
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tprs20

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: https://www.tandfonline.com/loi/tprs20

Sequencing mixed-model assembly lines operating
with a heterogeneous workforce

Pâmela M.C. Cortez & Alysson M. Costa

To cite this article: Pâmela M.C. Cortez & Alysson M. Costa (2015) Sequencing mixed-model
assembly lines operating with a heterogeneous workforce, International Journal of Production
Research, 53:11, 3419-3432, DOI: 10.1080/00207543.2014.987881

To link to this article: https://doi.org/10.1080/00207543.2014.987881

Published online: 10 Dec 2014.

Submit your article to this journal

Article views: 289

View Crossmark data

Citing articles: 10 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=tprs20
https://www.tandfonline.com/loi/tprs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207543.2014.987881
https://doi.org/10.1080/00207543.2014.987881
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2014.987881&domain=pdf&date_stamp=2014-12-10
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2014.987881&domain=pdf&date_stamp=2014-12-10
https://www.tandfonline.com/doi/citedby/10.1080/00207543.2014.987881#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00207543.2014.987881#tabModule

International Journal of Production Research, 2015
Vol. 53, No. 11, 3419–3432, http://dx.doi.org/10.1080/00207543.2014.987881

Sequencing mixed-model assembly lines operating with a heterogeneous workforce

Pâmela M.C. Corteza and Alysson M. Costab∗

aDepartamento de Ciências Exatas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil; bDepartment of Mathematics
and Statistics, University of Melbourne, Melbourne, Australia

(Received 11 May 2014; accepted 3 November 2014)

We study the problem of sequencing mixed-model assembly lines operating with a heterogeneous workforce. The practical
motivation for this study comes from the context of managing assembly lines in sheltered work centres for the disabled. We
propose a general framework in which task execution times are both worker and model dependent. Within this framework,
the problem is defined and mathematical mixed-integer models and heuristic procedures are proposed. These include a set of
fast constructive heuristics, two local search procedures based on approximate measures using either a solution upper bound
or the solution of a linear program and a GRASP metaheuristic. Computational tests with instances adapted from commonly
used literature databases are used to validate the proposed approaches. These tests give insight on the quality of the different
techniques, which prove to be very efficient both in terms of computational effort and solution quality when compared to
other strategies such as a random sampling or the solution of the MIP models using a commercial solver.

Keywords: mixed-model assembly lines; heterogeneous workers; disabled workers; heuristics; mixed-integer programming

1. Introduction

Mixed-model assembly lines have gained importance in the last decades due to the increasing demand for mass customised
products. These production systems allow for such customisation without renouncing the main efficiency benefits associated
with general assembly lines. This is done with the aid of flexible resources (workers, machinery) that enable the sequential
assembly of slightly different products with little or no set-up times.

The different versions of a product (models) usually share a set of common tasks (possibly with different execution
times per model) while each version might require some specific ones. The execution of all these tasks must obey a partial
precedence order. A popular strategy used to balance mixed-model lines is to create an equivalent (average) product in which
each task execution time is an average of the execution times for the different models weighted by the model demands
(Thomopoulos 1970). Since average times are considered, a workstation will normally present different workloads for
different models.

The actual performance of a solution obtained with such a strategy will depend on the order the different models are
assembled. Indeed, if models with high loads for a given workstation are processed in sequence, this workstation will end up
exceeding its allowed time (work overload) and extra work will be needed to complete the tasks in time. With a production
sequence that alternates high- and low-demanding models, this need for extra work can be reduced to some extent. The
problem of sequencing the models in order to minimise some objective such as work overload is known as the mixed-model
sequencing problem.

Boysen, Fliedner, and Scholl (2009) survey the literature for different mixed-model sequencing approaches. The authors
classify the research in the area in three main families: mixed-model sequencing, car sequencing and level scheduling. Both
mixed-model and car sequencing concern the minimisation of sequence-dependent work overload but car sequencing does
so in an implicit manner by looking for sequences which follow some desired general rules. Level scheduling, in turn, seeks
solutions that aligns with Just-in-time philosophy and looks for ideal part demand rates.

In this paper, we are interested in mixed-model sequencing. For this family of problems, Boysen, Fliedner, and Scholl
(2009) present a tuple-based taxonomy that focus on three main elements: stations operational characteristics, assembly
line characteristics and objectives to be followed. The authors’ literature survey lists 35 articles dealing with mixed-model
sequencing including the introductory paper by Wester and Kilbridge (1963). Along with the survey, the authors list the main
literature gaps, mentioning the little amount of research that has been devoted to mixed-model sequencing while including (a)
stochastic task times (b) special layouts or (c) heterogeneity on station characteristics, (α3 = psto), (β5 �= o) and (β2 = div)

∗Corresponding author. Email: alysson.costa@unimelb.edu.au

© 2014 Taylor & Francis

3420 P.M.C. Cortez and A.M. Costa

in the authors’ taxonomy, respectively. The literature has since then tried to fill some of these gaps. Indeed, a number of
articles dealing with mixed-model sequencing with stochastic execution times (Agrawal and Tiwari 2008; Özcan, Kellegöz,
and Toklu 2011; Dong et al. 2015) and with different layouts such as parallel lines (Özcan et al. 2010; Öztürk et al. 2013;
Kucukkoc and Zhang 2014) and U-shaped lines (Kim, Kim, and Kim 2006; Hwang and Katayama 2010; Li, Gao, and Sun
2012; Lian et al. 2012; Hamzadayi and Yildiz 2013) have been published recently. Due to the difficulty of solving large
instances to optimality in reasonable computational times, the majority of the papers present a metaheuristic approach, the
most pervasive being genetic algorithms (Akgündüz and Tunali 2011).

As for the third gap, the heterogeneity on station characteristics, to the best of our knowledge, there is still a lack of
research in the literature. In this paper, we focus on this lacuna by introducing a sequencing problem in which stations are
highly heterogeneous. More specifically, we consider that the amount of extra work (utility work, in the literature jargon)
needed to complete the processing in an overloaded station depends not only on the tasks assigned to the station, but on the
station itself.

The practical motivation for this study comes from the operation of assembly lines in sheltered work centres for the
disabled. The topic of balancing assembly lines in such a context has received a considerable amount of attention in recent
years. Indeed, since the introductory paper by Miralles et al. (2007), a number of articles have been devoted to the assembly
line worker assignment and balancing problem (ALWABP) (Blum and Miralles 2011; Moreira et al. 2012; Mutlu, Polat, and
Supciller 2013; Borba and Ritt 2014; Vilà and Pereira 2014) and to variants of it including job rotation objectives (Costa and
Miralles 2009; Moreira and Costa 2013), different line layouts (Araújo, Costa, and Miralles 2012, forthcoming) and more
general industrial settings that extrapolate that of the sheltered work centres for the disabled (Moreira, Costa, and Miralles
2015).

This article aims at modelling and solving mixed-model assembly lines with heterogeneous workers. This is the first time
this problem is being tackled and this fact guides this research in the direction of finding a useful general framework and simple
solution methods, instead of the development of problem-tailored metaheuristic strategies. The idea is to present methods
that are flexible enough to incorporate additional problem characteristics that might be important in practical contexts.

Within the above framework, the problem described in this paper consists of a worker/task assignment balancing stage
that is followed by a model production sequencing stage. The more tactical balancing problem is solved using an average
model approximation and generates the data for the operational sequencing problem. This is a common approach in the
literature and is often justified by the fact that the two problems, although interconnected, frequently occur at different time
frames (Emde, Boysen, and Scholl 2010). We then focus on solving the sequencing problem that arises after the line has
been balanced. The first challenge is to conceive a formal definition that is aligned to what happens in practical situations.
This is done by introducing two mixed-integer formulations in the following section. Then, in Section 3, heuristic solution
procedures that rely on priority rules, local search and linear programming are discussed. Results for the proposed methods
are presented and analysed in Section 4. General conclusions and hints for future research end this paper in Section 5.

2. Problem definition and mathematical models

In this paper, we focus our attention on the situation faced by sheltered work centres for the disabled. This seems to be a
natural choice for the study of sequencing problems with a heterogeneous workforce since this is the context most used by
the literature when dealing with heterogeneity in the balancing problem. The main assumptions used in this case are:

• the assembly line is paced, with the conveyor belt speed being constant and much lower than the walking speed of
workers;

• workers cannot cross their stations’ boundaries;
• as soon as a worker finishes his tasks he instantaneously returns to the left-hand border of his station or until he

finds a new product;
• there are worker/tasks incompatibilities, meaning that a worker might not be able to execute some tasks. Nevertheless,

if a worker is able to execute a task, he can perform this task in all models; and
• task execution times are worker dependent.

This paper introduces the question of mixed-model production in this context. In accordance with the common practice
of many centres of using more experienced employees as utility (extra) workers helping the regular (line) workers, we also
assume:

• utility workers are able to execute all tasks;
• utility workers execute a task as quickly as the most skilled regular worker for that task; and

International Journal of Production Research 3421

• a regular worker and a utility worker can simultaneously act on the same workpiece, without interfering with each
other (side-by-side policy).

The optimisation of mixed-model lines has two important components: the balancing of the line itself which, in this case,
requires the assignment of tasks and workers to stations; and the sequencing of the models to be produced. In this paper, we
use a successive planning approach which first balances the line and only then sequences the models to be produced. As
mentioned earlier, the main justification for this strategy is the fact that balancing and sequencing usually occur in different
time frames, with line balancing occurring in a more tactical level while product sequencing must be effected in an operational
basis. The focus of this paper is the sequencing problem, for which we propose two mixed-integer models in Section 2.2.
For the sake of completeness, we first briefly introduce the balancing problem in the following subsection along with an
illustrative simplified example.

2.1 Balancing problem

In this paper, we deal with the balancing problem using the strategy of Thomopoulos (1970), which consists in applying a
single-model solution strategy in an average product. The task execution times of this idealised product are averages of the
different models task execution times weighted by the expected product demands.

In our case, the resulting problem is a single-model assembly line balancing problem with worker-dependent task execution
times or, in other words, an instance of the ALWABP. The solution of this problem (which, in the case of this paper is obtained
by solving its mixed-integer model with a commercial branch-and-cut package) originates the input for the sequencing of
the models. Namely, for each station k, the balancing problem provides both the worker wk and the set of tasks Nk assigned
to it.

2.1.1 Balancing problem example

Consider an assembly line with two stations and two tasks, where task 1 precedes task 2. If no heterogeneity between workers
is considered the solution is trivial. Considering, however, that the efficiency depends on which worker executes which task,
we must assign workers to stations.

Table 1 shows the execution times of each worker. A feasible solution is to assign worker 1 to station 1 and worker 2 to
station 2. In this solution, assuming model demands are equal, the cycle time is computed as max

{
20+10+20

3 , 14+12+15
3

}
=

16.7 (the average time among all models of the station with higher workload). The optimal solution, nevertheless, is
to keep the task assignment but change worker’s stations, which yields the minimum cycle time of 14 unities of time:
max

{
16+16+10

3 , 15+13+14
3

}
= 14.

From this very simple example (only two tasks), we can infer that changes in the assignment of tasks may imply changes
in the assignment of workers and, therefore, both decisions have to be made simultaneously.

2.2 Sequencing problem

The goal of the sequencing problem is to obtain a processing order for the items to be produced in a way to minimise
external intervention, i.e. the necessity of additional utility work in the stations. In the highly heterogeneous situation faced
by sheltered work centres, regular workers are not necessarily faster or slower than each other (they can be faster or slower
depending on the task being executed). Therefore, the real amount of utility work needed to complete the tasks on a given
station ultimately depends on the actual tasks the utility worker executes in the place of the regular worker (and not only on
the station overload, as it is the case in lines with homogeneous workers). Our first model considers exactly this situation by
defining variables:

Table 1. Execution times of each worker in each model.

Task
Model 1 Model 2 Model 3

Worker 1 Worker 2 Worker 1 Worker 2 Worker 1 Worker 2

1 20 16 10 16 20 10
2 15 14 13 12 14 15

3422 P.M.C. Cortez and A.M. Costa

Table 2. Notation.

N set of tasks,
K set of stations,
W set of workers,
M set of models,
dm demand for model m,
I set of positions in the processing sequence, I = {1, . . . ,

∑
m∈M dm},

C cycle time,
lk “length” of station k given in time units

(lk = length of station k / conveyor speed ≥ C),
wk worker assigned to workstation k,
Nk set of tasks assigned to workstation k,
t jmwk processing time of task j in model m when executed by worker wk ,
tu
jm processing time of task j in model m when executed by a utility worker,

t̂mk time required by worker wk to finish tasks Nk on model m,
t̂ u
mk time required by a utility worker to finish tasks Nk on model m.

xmi : binary variables equal to one if the i th product is of model m;
ski : continuous variables indicating the start processing position of the i th product in station k;

ymi j : continuous variables indicating the percentage of task j of model m that is executed by a utility worker on the i th
product.

These variables define the order of production (xmi), the eventual cumulative delays in the initial processing of products
in stations (ski) and the tasks executed by utility workers (ymi j). With the notation presented in Table 2, a first optimisation
model can be written as:

Min
∑

m∈M

∑
i∈I

∑
j∈N

tu
jm · ymi j (1)

subject to ∑
m∈M

xmi = 1, ∀i ∈ I, (2)

∑
i∈I

xmi = dm, ∀m ∈ M, (3)

ymi j ≤ xmi , ∀m ∈ M,∀i ∈ I,∀ j ∈ N , (4)

ski +
∑

m∈M

t̂mk · xmi − C −
∑

m∈M

∑
j∈Nk

t jmwk · ymi j ≤ sk,i+1, ∀i ∈ I,∀k ∈ K , (5)

ski +
∑

m∈M

t̂mk · xmi −
∑

m∈M

∑
j∈Nk

t jmwk · ymi j ≤ lk, ∀i ∈ I,∀k ∈ K , (6)

sk1 = 0, sk,|I |+1 = 0, ∀k ∈ K , (7)

ski ≥ 0, ∀i ∈ I,∀k ∈ K , (8)

xmi ∈ {0, 1} ∀m ∈ M,∀i ∈ I, (9)

0 ≤ ymi j ≤ 1 ∀m ∈ M,∀i ∈ I,∀ j ∈ N . (10)

The objective function minimises the amount of utility work (in time unities) needed and, therefore, consider the
appropriate task execution times. Constraints (2) and (3) ensure that one model is assigned to each sequencing position and
that these assignments meet the total demand, respectively. Constraints (4) link variables ymi j and xmi by stating that a utility
worker can only process a task on a model in a given sequencing position if that position is indeed occupied by such a
model. Constraints (5) state that a workpiece can only be started after its predecessor has finished while constraints (6) force
every item to be finished within the station’s boundaries. Note that, differently from the objective function, these two set
of constraints consider execution times associated with the regular worker assigned to the station. Constraints (7) state that
before production begins (i = 0) and after it ends (i = |I |+ 1), regular workers are on the leftmost position of their stations.

Once more, we highlight that the objective function minimises the time spent by the utility workers (by weighting the
percentage of task j executed in model m by the time needed by the utility worker to execute that task: tu

jm). Nevertheless,

International Journal of Production Research 3423

due to the heterogeneity between workers and utility workers, this additional work has different effects on constraints (5)
and (6), with the time discounted being now weighted by the execution times of the actual worker regularly operating at the
station (t jmwk).

The model above introduces a high level of detail, indicating which tasks are effectively executed by utility workers at
each station. In real-world situations, this information is rarely relevant, since one is more interested in the general trend and
since other model simplifications (such as assuming side-by-side policy) are often more important. With this in mind, we
define the following parameter, which measures the relative efficiency ratio between the regular worker in station k and a
utility worker:

�t̂mk = t̂mk/t̂ u
mk, m = 1, · · · , |M|, k = 1, · · · , |K | (11)

With this parameter, a simplified model is proposed. This model uses variables yki representing the amount of time a
utility worker acts in station k when the i th product is being processed. The new model reads:

Min
∑
i∈I

∑
k∈K

yki (12)

subject to

(2)–(3) (13)

ski + t̂mk · xmi − C − �t̂mk · yki ≤ sk,i+1, ∀m ∈ M,∀i ∈ I,∀k ∈ K , (14)

ski + t̂mk · xmi − �t̂mk · yki ≤ lk, ∀m ∈ M,∀i ∈ I,∀k ∈ K , (15)

(7)–(9) (16)

yki ≥ 0, ∀k ∈ K ,∀i ∈ I. (17)

Constraints (5) and (6) are replaced by constraints (14) and (15). These new constraints approximate the net effect of
the additional work by the averaged parameter �t̂mk . In these equations, task times are measured with respect to the regular
worker reference. Therefore, when a utility worker spends yki units of time on station k and item i , he actually reduces the
load of the station to be executed by worker wk by �t̂mk · yki units of time in average. As shown in Table 2, this average is
computed considering tasks Nk present in the station. Note that when xmi = 0, these constraints are trivially satisfied with
yki = 0, so in each station k, the work overload yki is defined by the time needed to build model m in that station (t̂mk), by
the relative efficiency ratio (�t̂mk) and by the starting position of the regular worker on the station (ski). It is to be expected
that if two heavy models are next to each other in the production sequence, the optimisation will prefer to assign utility
work mainly to help finishing the model in which the regular worker is less efficient (that with higher �t̂mk). The following
example illustrates this situation.

2.2.1 Sequencing problem example

In order to illustrate the problem and show the effect of considering a heterogeneous workforce, consider a mixed-model
assembly line with two stations and three models. We assume the line has been balanced (see Section 2.1.1) and that the
execution times of the tasks in the stations are given in Table 3, which shows the figures for each station and model, both for
the regular worker currently assigned to the station and for a utility worker.

Consider, for example, the case of station 1: the worker assigned to this station takes 16, 16 and 10 unities of time to
execute the tasks (assigned to that station) associated with models 1, 2 and 3, respectively. A utility worker executing the
same tasks would be faster in model 2, in which he would only take 10 unities of time (instead of 16). In other words, each
unit of time the utility worker spends at station 1 while executing tasks for model 2 will contribute 1.6 units of time to the
completion of those tasks (in the scale of the actual worker assigned to that station). If choice is available, it is, therefore,
expected that a solution minimising total extra work will prioritise assigning utility workers during the execution of model 2.

Table 3. Regular and utility worker execution times, and the relative efficiency ratio.

Model
Station 1 Station 2

w1 Utility worker �t̂m1 w2 Utility worker �t̂m2
1 16 16 1 15 14 1.07
2 16 10 1.60 13 12 1.08
3 10 10 1 14 14 1

3424 P.M.C. Cortez and A.M. Costa

Figure 1. Gant chart for stations 1 and 2 of the example.

This can be seen with a simple example with a unitary demand for each of the models, cycle time of 14 and station
length of 15.4 (1.1 × the cycle time). The optimal solution for the problem is represented in the Gantt chart of Figure 1
and corresponds to the model sequence 1, 2, 3. Station 2 does not need extra work, since the extra time used at model 1
is compensated by the shorter model 2 that comes just after. In station 1, however, there is the need of extra work during
the processing of both models 1 and 2. The minimum amount of extra work (0.375 unit – in order to finish tasks inside the
station’s boundary) is assigned during the processing of model 1 (represented by a thicker line). Therefore, the processing
starts late for model 2, even if its execution time is also 2 unities higher than the cycle time. In order to compensate these 2
unities, only 1.25 units of extra work is needed, since each unit of extra work in that model is worth 1.6 units of processing
time.

2.3 Lower and upper bounds

In this subsection, we present simple lower and upper bounds for the optimal solution of model (12)–(17). It is known that
when the workload of station k is greater than its size in units of time (lk), utility worker intervention is mandatory. According
to the regular worker speed, a utility worker should help t̂mk − lk units of time. But utility workers are in average �t̂mk faster
than worker wk , so actually they have to spend (t̂mk − lk)/�t̂mk units of time to complete the tasks before the right-hand
border of station is reached. As a result, a lower bound on the work overload in all stations and planning horizon is given by
Equation (18).

L B =
∑

m∈M

∑
k∈K

dm · max{t̂mk − lk, 0}/�t̂mk (18)

Analogously, an upper bound can be obtained by summing, in all stations, all workload that is larger than the cycle time
despite the fact that some part of it could be compensated by assigning lighter models around it. Because of the aforementioned
reason, this amount of time must also be divided by the relative efficiency ratio. This upper bound is expressed below:

U B =
∑

m∈M

∑
k∈K

dm · max{t̂mk − C, 0}/�t̂mk (19)

3. Solution methods

In order to solve the mixed-model sequencing problem with heterogeneous workers, we propose a constructive heuristic
method based on three different criteria and two local search procedures, one using a simplified version of model (12)–(17)
and the other using an approximation of such model. We also combine these procedures into a GRASP metaheuristic. The
proposed methods are detailed in the following subsections.

3.1 Constructive heuristics

The main rationale behind the proposed heuristics is to alternate models with high and low time requirements in the stations
(Scholl, Klein, and Domschke 1998). The solution is build in a constructive fashion, by fixing a model in a given position of

International Journal of Production Research 3425

the sequence and moving on to the next position. Let us define wo(mk) as the difference between the time needed in station
k when processing model m and the cycle time:

wo(mk) = t̂mk − C (20)

Clearly, wo(mk) is positive if the station requires more than the cycle time for the given model and negative otherwise.
For simplicity of presentation, let us define the positive and negative values of wo(mk) as wo+(mk) = max{wo(mk), 0}
and wo−(mk) = max{−wo(mk), 0}, respectively.

Assume mi−1 is the model selected for position i −1 of the production schedule. We propose two criteria for the decision
on the next model to be produced:

arg minm

(
g1

im =
∑
k∈K

max{wo+(mi−1k) − wo−(mi k), 0}
)

, (21)

and

arg minm

(
g2

im =
∑
k∈K

|wo(mi−1k) + wo(mi k)|
)

. (22)

The model to be produced in the i th position of the production sequence should be the one (among the available models,
i.e. those whose demand has not yet been fulfilled) that minimises g1

im or g2
im . The rationale behind g1

im is to sum, for all
the stations, the amount of work overload associated with the model in the (i − 1)th productive cycle that could not be
compensated by idle time in the i th cycle. Criterium g1

im tends to greedily assign models with large idle times very early
on the productive sequence, resulting in large work overloads for the last products to be sequenced. To reduce this effect,
criterium g2

im is penalised not only by non-compensated work overload but also by excessive idle time.
To complete the methods, it suffices to decide on the assignment of the first model. In both cases, the model with lowest

idle time is the first to be produced (the rationale being that the idle time of the first item cannot be used to compensate for
other items work overloads).

With respect to criterium g2
im , the following modification has also been proposed:

arg minm

(
g3

im =
∑
k∈K

|wo(mi k) + wo(mi+1k)|
)

. (23)

In this case, the first model to be assigned (in the last position of the sequence) is the one with the lowest work overload.
The algorithm then works backwards to decide the models to be produced in the remaining positions.

Table 4 summarises the characteristics of each greedy heuristic proposed. The table also includes a version that works by
simultaneously fixing models at the beginning and end of the production sequence (HC3), which is described in Algorithm 1.

In this algorithm, S is an array containing the solution (S[i] contains the model assigned to the i th position in the
production sequence) and d∗

m is the residual demand of model m. The algorithm works by fixing the first and last models
(lines 1 and 2) and then sequentially fixing the models simultaneously in forward (lines 6–11) and backward (lines 14–19)
orders. This algorithm can be easily adapted to HC1, HC2 or HC4 simply by changing the criteria used, depending on the
processing direction (forward or backward) adopted by the specific heuristic (see Table 4), and doing only one of the loops
in lines 6–11 or 14–19 (now for all the sequencing positions and not only for half of them in each loop).

Table 4. Constructive heuristics.

First model to fix
Direction

Measure to

position characteristic be minimized

HC1 |I | Lowest work overload Backward g3
im

HC2 1 Lowest idle time Forward g2
im

HC3 1 Lowest idle time and Forward and g2
im and

|I | lowest work overload backward g3
im

HC4 1 Lowest idle time Forward g1
im

3426 P.M.C. Cortez and A.M. Costa

Algorithm 1: Constructive Heuristic HC3

1 S[1] = arg minm
∑

k∈K wo−(mk) (lowest idle time)
2 S[|I |] = arg minm

∑
k∈K wo+(mk) (lowest work overload)

3 for i ∈ {2, . . . , �|I |/2	} do
4 /* step forward */
5 bestvalue = ∞
6 for m ∈ M do
7 if d∗

m > 0 and g2
im < bestvalue then

8 bestm = m

9 bestvalue = g2
im

10 S[i] = bestm
11 d∗

bestm = d∗
bestm − 1 (update residual demand)

12 /* step backward */
13 bestvalue = ∞
14 for m ∈ M do
15 if d∗

m > 0 and g3
im < bestvalue then

16 bestm = m

17 bestvalue = g3
im

18 S[|I | − i + 2] = bestm
19 d∗

bestm = d∗
bestm − 1 (update residual demand)

20 if |I | is odd then
21 S[�|I |/2�] = m | d∗

m > 0
22 return S

3.2 Local search

Any sequence of models is a feasible solution to the mixed-model sequencing problem as long as it respects the demands
for each model. Therefore, starting with a feasible solution, one can look for new solutions with swap movements changing
the position of two models in the production sequence. The evaluation of the new solution requires the computation of the
work overloads in all stations for all |I | productive cycles. An exact and an approximate way of computing this measure is
proposed and give origin to the two local search procedures that will be explained in the following.

In both cases, to speed up the search, not all swap movements were tested, but only those around the production position i ′
containing the highest work overload: i ′ = arg maxi

∑
k∈K woik , the idea being that the total work overload can be reduced

if good compensation is made around positions with high work overloads. Randomness can be introduced in this choice by
using a roulette wheel-based selection: positions with higher work overloads are more likely to be selected (Goldberg 1989).
In our tests, the roulette wheel selection was able to reduce premature convergence when using the exact work overload
measure but had little effect when using the approximate one. Both algorithms are detailed in the following.

3.2.1 Exact local search

In this local search procedure (L SE), the computation of the work overload for each new tentative solution is made by solving
model (12)–(17) with xmi variables fixed at the current solution values, reducing the model to a linear program. This local
search procedure is described in Algorithm 2.

In this algorithm, S∗ is the best solution found so far and S is the working solution. Both S∗ and S are initially set at
the original solution (obtained with a constructive heuristic, e.g.). Procedure roulette returns one sequence position using
a roulette scheme weighted with the position work overloads serving as fitness values (Goldberg 1989), mi is the model in
the i th position in the production sequence and valueE (S) is the total work overload of solution S when evaluated by model
(12)–(17) with variables xmi fixed at the values indicated by solution S.

The procedure starts with an incumbent solution and uses a roulette procedure in order to select the ‘pivot element in the
sequence’ (line 5). Then, the algorithm tries to swap the neighbours of this pivot element with other models in the sequence
and evaluates the resulting work overload with the reduced version of model (12)–(17) (lines 6–9). If a better solution is
found, the procedure is restarted and the process continues until some time limit has been reached or no improvement can
be made.

International Journal of Production Research 3427

Algorithm 2: Local Search L SE

1 S∗ = S
2 improved = true
3 while improved and time ≤ time limit do
4 improved = false
5 for i ′ ∈ roulette and !improved do
6 for j ∈ {i ′ − 1, i ′ + 1} and !improved do
7 for i ∈ I and !improved do
8 if mi �= mj then
9 swap(S, i, j)

10 if valueE (S) < valueE (S∗) then (evaluated by model (12)-(17))
11 improved = true
12 S∗ = S
13 update(roulette)
14 else
15 swap(S, i, j)(undo swap)
16 return S∗

3.2.2 Approximate local search

Alternatively, we can try to avoid the burden of solving multiple linear programs by proposing the following approximate
measure for the work overload on station k in the i th productive cycle:

awo(ik) =
{

�wo+(mi k), if i = |I |
max{�wo+(mi k) − �wo−(mi+1k), 0}, if i < |I | (24)

where mi is the model assigned to position i , �wo+(mi k) = min{wo+(mi k), lk − C} and �wo−(mi k) = min{wo−(mi k),

lk − C}.
This measure ignores the dependence between non-adjacent items in the sequence and only discount from the total work

overload the amount that is compensated by the following item.

Algorithm 3: Approximate Local Search L SA

1 min = valueA(S) (evaluated by Equation (24))
2 repeat
3 besti = −1
4 for t ∈ I and besti < 0 do
5 i ′ = t th arg maxi

∑
k∈K awo(ik)

6 for j ∈ {i ′ − 1, i ′ + 1} do
7 for i ∈ I do
8 if mi �= mj then
9 swap(S, i, j)

10 if valueA(S) < min then
11 min = valueA(S)

12 besti = i
13 index = j
14 swap(S, i, j)(undo swap)
15 if besti > 0 then (new incumbent solution found)
16 swap(S, besti , index)

17 until besti < 0

A simplified pseudo-code for procedure L SA can be seen in Algorithm 3. The method chooses the position in the sequence
with the t th higher work overload (starting with t = 1 and with ties broken arbitrarily) as its pivot element (line 5), and then
tries to swap the models in its neighbouring positions to other elements in the sequence with the goal of reducing the work
overload computed by criteria (24). If no improving movement is obtained, the algorithm chooses the element with second
highest work overload and repeats the procedure until all positions have been tried.

3428 P.M.C. Cortez and A.M. Costa

In summary, we propose two local search heuristics. Both look for swap movements in a reduced all-pairs neighbourhood
that favours production positions with high work overload. In the first case, that we call L SE , the real-work overload is
computed using model (12)–(17) with xmi variables fixed and the pivot position (the position whose neighbours will be
swapped) is chosen with a roulette-based selection. In the second strategy, that we call L SA, approximate measure (24) is
used and the pivot position is the non-tested position with the highest work overload (i ′).

Although L SA gives a rough estimation of the actual work overload, our preliminary tests showed that there was a good
correlation between the ranking of the solutions in a swap neighbourhood when using the exact solution of reduced model
(12)–(17) and when using the approximate measure (24). This has motivated us to use this latter measure as a quick guide for
finding promising regions in the search space. In Section 4, these methods are evaluated through a series of computational
experiments.

3.3 Greedy randomised adaptive search procedure

Greedy randomised adaptive search procedure (GRASP) is a metaheuristic procedure that relies on a randomised greedy
constructive phase followed by local search. The uncertainty is introduced by means of a semi-random selection in the
constructive phase: instead of selecting the candidate with the best greedy criterium, one chooses randomly within a list of
good candidates (Resende and Ribeiro 2003).

In each step of the construction phase, the choice to be made is which model we should assign to the next position in the
sequence. At each stage, there are at most |M| different options and the model to be assigned is randomly chosen within the
m′ models with best greedy criterium. After the obtention of this semi-greedy solution, local search procedure L SA is run.
The whole method can be repeated in a multi-start strategy to obtain new solutions.

Algorithm 4 details the implemented version of the metaheuristic. In this algorithm, rcl is a list containing the models
with positive residual demand. The construction phase is executed along the lines of HC2: lines 6–8 evaluate criterium (22)
for each model whose demand has not yet been fulfilled. But instead of choosing the best model, line 10 randomly selects
a model from the top m′ candidates. Finally, L SA is called to improve the semi-greedy solution obtained. This process is
repeated during time limit seconds.

Algorithm 4: GRASP

1 S∗ = NULL
2 while time ≤ time limit do
3 /* construction phase */
4 S[1] = arg minm

∑
k∈K wo−(mk) (lowest idle time)

5 for i ∈ {2, . . . , |I |} do
6 for m ∈ M do
7 if d∗

m > 0 then
8 rcl.add(m, g2

im)(builds restricted candidate list)
9 sort(rcl) (decreasing and according to the second element of the pair (model, measure))

10 m = rand(rcl(1), . . . , rcl(m′))
11 S[i] = m
12 d∗

m = d∗
m − 1

13 /* local search phase */
14 L SA(S)

15 if valueE (S) < valueE (S∗) then
16 S∗ = S
17 return S∗

4. Computational results

In order to assess the quality of the solutions obtained by the proposed methods, computational tests were executed with
two problem sets: Heskia and Roszieg – each one with eight groups of 10 instances. These instances have been proposed by
Chaves, Miralles, and Lorena (2007) and are widely used for testing planning methods for the ALWABP. Table 5 lists the
problem set characteristics.

In each proposed instance, the original ALWABP instance task times were used as task times data for the first model. To
generate task times for the remaining models, we multiplied the original task times by a random value in the range {0, 4}
(zero being equivalent to a task not required by the model). The same value was applied for all workers, but a new random

International Journal of Production Research 3429

Table 5. Instances characteristics.

Family Number of tasks (|N |) Number of workers (|W |) Order strength

Heskia 28 4 (groups 1–4) or 7 (groups 5–8) 22, 49
Roszieg 25 4 (groups 1–4) or 6 (groups 5–8) 71, 67

value was taken for each task and model. We defined 25 different models and a total demand of 500 items. The expected
demand for each model is a random value in �[0, 1] ∗ 500�.

The tests were run in an Intel® Core™ i5-2300 2.8 GHz, 4 GB of RAM and operating system Ubuntu Linux 10.04. The
algorithms were implemented using language C++, g++ compiler, and CPLEX 12.4.

The constructive heuristics and local search L SA could run in a few seconds (less than 6, in our tests), so no time limit
was imposed. The time limit for heuristics L SE and GRASP was set as 1800 s, the same amount of time given to a random
procedure, which randomly distributes the models in sequences while respecting their demands, generating feasible solutions
and returning the best one found within the time limit. We also ran model (12)–(17) with CPLEX for two days and obtained
the best feasible solution within this generous time limit.

Tables 6 and 7 show the gap between each procedure and the best feasible solution found by CPLEX in two days of
computing time for families Heskia and Roszieg, respectively.As four constructive heuristics were proposed, we implemented
four independent threads to evaluate the heuristics in parallel: for each thread i , L SA starts with the solution build by HCi

Table 6. Gaps (%) between each procedure and the best feasible solution found by CPLEX in two days of computing time for family
Heskia.

Group (a) HCs (b) L SA (c) L SE (d) GRASP (e) Random

1 −1.65 −2.44 –3.13 −2.79 7.73
2 −3.13 −4.58 –5.12 −4.85 6.21
3 −3.63 −4.46 –5.07 −4.90 5.27
4 −4.56 −5.25 –5.58 −5.47 4.23
5 −3.58 −4.76 –5.22 −5.03 3.58
6 −3.01 −3.95 –4.47 −4.19 3.52
7 −2.22 −3.01 –3.30 −3.07 4.25
8 −2.70 −3.59 –3.96 −3.80 3.63

Average −3.06 −4.00 –4.48 −4.26 4.80

Note: Best found results are presented in bold.

Table 7. Gaps (%) between each procedure and the best feasible solution found by CPLEX in two days of computing time for family
Roszieg.

Group (a) HCs (b) L SA (c) L SE (d) GRASP (e) Random

1 −2.83 −4.40 –4.98 –4.69 9.02
2 0.09 −1.27 –1.69 –1.73 12.97
3 −3.47 −4.26 –4.73 –4.55 8.83
4 −4.68 −6.54 –7.43 –7.11 6.88
5 −4.69 −5.77 –6.21 –6.08 5.39
6 −4.31 −5.47 –5.82 –5.66 5.54
7 −4.58 −5.62 –6.05 –5.89 4.67
8 −3.58 −5.08 –5.43 –5.26 5.45

Average −3.50 −4.80 –5.29 –5.12 7.34

Note: Best found results are presented in bold.

3430 P.M.C. Cortez and A.M. Costa

and L SE refines the solution given by L SA. So columns (a), (b) and (c) report the best result found by each procedure among
the four threads.

In only one out of 16 groups of instances (group 2 of the Roszieg family), CPLEX found average better results than the
constructive heuristics (with a gap of 0.09%). In general, HC3 performed better with an average improvement of 2.97% over
the best feasible solution found by CPLEX. HC1 and HC2 were almost as efficient as HC3, both presenting improvements
of 2.90% over CPLEX. Although HC4 was significantly worse in terms of average gap (improvements of 2.18%), this
constructive heuristic found the best solution in 29% of the instances, showing that the proposed criteria are somehow
complementary. Taking the best solution among the four methods yielded an improvement of 3.06% and 3.50% over CPLEX
for families Heskia and Roszieg, respectively, as shown in Tables 6 and 7.

In order to verify that the good results obtained by the constructive heuristics were not simply because the problem had
multiple (and easily found) local optima, we compared their results to a blind-search procedure that just evaluated sequentially
randomly generated solutions (Random). The heuristic solution was 10% better in average (with a maximum improvement
of 25%).

As shown in column (b) from Tables 6 and 7, heuristic L SA was not outperformed by CPLEX in any group of instances.
CPLEX could find a better result in only 6.25% of the instances (gap of 0.62% when compared to L SA for those instances). If
all instances are considered, L SA was consistently better, with an overall improvement of 4.40% over the CPLEX solutions,
with improvements reaching 14%. Additionally, L SA was able to quickly improve random generated solutions, motivating
the study of a GRASP algorithm which used a semi-greedy version of the HC2 and the L SA.

The implemented GRASP algorithm had a static value for the restricted candidate list size, m ′. The value m′ = 7 was
chosen after some preliminary tests. Columns (b) and (d) from Tables 6 and 7 show that the GRASP procedure obtained
results just slightly better than L SA. We also implemented a random GRASP in which the constructive phase is replaced by
a random procedure. The performance of this method was only 0.5% inferior to the original GRASP, in average, indicating
that the driving force behind the algorithm is indeed the quality of the L SA solutions. This was further confirmed by the good
quality solutions obtained when using the available computational time to further explore the solution found by L SA with
the L SE procedure. Indeed, this was the most successful strategy, yielding improvements over the CPLEX feasible solutions
of around 4.5% and 5.3% for the Heskia and Roszieg families, respectively.

5. Conclusions

We study the problem of planning the production sequence in mixed-model assembly lines with hetereogeneous workforce.
The problem is motivated by the situation found in sheltered work centres for the disabled but can properly describe other
planning situations in assembly lines with different characteristics. We formally define the problem with two mixed-integer
problems and propose a variety of heuristic methods including constructive heuristics, two local search procedures (one
with an approximate metric and the other relying on a linear program) and a GRASP metaheuristic. Computational tests on
instances adapted from commonly used databases show that the methods were fast and presented results consistently better
than those CPLEX could obtain in two days of computing time. The computational study also highlights the complementarity
of the heuristic criteria and the efficiency of the proposed local search procedures. Further study in this area could explore
situations in which the practical context allows for both balancing and scheduling problems to be dealt with simultaneously.
We believe the methods and models developed here can be of help in that research path.

Acknowledgements
The authors thank two anonymous referees and the Associated Editor for their thoughtful comments which have helped improve both the
presentation and the content of this article. The authors also thank FAPESP – Brazil, for the financial support.

References

Agrawal, S., and M. K. Tiwari. 2008. “A Collaborative ant Colony Algorithm to Stochastic Mixed-model U-shaped Disassembly Line
Balancing and Sequencing Problem.” International Journal of Production Research 46: 1405–1429. http://www.tandfonline.com/doi/
abs/10.1080/00207540600943985.

Akgündüz, O. S., and S. Tunali. 2011. “A Review of the Current Applications of Genetic Algorithms in Mixed-model Assembly Line
Sequencing.” International Journal of Production Research 49: 4483–4503. http://www.tandfonline.com/doi/abs/10.1080/00207543.
2010.495085.

Araújo, F. F. B., A. M. Costa, and C. Miralles. 2012. “Two Extensions for the Assembly Line Worker Assignment and Balancing
Problem: Parallel Stations and Collaborative Approach.” International Journal of Production Economics 140: 483–495. http://dx.
doi.org/10.1016/j.ijpe.2012.06.032.

http://www.tandfonline.com/doi/abs/10.1080/00207540600943985
http://www.tandfonline.com/doi/abs/10.1080/00207540600943985
http://www.tandfonline.com/doi/abs/10.1080/00207543.2010.495085
http://www.tandfonline.com/doi/abs/10.1080/00207543.2010.495085
http://dx.doi.org/10.1016/j.ijpe.2012.06.032
http://dx.doi.org/10.1016/j.ijpe.2012.06.032

International Journal of Production Research 3431

Araújo, F. F. B., A. M. Costa, and C. Miralles. Forthcoming. “Balancing Parallel Assembly Lines with Disabled Workers.” European
Journal of Industrial Engineering.

Blum, C., and C. Miralles. 2011. “On Solving theAssembly Line WorkerAssignment and Balancing Problem via Beam Search.” Computers
& Operations Research 38: 328–339. http://dx.doi.org/10.1016/j.cor.2010.05.008.

Borba, L., and M. Ritt. 2014. “A Heuristic and a Branch-and-bound Algorithm for the Assembly Line Worker Assignment and Balancing
Problem.” Computers & Operations Research 45: 87–96. http://www.sciencedirect.com/science/article/pii/S030505481300347X.

Boysen, N., M. Fliedner, and A. Scholl. 2009. “Sequencing Mixed-model Assembly Lines: Survey, Classification and Model Critique.”
European Journal of Operational Research 192: 349–373. http://dx.doi.org/10.1016/j.ejor.2007.09.013.

Chaves, A. A., C. Miralles, and L. A. N. Lorena. 2007. “Clustering Search Approach for the Assembly Line Worker Assignment and
Balancing Problem.” In Proceedings of 37th ICC&IE, 1469–1478. Egypt: Alexandria.

Costa, A. M., and C. Miralles. 2009. “Job Rotation in Assembly Lines Employing Disabled Workers.” International Journal of Production
Economics 120: 625–632. http://dx.doi.org/10.1016/j.ijpe.2009.04.013.

Dong, J., L. Zhang, T. Xiao, and H. Mao. 2014. “Balancing and Sequencing of Stochastic Mixed-model Assembly U-lines to Minimise
the Expectation of Work Overload Time.” International Journal of Production Research 52: 7529–7548. http://dx.doi.org/10.1080/
00207543.2014.944280.

Emde, S., N. Boysen, and A. Scholl. 2010. “Balancing Mixed-model Assembly Lines: A Computational Evaluation of Objectives to
Smoothen Workload.” International Journal of Production Research 48: 3173–3191. http://dx.doi.org/10.1080/00207540902810577.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. 1st ed. Reading, MA: Addison-Wesley
Professional.

Hamzadayi, A., and G. Yildiz. 2013. “A Simulated Annealing Algorithm Based Approach for Balancing and Sequencing of Mixed-
model U-lines.” Computers & Industrial Engineering 66: 1070–1084. http://www.sciencedirect.com/science/article/pii/
S0360835213002623.

Hwang, R., and H. Katayama. 2010. “Integrated Procedure of Balancing and Sequencing for Mixed-model Assembly Lines: A
Multi-objective Evolutionary Approach.” International Journal of Production Research 48: 6417–6441. http://dx.doi.org/10.1080/
00207540903289755.

Kim, Y. K., J. Y. Kim, and Y. Kim. 2006. “An Endosymbiotic Evolutionary Algorithm for the Integration of Balancing and Sequencing in
Mixed-model U-lines.” European Journal of Operational Research 168: 838–852. http://www.sciencedirect.com/science/article/pii/
S0377221704004898.

Kucukkoc, I., and D. Z. Zhang. 2014. “Simultaneous Balancing and Sequencing of Mixed-model Parallel Two-sided Assembly Lines.”
International Journal of Production Research 52: 3665–3687. http://dx.doi.org/10.1080/00207543.2013.879618.

Li, J., J. Gao, and L. Sun. 2012. “Sequencing Minimum Product Sets on Mixed-model U-lines to Minimise Work Overload.” International
Journal of Production Research 50: 4977–4993. http://dx.doi.org/10.1080/00207543.2011.624559.

Lian, K., C. Zhang, L. Gao, and X. Shao. 2012. “A Modified Colonial Competitive Algorithm for the Mixed-model U-line Balancing
and Sequencing Problem.” International Journal of Production Research 50: 5117–5131. http://dx.doi.org/10.1080/00207543.2011.
653453.

Miralles, C., J. P. Garcia-Sabater, C.Andres, and M. Cardos. 2007. “Advantages ofAssembly Lines in Sheltered Work Centres for Disabled.
A Case Study.” International Journal of Production Economics 110: 187–197. http://dx.doi.org/10.1016/j.ijpe.2007.02.023.

Moreira, M. C. O., and A. M. Costa. 2013. “Hybrid Heuristics for Planning Job Rotation in Assembly Lines with Disabled Workers.”
International Journal of Production Economics 141: 552–560. http://dx.doi.org/10.1016/j.ijpe.2012.09.011.

Moreira, M. C. O., A. M. Costa, and C. Miralles. 2015. “Model and Heuristics for the Assembly Line Worker Integration and Balancing
Problem.” Computers & Operations Research 54: 64–73. http://dx.doi.org/10.1016/j.cor.2014.08.021.

Moreira, M. C. O., M. Ritt, A. M. Costa, and A. A. Chaves. 2012. “Simple Heuristics for the Assembly Line Worker Assignment and
Balancing Problem.” Journal of Heuristics 18: 505–524. http://dx.doi.org/10.1007/s10732-012-9195-5.

Mutlu, Ö., O. Polat, and A. A. Supciller. 2013. “An Iterative Genetic Algorithm for the Assembly Line Worker Assignment and
Balancing Problem of Type-II.” Computers & Operations Research 40: 418–426. http://www.sciencedirect.com/science/article/pii/
S0305054812001554.

Özcan, U., H. Çerçioğlu, H. Gökçen, and B. Toklu. 2010. “Balancing and Sequencing of Parallel Mixed-model Assembly Lines.”
International Journal of Production Research 48: 5089–5113. http://www.tandfonline.com/doi/abs/10.1080/00207540903055735.

Özcan, U., T. Kellegöz, and B. Toklu. 2011. “A Genetic Algorithm for the Stochastic Mixed-model U-line Balancing and
Sequencing Problem.” International Journal of Production Research 49: 1605–1626. http://www.tandfonline.com/doi/abs/10.1080/
00207541003690090.

Öztürk, C., S. Tunali, B. Hnich, and A. Örnek. 2013. “Balancing and Scheduling of Flexible Mixed Model Assembly Lines with
Parallel Stations.” The International Journal of Advanced Manufacturing Technology 67: 2577–2591. http://dx.doi.org/10.1007/
s00170-012-4675-1.

Resende, M. G. C., and C. C. Ribeiro. 2003. “Greedy Randomized Adaptative Search Procedures.” In Handbook of Metaheuristics,
International Series in Operations Research & Management Science, edited by F. Glover and G. Kochenberger, 219–249. Dordrecht:
Kluwer Academic Publishers.

Scholl, A., R. Klein, and W. Domschke. 1998. “Pattern Based Vocabulary Building for Effectively Sequencing Mixed-model Assembly
Lines.” Journal of Heuristics 4: 359–381. http://dx.doi.org/10.1023/A:1009613925523.

http://dx.doi.org/10.1016/j.cor.2010.05.008
http://www.sciencedirect.com/science/article/pii/S030505481300347X
http://dx.doi.org/10.1016/j.ejor.2007.09.013
http://dx.doi.org/10.1016/j.ijpe.2009.04.013
http://dx.doi.org/10.1080/00207543.2014.944280
http://dx.doi.org/10.1080/00207543.2014.944280
http://dx.doi.org/10.1080/00207540902810577
http://www.sciencedirect.com/science/article/pii/S0360835213002623
http://www.sciencedirect.com/science/article/pii/S0360835213002623
http://dx.doi.org/10.1080/00207540903289755
http://dx.doi.org/10.1080/00207540903289755
http://www.sciencedirect.com/science/article/pii/S0377221704004898
http://www.sciencedirect.com/science/article/pii/S0377221704004898
http://dx.doi.org/10.1080/00207543.2013.879618
http://dx.doi.org/10.1080/00207543.2011.624559
http://dx.doi.org/10.1080/00207543.2011.653453
http://dx.doi.org/10.1080/00207543.2011.653453
http://dx.doi.org/10.1016/j.ijpe.2007.02.023
http://dx.doi.org/10.1016/j.ijpe.2012.09.011
http://dx.doi.org/10.1016/j.cor.2014.08.021
 http://dx.doi.org/10.1007/s10732-012-9195-5
http://www.sciencedirect.com/science/article/pii/S0305054812001554
http://www.sciencedirect.com/science/article/pii/S0305054812001554
http://www.tandfonline.com/doi/abs/10.1080/00207540903055735
http://www.tandfonline.com/doi/abs/10.1080/00207541003690090
http://www.tandfonline.com/doi/abs/10.1080/00207541003690090
http://dx.doi.org/10.1007/s00170-012-4675-1
http://dx.doi.org/10.1007/s00170-012-4675-1
http://dx.doi.org/10.1023/A:1009613925523

3432 P.M.C. Cortez and A.M. Costa

Thomopoulos, N. T. 1970. “Mixed Model Line Balancing with Smoothed Station Assignments.” Management Science 16: 593–603. http://
dx.doi.org/10.1287/mnsc.16.9.593.

Vilà, M., and J. Pereira. 2014. “A Branch-and-bound Algorithm for Assembly Line Worker Assignment and Balancing Problems.”
Computers & Operations Research 44: 105–114. http://linkinghub.elsevier.com/retrieve/pii/S0305054813003110.

Wester, L., and M. D. Kilbridge. 1963. “The Assembly Line Model-mix Sequencing Problem.” In Proceedings of the 3rd International
Conference on Operations Research, 247–269. Olso.

http://dx.doi.org/10.1287/mnsc.16.9.593
http://dx.doi.org/10.1287/mnsc.16.9.593
http://linkinghub.elsevier.com/retrieve/pii/S0305054813003110

	Abstract
	1. Introduction
	2. Problem definition and mathematical models
	2.1. Balancing problem
	2.1.1. Balancing problem example

	2.2. Sequencing problem
	2.2.1. Sequencing problem example

	2.3. Lower and upper bounds

	3. Solution methods
	3.1. Constructive heuristics
	3.2. Local search
	3.2.1. Exact local search
	3.2.2. Approximate local search

	3.3. Greedy randomised adaptive search procedure

	4. Computational results
	5. Conclusions
	Acknowledgements
	References

