP-P. They are stronger
in the BPP-P, because the bounds on the earliest station Ei and the latest station Li a task can be
assigned to improve when taking the strict precedences into account. In our experiments, we use
the better among the limits for the SALBP-1 given in Section 2.2 and the limits imposed by the
longest chain of predecessors or successors for the earliest and latest station, respectively, for each
task.

5. Computational experiments

We empirically evaluated the performance of all formulations of the SALBP-1 and the SALBP-2
presented in Tables 1 and 2 and the improved formulations of the UALBP-1 and the BPP-P.

For the SALBP, we limited the comparison to the best-known formulations PA and BW from the
literature and the new formulation NF for the precedence constraints combined with all four sets
of equations for the station limits, for a total of 12 SALBP-1 and SALBP-2 formulations. For the
UALBP-1 and the BPP-P, we compare the model as originally proposed with the theoretically best
model. In this latter case, we also compare the results of the new model with the results obtained
with the tailored branch-and-bound algorithm of Dell’Amico et al. (2012). The detailed results
reported in the tables below are available online at http://www.inf.ufrgs.br/algopt/albp.

5.1. Results for SALBP-1 and SALBP-2

The formulations for the SALBP have been tested on the standard benchmark that contains 269
instances of the SALBP-1 and 302 instances of the SALBP-2. All instances are available online (ALB
Research Group, 2012). Currently the optimal value is known for the 269 SALBP-1 instances and
all except 14 of the SALBP-2 instances. In the evaluations below, solutions for instances without
a known optimum were considered optimal only if the solver could prove so. When comparing
solution values obtained by different formulations, a result is considered better when the null
hypothesis of no improvement in solution values can be rejected at a significance level p = 0.05. In
all tests, the test statistic used is a conservative, nonparametric paired sign test, where half of the
ties were assigned to each sample (Dixon and Mood, 1946).

The experiments were performed on a PC with an Intel Core i7 CPU running at 2.8 GHz and 12
GB of main memory. We used the solver CPLEX 12.4 with standard options, except for an MIP
optimality gap of 10−5, running in a deterministic mode with two threads for a maximum time of
600 seconds. The computation times reported are in seconds of real time. Following Pastor and
Ferrer (2004) we use in our experiments for the SALBP-1 the lower bound m = ⌈∑

i∈N ti/c
⌉

and the
upper bound m = min{2m, |N|} on the number of stations, and for the SALBP-2 the lower bound
c = max{maxi∈N ti,

⌈∑
i∈N ti/m

⌉} and the upper bound c = 2c on the cycle time.
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Table 3
Comparison of formulations of the SALBP-1 on 269 classical benchmark problems (Scholl, 1993)

Optimal Suboptimal

Model Proven Time Unprov. Feas. Infeas. Best Time

PA1 167 25.5 24 43 35 208 22.2
PA2 182 22.0 17 35 35 216 5.9
PA3 187 26.8 16 24 42 208 8.9
PA4 189 25.4 14 22 44 209 6.6

BW1 187 39.3 17 40 25 210 15.5
BW2 194 30.4 16 44 15 220 4.3
BW3 196 33.5 14 19 40 220 5.3
BW4 196 28.3 14 26 33 228 3.4

NF1 194 22.7 17 57 1 248 3.5
NF2 197 20.5 17 54 1 254 3.1
NF3 201 21.5 12 55 1 252 2.3
NF4 200 20.7 16 49 4 259 3.8

Table 4
Comparison of formulations of the SALBP-2 on 302 classical benchmark problems (Scholl, 1993)

Optimal Suboptimal

Model Proven Time Unprov. Feas. Infeas. Best Time

PA1 162 49.4 18 122 0 192 39.8
PA2 173 51.4 15 114 0 202 31.7
PA3 187 40.5 9 91 15 204 8.2
PA4 187 33.7 11 88 16 206 11.3

BW1 188 38.6 11 103 0 216 16.1
BW2 185 36.5 16 101 0 220 11.2
BW3 192 26.0 10 94 6 218 5.4
BW4 187 29.7 8 106 1 211 8.8

NF1 187 33.7 16 99 0 237 8.5
NF2 191 39.2 17 94 0 247 6.2
NF3 200 36.9 8 94 0 224 6.2
NF4 196 33.9 11 95 0 225 6.4

Table 3 contains the results for the SALBP-1 and Table 4 for the SALBP-2. For each tested model,
we report the number of instances for which the branch-and-cut solver of CPLEX found a provably
optimal solution within the time limit (Proven) and the average solution time for these instances
(Time). For the remaining instances the solver did not terminate within the time limit. For these
runs, we report the number of instances for which an optimal solution was found, but could not
be proven to be optimal (Unprov), the number of instances for which a feasible, but not optimal
solution was found (Feas), and the number of instances for which the solver was unable to find a
feasible solution (Infeas). Column “Best” presents the number of instances where the formulation
obtained the best value found over all 12 formulations of the same problem type. The last column
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Table 5
Comparison of the standard formulation and an improved formulation for the UALBP-1 on 269 classical benchmark
problems (Scholl, 1993)

Optimal Sub-optimal

Model Proven Time Unprov. Feas. Infeas. Best Time

Standard 175 32.3 21 64 9 226 26.2
NF4 190 44.7 23 55 1 256 32.5

gives the average solution time for the instances that could be solved optimally with all models. For
the SALBP-1 this was the case for 160 instances, and for the SALBP-2 for 147 instances.

For both SALBP types, the results show a clear tendency to find and prove more optimal solutions
with better station limits and precedence constraints. However, station limits of type 3 and 4 tend
to make it more difficult to find feasible solutions, and consequently reduce the number of best
solutions found. Statistically, the solution values obtained by formulations NFn are significantly
less than those obtained by the corresponding formulations PAn and BWn for both problem types
(with the exception of NF3, which is only marginally better than BW3 for the SALBP-2). There is
neither a significant difference of solution values between precedence constraints BW and PA, nor
between different station limits.

The solution times also tend to decrease with better constraints, but the reduction again is less
pronounced or nonexistent for station limits of type 3 and 4. Statistically, formulations NFn solve
the instances in significantly shorter time than formulations PAn and BWn, and station limits of
type 2 are better than those of type 1, which is expected since they only reduce the number of
variables.

In summary, we find that station limits of type 2 help to reduce the solution time, but in general
better precedence constraints are more important for improving solutions and reducing the solution
time than the improved station limits. In a previous study, Pastor et al. (2004) found no significant
difference between formulations PA and BW, but observe that formulation BW leads to shorter
solution times. Our results confirm this, but we find the reduction in solution time only significant
for the SALBP-2. This may come from the difference between the used solvers (CPLEX 8.0 and
CPLEX 12.4). In another study Pastor and Ferrer (2009) find that the dynamic station limits (PA3)
increase the number of provably optimal solutions over formulation PA2, which is corroborated by
our findings. The solution values, on the other hand, do not decrease significantly, and the dynamic
station limits make it more difficult to find feasible solutions.

From a practical point of view one may prefer the formulations NF4 for the SALBP-1 and NF2
for the SALBP-2 which achieve the largest number of best solutions in a short time.

5.2. Results for the UALBP-1

We tested Urban’s formulation of the UALBP-1 and the improved formulation proposed in Sec-
tion 4.1 on the 269 instances of the SALBP-1. The experimental settings were the same as in the
tests of the SALBP related above. Table 5 shows the comparison of the two models.
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Table 6
Comparison of the results of a branch-and-bound algorithm and a formulation proposed by Dell’Amico et al. (2012,
BW1) to the improved formulation NF4 of the BPP-P

Branch-and-bound BW1 NF4

Name Ins. Dev. Time Un. Dev. Time Un. Dev. Time Un.

Arcus1 16 0.00 5.69 – 0.00 11.09 – 0.00 0.07 –
Arcus2 17 0.00 211.49 – 1.70 2192.00 5 0.00 1,76 –
Barthold 8 0.00 4.41 – 0.00 80.66 – 0.00 0.18 –
Barthol2 27 0.18 575.35 2 8.68 7200.00 27 1.89 5333.87 20
Bowman 1 0.00 0.05 – 0.00 0.04 – 0.00 0.00 –
Buxey 7 0.00 171.94 – 0.00 0.40 – 0.00 0.02 –
Gunther 7 0.00 114.83 – 0.00 0.54 – 0.00 0.02 –
Hahn 5 0.00 0.22 – 0.00 0.20 – 0.00 0.01 –
Heskiaoff 6 0.00 0.22 – 0.00 0.20 – 0.00 0.01 –
Jackson 6 0.00 0.06 – 0.00 0.05 – 0.00 0.00 –
Jaeschke 5 0.00 0.03 – 0.00 0.03 – 0.00 0.00 –
Kilbridge 10 0.00 0.58 – 0.00 1.15 – 0.00 0.02 –
Lutz1 6 0.00 0.13 – 0.00 0.11 – 0.00 0.00 –
Lutz2 11 0.00 106.99 – 6.63 3736.89 5 0.00 1.35 –
Lutz3 12 0.00 1.66 – 0.00 0.80 – 0.00 0.06 –
Mansoor 3 0.00 0.08 – 0.00 0.04 – 0.00 0.00 –
Mertens 6 0.00 0.03 – 0.00 0.02 – 0.00 0.00 –
Mitchell 6 0.00 0.13 – 0.00 0.10 – 0.00 0.00 –
Mukherje 13 0.00 76.92 – 0.61 1154.17 2 0.00 2.30 –
Roszieg 6 0.00 66.86 – 0.00 0.13 – 0.00 0.00 –
Sawyer 9 0.00 134.48 – 0.00 5.41 – 0.00 0.04 –
Scholl 26 0.00 114.39 – 31.52 6160.11 21 0.00 1.66 –
Tonge 16 0.00 15.74 – 1.51 1426.45 3 0.00 0.20 –
Warnecke 16 0.00 870.38 1 7.56 5513.81 12 0.00 109.73 –
Wee-Mag 24 0.00 2.24 – 1.29 2337.76 6 1.06 1089.12 2

Tot./Avg. 269 0.01 157.20 3 4.98 2289.93 81 0.12 40.06 22

As expected, the conclusions for the SALBP-1 also hold for the UALBP-1. The improved model
finds and proves more optimal solutions, and finds more and significantly better solution values
(for p = 0.05) in about the same time used by the original model.

5.3. Results for the BPP-P

We finally tested the formulation of the BPP-P proposed in Section 4.2 and compared it to the
results obtained by Dell’Amico et al. (2012). These results are available online (Dell’Amico et al.,
2010) and have been obtained in an environment similar to ours (a PC with a Pentium processor
running at 3 GHz, and CPLEX 12). To be able to make a direct comparison we used the same
settings running the solver with only one thread and a time limit of two hours.

The results can be seen in Table 6. Results are reported for each group of instances the number
of instances (Ins), the results for the Branch-and-bound algorithm as well as the model proposed
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by Dell’Amico et al. (2012), and for the model proposed here. For each approach the table gives
the average relative deviation from the best known lower bound (Dev), the average solution time
(Time), and the number of instances which could not be solved within the time limit (Un). Such
instances contribute with the time limit of 7200 seconds to the average execution time. Note that the
relative deviations slightly differ from those reported in Dell’Amico et al. (2010), since we updated
the lower bounds according to our results.

The new formulation drastically improves the results obtained by the basic model. The number
of instances that could not be solved in two hours reduces from 81 to 22, and the average execution
time is a factor of 50 faster. The best model is competitive with the branch-and-bound algorithm
specifically designed for this problem: although it solves 19 problems less, it obtains a comparable
relative deviation on the remaining instances, and is able to solve them a factor of almost four faster.
Again, the conclusion for the SALBP holds also for the BPP-P, and the improved constraints seem
to be even more effective for strict precedences.

6. Conclusions

We have proposed an improved formulation of the precedence constraints and the station limits for
the SALBP, and shown that they theoretically dominate other constraints proposed in the literature.
They are applicable to related assembly line balancing problems with similar constraints. Comparing
the new and existing models, we have provided a classification of the relationships between models
using impulse variable used in the literature.

Computational experiments confirm the theoretical comparison. The proposed precedence con-
straints can improve upon the constraints of Patterson and Albracht (1975) and Bowman (1960),
finding and proving the optimality of more solutions, and finding more best values. A conservative
statistical test shows that the improvement of the solution value is significant.

Two case studies on the UALBP-1 and the BPP-P indicate that the conclusions for the SALBP
also apply to related problems, which further highlights the importance of the proposed models.
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