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ABSTRACT

This is a survey of the Steiner tree problem with profits, a variation of the classical Steiner problem
where, besides the costs associated with edges, there are also revenues associated with vertices.
The relationships between these costs and revenues are taken into consideration when deciding
which vertices should be spanned by the solution tree. The survey contains a clas.sitication of the
problems falling within this category and an overview of the methods developed to .solve them.
It also lists several graph preprocessing procedures and analyzes their validity for the different
variants of the problem. Finally, a brief comparison is made between the profit versions of the
Steiner tree problem and of the travelling salesman problem.
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1. INTRODUCTION

Let G = (V,E)be a graph with vertex set V = { 1 , . . . ,n} and edge set £ = {e = (iJ) : iJ e
VJ <7}, where each edge e e E has an associated cost c,.. The problem of determining a
minimum cost network spanning all vertices V of G is known as the Minimum Spanning Tree
Problem (MSTP). The Steiner Tree Problem (STP) i.s a very similar problem arising when
some vertices need not be spanned, but may be used if their inclusion reduces the solution cost
(see, for instance, Courant and Robbing, 1941; Gilbert and Pollak. 1968 and Hwang. Richards
and Winter, 1992). Unlike the MSTP, the STP is NP-hard (Garey, Graham and John.son
1977).

Steiner Tree Problems with Profits (STPP) are an important generalization of the classical
STP. In the STPP. in addition to the costs associated with the edges, there are also revenues
r,, associated with the vertices / of the graph. The goal is to determine a subtree minimizing
cost or maximizing revenue (or profit), subject to constraints. The exact criteria guiding the
optimization vary for the different versions of the STPP. In some particular problems, both cost
and revenue are combined in the objective function, while in others, limits on either the cost or
the revenue will appear as constraints. Therefore, four basic criteria can be used to distinguish
between the variants: the cost of edges, the revenue of vertices, the minimum collected revenue
(quota), and the maximum allowed cost (budget). Depending on the problem, some of these
criteria can be ignored or combined.

Our aim is to review the main models and algorithms proposed for the STPP. The remainder
of this paper is organized as follows. Apphcations are described in Section 2, followed, in
Section 3, by a more detailed description of the different problems and by an overview of
the existing methods. An important component of modern algorithms is the application of
reduction tests to eliminate some vertices and edges that are absent from at least one optimal
solution. In Section 4, these preprocessing tests are reviewed and their validity is analyzed
for the different variants of the STPP. Then, in Section 5, a brief comparison between the
STPP and the travelling salesman problem with profits is reported. The paper ends with some
conclusions in Section 6.
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2. APPLICATIONS

Several network design problems can be appropriately modelled as an STPP. One traditional
application is the design of telecommunications local access networks (Canute Resende and
Ribeiro, 2001; Cunha, Lucena. Maculan and Resende, 2003). Here, the goal is to create or
expand a local access network to offer service to new customers. Each new consumer represents
a potential revenue for the company but there also exists a connection cost associated with the
network to be constructed. The problem is clearly modelled in a graph, where customers are
represented by vertices and physical links between them are represented by edges. The cost
associated with an edge is the cost of laying down the optical tiiber, while the revenue of a
vertex is derived from customers. Ljuhic et al. (2004) have reported a simiiar application in
the planning of heating networks, where customers have an estimated heat demand and the
street network provides the underlying graph where pipes can be laid down. Lee. Lim and Park
(1996) state that the hub location problem in designing digital data service networks can be
regarded as an STPP.

The STPP may also appear as a subproblem of more general problems. Engevall, Gbthe-
Lundgren and Varbrand (1998) have solved an STPP as a subproblem within a constraint
generation algorithm lor the problem of cost allocation in minimum 1-trees (in a graph G, a
l~tree is a spanning tree on G ^ (y \{ !},£:) connected to vertex 1 by two edges). Chawlat-/
al. (2003) have used an STPP as part of a mechanism for the extended multicasting game in
which vertices and edges are selhsh agents trying to maximize their own protit. This mechanism
obtains a fraction of the market profit or demonstrates that no profitable solution exists. Finally,
Friedman and Parkes (2003) have suggested the use of an STPP as part of an online mechanism
for the dynamic pricing of WiFi service in an internet cafe. The idea is lo recompute the optimal
STPP tree at each period, based on the current clients, and to maximize the protit equal to the
revenues on the connections, minus the cost of maintaining the links.

3. CLASSIFICATION OF THF PROBLFMS

Several variants of the STPP can be derived depending on how Ihe costs and revenues are
considered in the optimization problem. In the sequel, we present the most important variants.

3.1 Node-Weighted Steiner Tree Problems
In the node-weighted and prize-collecting STP. both costs and revenues are present in the
objective function. The idea is not to obtain a non-dominated solution, as would be the case
in a multi-objective optimization, but to optimize a linear combination of cost and revenue.

Several mathematical formulations have been developed tor this case. The folk)wing for-
mulation makes use of a generalization of the classical subtour elimination constraints (SEC)
introduced by Dantzig, Fulkcrson and Johnson (1954) for the Travelling Salesman Problem
(TSP). Let Xij be real-valued variables associated with edges (iJ) G E and v, be binary vari-
ables associated with vertices / e V. Variable >v is equal to 1 if vertex / belongs to the solution,
and 0 otherwise. For S C V, define E(S) as the set of edges with both endpoints in .V. Fi-
nally, let T be the set of vertices that must be present in a solution. These vertices are called
mandatory or terminal vertices. With these definitions, the problem can be written as:

Minimize V^ (^vv//+ 2 J ' ' ; ( ! — >',) (1)
{ij)€h i&V

subject to

i€V
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(3)

.v,=f iGT, " (4)

0<^<l (iJ)eE, (5)

.>ve{o.i} i^v. (6)

The objective function minimizes the cost of the opened edges and the lost revenue of the
unreached vertices. Constraint (2) forces the presence of i - I edges, where s is the number
of spanned vertices. Constraints (3) are the generalized subtour elimination con.straints. Note
that tor subsets S formed only by spanned vertices, constraints (3) reduce to the classical SEC.
Constraints (4) force the presence of the vertices of T in the solution.

Mode! (l)-(6) was used by Lucena and Resende (2004) (without constraints (4)) and
follows from an extended formulation for the Steiner tree problem proposed by Lucena (1991).
Goemans (1994) and Margot. Prodon and Liebling (1994). It is interesting to observe that the x
variables associated with edges need not to be declared as integer. Indeed, once the y variables
are equal to 0 or 1, con.straints (2) and (3) define the convex hull of the characteristic vectors of
the spanning trees on the subgraph of G formed by the selected vertices (see Margot, Prodon
and Liebling, 1994).

Goemans (1994) has observed that in the presence of mandatory vertices, some redundant
generalized subtour elimination constraints can be eliminated. Let A' = V\T be the set of
non-mandatory vertices. Constraints (3) then reduce to

>2 (7)

and
Y^ x,j< Y. v/ keSCN,\S\>2. (8)

liJ)<'FAS\ i€S\{k]

The objective function (I) can be equivalcntly written as:

Maximize J2^'>''- I ] '> '̂'y' (9)

i.e.. the goal is to maximize the profit, equal to the revenue of the spanned vertices minus the
cost of the selected edges. When the objective function (I) is used, the problem is sometimes
referred to as the Goemans-Williamson minimization problem (Goemans and Williamson,
199.')). When the "real protit" of objective function (9) is used, the problem is known as
the Net-Worth maximizarion problem. While these are equivalent from an optimization point
of view, they are not equivalent for the computation of the worst case performance ratio of
approximation algorithms. Later in this section, we present some approximation algorithms
for the Goemans-Williamson problem. However, no such algorithm exists for the Net-Worth
version. Feigenbauni, Papadimitriou and Shenker (2001) have indeed proved that it is NP-hard
to derive an approximation to a constant factor for this probiem.

Both the Goemans-Williamson and the Net-Worth problems are known under the more
general names of Node-Weighted Steiner Tree Problem (NWSTP) and Prize-Collecting Steiner
Tree Problem (PCSTP). The difference between the NWSTP and the PCSTP is that in the
second case, the .set of mandatory vertices T is empty. In practice, these mandatory vertices
often correspond to facilities (like a telecommunications centrai) that must be present in the
network in order to supply the service.
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The NWSTP was first proposed by Segev (1987) who developed two Lagrangian relaxation
bounding procedures for a special case of the problem in whieh a single node is mandatory.
These procedures are based on two mathematical models also presented by the authors and
called tree-type formulation and Jlow formulation. Three simple heuristic solution methods were
also developed, one based on a subgradient method applied to the first Lagrangian relaxation,
and the other two based on greedy approaches. Both the heuristics and the bounding procedures
were tested in complete graphs of up to 40 vertices.

Bienstock et al. (1993) were the first to propose a solution method for the PCSTP. They
worked primarily with the TSP with Profits (TSPP), a version of the TSP in which a vertex
has a revenue but need not be visited (see Section 5). They developed a heuristic based on
Christofides's heuristic for the TSP (Christotides. 1976). This method was later adapted to the
PCSTP (with the Goemans and Williamson objective function), yielding a heuristic with a
worst-case pertormance ratio of 3. Goemans and Williamson (1995) have later improved this
worst-case performance with a (2 - 1 /(| V | - 1 ))-approximation algorithm. The authors deal with
the rooted version of the problem (where one vertex is a root and must be present in the final
tree, as first proposed by Segev). Their procedure is an adaptation of a more general method
which can be applied to a large number of graph optimization problems called Constrained
fore.st problem.s (including the shortest path problem and the Generalized Steiner Tree Problem,
a variant of the STP in which clusters of vertices are defined and the tree must include at least
one vertex from each cluster). The method maintains a set of components. Initially, each vertex
is a component. Each component has an associated surplus (initially, the vertex revenue) and
is declared active if its surplus is positive. The edges have associated deficits, initially equal
to their costs. The deficits and surpluses are dynamically reduced until the deficit of an edge
connecting two active components reaches zero, in which case the two components are merged
together, or until an active component becomes inactive. The process ends when no active
components are left (see Johnson, Minkoff and Phillips. 2000). As suggested by the authors,
the method can be viewed as a greedy algorithm in which, at each iteration, a minimum reduced
cost edge is selected. Through the execution, the reduced costs are updated, giving rise to a
primal-dual structure for the algorithm. In a final phase, unnecessary edges are pruned.

The Goemans and Williamson algorithm was recently revisited by Cole et al. (2001) who
proposed a taster implementation. Their algorithm runs in O(k{\V\-\- |£|)log-| V|) time in com-
parison to 0(1 VploglUl) for the original algorithm, at the expense of an additive degradation
of 1̂ 1"*̂  in the approximation factor, for any constant k. Johnson. Minkoff and Phillips (2000)
have worked specifically with the STPP and proposed a new strategy for the pruning phase.
The authors have compared the results in graphs of up to 25,600 vertices and their tests have
shown a slightly better performance of the new pruning strategy, which has the additional
advantage of being conceptually much simpler. Johnson, Minkoff and Phillips have also pro-
posed modifications to the core of the algorithm which leads to a (2 - l/n)-approximation for
the unrooted problem (PCSTP). The authors also extended the methodology to the quota and
budget versions of the STPP. as will be seen in Subsections 3.2 and 3.3.

Other approximation algorithms include the work of Klein and Ravi (1995). The authors
have proposed a greedy algorithm which works by iteratively merging vertex-disjoint sets ot
trees. Initially, each terminal vertex is a tree by itself. The obtained performance ratio is 2ln |7 |,
where |7| is the number of terminal vertices. Guha and Khuller (1999) generalizes the ideas
proposed by Klein and Ravi to yield a (1.35 + e)ln|Thapproximation algorithm, for any constant
f > 0. The authors also propose a simple greedy algorithm with worst-ca.sc approximation factor
l.603ln|7"|.

The most recent works on the PCSTP and NWSTP have explored two main streams of
research: a) the obtention of good and reasonably fast methods for real-size problems and
b) the development of exact algorithms and lower bounding procedures. Regarding the first
stream, the tendency has been to use modem heuristic methods. A good example is the work
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by Canuto et al. (2001) who have developed and tested a multi-start local search method on
instances with up to 1000 vertices and 25.000 edges. The different restarts are conducted in
a GRASP fashion: the initial solutions are given by the Goemans and Williamson algorithm
feeded with perturbed vertex revenues. The final solution of each restart goes through a path-
relinking procedure, with one of the solutions maintained in apool of the best solutions found
so far. Finally, in the last phase of the algorithm, the best known solution is used within a
variable neighborhood search procedure (Mladenovic and Hansen. 1997). Optimal solutions
were obtained for most of the tested graphs.

Klau et al. (2004) have reached similar results but with less eomputational time. Their
approach uses a memetic algorithm which works with a population of trees. Each tree goes
through an exact algorithm to eliminate non-optimal branches. The entire procedure is followed
by an exact method. The idea is to use the memetic algorithm to eliminate edges that are
probably not present in the optimal solution and then apply the exact method, based on a
separation procedure, on the reduced instance.

Cunha et at. (2003) formulate the PCSTP as a restricted minimum forest problem. The
authors then use a Lagrangian relaxation which dualizes some constraints only when they first
become violated. A constraint is dropped from the objective function when the associated
multiplier is zero. A heuristic procedure based on the work of Johnson, Minkoff and Phillips
(2000) is used to obtain upper bounds. Results obtained on instances of up to 400 vertices and
1507 edges are rather modest, an outcome that the authors attribute to probable cycling in the
procedure.

Besides heuristics, a fair amount of research has been conducted on exact algorithms and
lower bounding procedures. Engevall. Gothe-Lundgren and Varbrand (1998) have proposed a
Lagrangian lower bounding procedure. This procedure uses a formulation based on a trans-
formation that substitutes the y variables for edge variables connecting an artificial vertex to
all other vertices of the graph. This modified formulation enables the obtention of a restricted
MSTP (a MSTP with additional constraints) as a subproblem to the Lagrangian relaxation
based procedure. The resulting bounds were stronger than those obtained by Segev (1987).

Lucena and Resende (2004) have also developed a new lower bounding method. The authors
have used formulation (i)-(6), and proposed a cutting-piane algorithm based on a separation
procedure that identifies violated subtour elimination constraints. The .separation procedure has
been refined to introduce the idea of orthogonal cuts (cuts generated from subtour elimination
constraints with no common vertices). A totai of 114 instances with up to 1000 vertices and
25,000 edges were solved and the bounds were proved to be optimal in 99 of these.

Recently, Ljubic et al. (2004) have improved these results with a branch-and-eut algorithm,
applied to a formulation that uses connectivity inequalities. These inequalities are generated
efficiently via a separation procedure based on a maximum flow algorithm. The authors have
solved instances of up to 2500 vertices and 62.500 edges, including the Lucena and Resende
instances, for which simiiar results were obtained with a decrease of two orders of magnitude
in the computation time.

3.2 The quota STPP
In the quota version of the STPP the goal is to minimize the costs while guaranteing a minimum
value for the collected revenues:

Minimize ^ CijXij (10)

subject to (2)-(6) and

where Q is the quota, i.e., the minimum acceptable collected revenue.
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The quota version of the STPP has received little attention in the literature. Johnson, Minkoff
and Phillips (2000) have observed that the quota STPP is a generalization of the A:-MSTP, in
which one tries to determine a minimum cost spanning tree containing at least k vertices (note
that if the revenues of ail vertices are set to I and the quota is set to k, then the quota STPP
becomes a ;t-MSTP). The authors use this fact to obtain a 2.5-approximation algorithm for
the resulting quota STPP, based on an algorithm for the unrooted A-MSTP (Arya and Ranicsh,
1998). The resulting procedure is, however, not likely to be efficient in practice.

A more practical algorithm has also been developed. The idea is to multiply the vertex
revenues by a factor a and then use the Goemans and Williamson algorithm on the modified
instance. The larger the value of a, the more revenues should be collected (since these wiil
easily counterbalance the costs). The value of a is increased until a solution with the minimum
quota has been reached. If the total collected revenue exceeds the quota, then one can try to
reduce a and still find a total revenue that will satisfy (11). The authors use binary search
to find the minimum value a yielding an acceptable quota. By varying a. they also construct
tradeoff curves between the total cost and total revenue.

Recently, a new algorithm has been proposed by Haouari and Siala (2006). The authors
have developed a hybrid Lagrangian genetic algorithm. For the Lagrangian relaxation, the
quota STPP is formulated as a restricted minimum spanning tree problem. To approximate the
dual variables, a volume algorithm is used in place of the more traditional subgradient approach.
Concerning the genetic part, the authors make use of a modified Prim procedure (Prim. 1957)
in order to obtain feasible quota STPP solutions. The procedure is tested on newly developed
instances of up to 500 nodes and 5000 edges and, in 76% of the cases, the obtained gap was
less than 2%.

3.3 The budget STPP
The budget STPP is the counterpart of the quota problem. Here, one wants to maximize the
total collected revenues under the restriction that the total cost is limited by a budget:

Maximize /,'^'-^'
iev

subject to (2)-(6) and

where fi is the aiiowed budget.
Almost no research has been devoted to the budget STPP. Johnson. Minkoff and Phillips

(2000) have proved that by repeatedly running a 3-approximation algorithm for the quota
problem, one can find a (5 + f )-approximation algorithm for the unrooted budget STPP, where
f > 0. Again, this approximation algorithm is not likely to be useful in practice. Eor a more
efficient procedure, the authors propose applying the same strategy as for the quota STPP. i.e..
multiplying the costs by a factor a (this time, in order to try to find a solution that satisfies the
budget constraint) and applying a binary search procedure on the values of a.

3.4 The fractional STPP
A non-linear version of the STPP maximizes the revenue-to-cost ratio. In this version of the
probiem. the value of a solution associated with a solution tree T ^ (VT.ET), where V; C V
is the set of selected vertices and Ej C E is the set of selected edges, is given by

where co is a fixed cost, and the goal is to determine a tree T maximizing v(T). The fractional
STPP enables the consideration of a fixed cost for the construction of the network.
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Klau et al. (2003) have dealt with a variation of this problem where the underlying graph is
already a tree. The goal is, therefore, to identify an optimal subtree containing the root. The
authors have developed three algorithms based on a parametric formulation: a binary search,
a Newton method, and an algorithm based on Megiddo's parametric search (Megiddo. 1979).
Tests were conducted on trees of up to 10,000 vertices and showed that the Newton method
had a better performance. One could probably consider adding budget or quota constraints to
this problem. However, to our knowledge, not even the basic version of the fractional STPP
on graphs has been the subject of any research.

4. REDUCTION TESTS

When solving the Steiner tree problem and its variants, several authors make use of reduction
tests. These tests attempt to find vertices and edges that are absent from at least one optimal
solution, or to find sets of vertices and edges that can be treated as a singie vertex. Preprocessing
procedures often iterate between one or more different tests until no more reductions can be
made.

The field of graph preprocessing for Steiner tree problems is rooted in the work of Beasley
(1984) and Balakrishnan and Pate! (1987). A classical set of tests was established by Duin and
Volgenant (1989). With the appearance of the profit versions of the problem, some of these
tests were promptly adapted to the new problems (Duin and Volgenant, 1987) and combinations
of these started being used as a preprocessing phase in many solution procedures. These
preprocessing phases have hecome an important part of the more recent algorithms. Since they
can significantly reduce the size of the graph that must effectively be solved, they enable the
resolution of larger instances. Ljubic et al. (2004) have studied the efficiency of a few simple
reduction tests, ln about 100 seconds of computational time, their largest instances of 2500
vertices and 62.500 edges could be slightly reduced in terms of the number vertices, while the
number of their edges was more than halved, in one extreme case, the final number of vertices
and edges after preprocessing were 861 and 3881, a reduction of 65% and 94%, respectively.

4.1 Description of the reduction tests
As part of this survey on the STPP. we present an overview of the most common reduction
tests. These tests are adapted from the classical STP to the PCSTP and to the NWSTP. Their
validity is not always clear for other variants of the STPP, like the quota or budget versions,
and is therefore analyzed in this section. For all tests presented in the sequel, we assume all
costs (•// and revenues r, to be non-negative. Moreover, note that one can eliminate any edge
UJ) with cost Cjj - 0 by merging vertices / and j into a single vertex. The tests described
in this section were originally presented in: Duin and Volgenant (1987), Duin and Volgenant
(1989) and Uchoa (2006) (see Table 1).

Test 1 (Degree one test): (a) A vertex i that is only adjacent to one vertex j can be eliminated
'J ''i < (-'ij- (b) If ri > c,j and rj > Cy. vertices i and j are merged into a .single vertex v of
revenue r,. — rj + r, — Cy.

Test 2 (Degree two test): A vertex i that is only adjacent to vertices j and k cannot have
degree I in the optimal solution if ri < min{c,y,Crt}. ln this case, the vertex can be eliminated
and an edge (/, k) of cost Cjk = Cjj +c,t - r, is created or. if edge (/, k) exi.st.s. its cost is redefmed

i { }

Test 3 (General degree test): A generalization of tests J and 2 can be applied to vertices
with degree superior to two. Consider a vertex i with rj ^ 0 and let Ad(i) = {v^,ii, v,,} be
the .set of vertices adjacent to it. For a .subset of vertices V C V, let MST(V') be the cost of
the minimum spanning tree problem in the complete graph formed by the nodes in V\ where
the cost of each edge (i',, Vj) is given by the shortest path distance between v, and Vj in G. We



106 A.M. COSTA, J.-F. CORDEAU AND G. LAPORTE

know that if
MSTiV') < ^ (;,v. '^V'CAd(i), \V'\ > 3, (15)

v'€V'

then the degree of i in the optimal PCSTP solution must he zero or two. Therefore, vertex i
can he eliminated and each pair of edges (v,, i), (i, v,) can be replaced by an edge (v,. Vj) of
cost r,.,, = Cv,, +c-,v. or. if this edge already exists, of cost c»,,. ^ min{c,.,,. ,(\,, +Ov,}-

Test 4 (Minimum adjacency or V\K reduction test): Adjacent vertices i and J can be
merged into a single vertex v if qj is the smallest cost of all edges incident to vertex i (or J).
and Cij is .smaller than each revenue r, and rj. The revenue r^ of the merged vertex is equal to
n H- r, - c,j.

Test 5 (Shortest-path or least-cost test): An edge (iJ) can be eliminated if there exists a
shortest path between i and J (considering the costs qj) not containing (/,_/).

Test 6 (Nearest vertex test): In the NWSTP, let T be the .set of mandatory vertices and d,j
be the shortest path distance between vertices i and J. considering the edge costs. Suppose
k ^ T and (/,/r) is a minimum-weighted edge incident to k. i.e.. Cik — min{c-ji[/ G V,^ ^ k]. IJ
a vertex I G 7"^^} exists with

dii+Cii, < mm{cji,\i e V .J ^ / , / : } ,

then edge (i,k) is part of an optimal .solution and vertices k and i can be merged.
Recently some new tests have been proposed by Uchoa (2006) who has revisited the tests

tor the classical Steiner problem and. in particular, two tests using what Duin and Volgenant
have called bottleneck distances. Let !P(/,y) be the set of all paths connecting vertices ( and /.
The bottleneck distance between two vertices / and 7 is defined as

B(iJ) = min{5D(P)|P € "Pd-J)], (16)

where SD(P) is the Steiner distance, i.e.. the maximal distance between two terminal vertices in
path P. Uchoa proposes a counterpart of the bottleneck distances for problems with revenues.
Consider P e T(i.J). and lel e(P) be the set of edges {kj) G E such that ^ and ^ are
consecutive in P. and v(P) be the set of vertices v 6 V appearing in P. Also let S^y be the
subpath of P between A and y, with x,y £ v(P). Then define the Steiner distance associated
with this subpath as

and the Steiner distance associated with the whole path as

^ max SD(S,,;). (18)

This new definition of the Steiner distance can be used in the bottleneck distance formula
(16), and the tests originally proposed tor the Steiner Problem in the article of Duin and
Voigenanl (1989) become valid for the PCSTP. ln these tests, reproduced be\ow. B(iJ)~'' is
the bottleneck distance without passing through a given edge^. and is defined as:

B(iJ)-'' - min{5D(/')|/' G 'P(iJ):e ^e(P)}. (19)

Test 7 (Spcciai distance): Let UJ) G E. If B(iJ) "'" < c-y. then edge (/,_/) can be removed.

Test 8 (Non-terminal degree 3): Let i be a vertex with n = 0, adjacent to vertices v. w and

I. If
min{S(v. w) + B(v,z\ B{w, v) + B{w,z). B(z. v) -t- B(z. w)} < a,- + r,,, -\- ci-.
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Figure 1 : Invalidity of test 1 for the budget and quota STPP.

B = 80 / Q = 220 B = 60 / Q = 220 2

(b)

then there exists an optima! .solution in which the degree of i is 0 or 2. Therefore, i and its
three adjacent edges can he replaced hy the following three edges: (v,w) with cost f,-,. + r,v,
(i',.-) with cost r,v + c,~, and (w,z) with cost C/̂ . + c,-.

4.2 Validity for the quota and budget STPP
The structure of the objective function for the PCSTP and the NWSTP is quite convenient for
the development of reduction tests since it combines additive edge costs and vertex revenues.
In the ciises ot the quota and budget STPP. however, the objective function contains only one
of these terms (either revenues or costs) and therefore, all tests based on a cost analysis using
both the costs and revenues become invalid. This fact is even more pronounced in the presence
of the additional constraints. Indeed, the quota constraint might force the presence of a vertex
that was considered unprofitable for the PCSTP or the NWSTP {sinee the cost to reach it was
larger than its revenue), while the budget constraint might avoid the inclusion of a profitable
vertex. Therefore, ail tests based on a combination of costs and revenues become invalid for
the quota and budget STPP. These include tests 1, 2 and 4. In Figure 1, the representative ease
of degree-one test (test I in the list) is analyzed through two simple examples.

In Figure 1, the values on the vertices represent their revenues, while those on the edges
represent their costs. Consider the application of test l(a) to the graph of Figure I a. According
to the test, vertices 3 and 4 .should be deleted from the graph. However, vertex 3 belongs to the
optimal solution of the budget STPP along with vertices 1 and 2 since its addition increases the
objective function value and does not violate the budget constraint. For the quota STPP, vertex
3 is also present in the final solution, along with vertices I and 2, since it is necessary to satisfy
the quota constraint. For the case of test 1 (b), consider the graph of Figure I b. Vertices 3 and 4
should be merged with vertex 2. However, in the optimal solution ofthe budget STPP. vertex
2 is present along with vertices I and 3, but vertex 4 is not, due to the budget constraint. In
the quota STPP. vertex 4 is not present either, sinee its presence would increase the objective
function and the presence of vertices 1. 2 and 3 is sufficient to satisfy the quota constraint.

Like tests I, 2 and 4, tests 7 and 8 make use of calculations mixing revenues and edge costs
(see the definition of the special distance for one subpath in (17)). They are therefore invalid
for the quota and budget STPP, since the presence of either budget or quota constraints, or the
absence of either costs or revenues in the objective function might invalidate the eonelusions.
Even for the case of the PCSTP and NWSTP, Uchoa (2006) reports that the computation of the
new bottleneck distances is NP-hard. However, the author uses a heuristic method to calculate
these distances and implements a preprocessing package including classical preprocessing tests
as well as tests 7 and 8. A comparison of the results with those of Ljubic et al. (2004) has
revealed that significant extra reductions were obtained with the additional tests, especially for
instances containing a large number of mandatory vertices.
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4.3 Validity for the fractional STPP
Although no author has considered the fractional STPP in general graphs, it is interesting to
analyze the validity of the reduction tests for this problem. One can easily conclude that the
presence of the quotient in the objective function forbids any local consideration using both
the costs and revenues. Therefore, as for the quota and budget STPP. tests 1. 2 and 4 become
invalid. Tests 3. 5 and 6 make considerations based on the edge costs, acting only on the
denominator of (14) and are, therefore, valid. Like tests 1, 2 and 4, tests 7 and 8 are invalid
for the fractional STPP since they are based on local considerations using both the costs and
the revenues.

4.4 New tests for the hudget STPP
As a last note on the reduction tests, one can clearly see that the introduction of the quota and
budget constraints invalidates many of the tests developed for the NWSTP and for the PCSTP.
However, these constraints may also represent an opportunity. Indeed, some new reduction tests
specifically adapted to the quota and budget versions of the problem can be derived because
of the introduction of the new constraints. The two simple tests presented below for the case
of the budget STPP are illustrative examples.

Test 9 (Distance to terminal): //; rhe budget STPP with a mandatory vertex set T. a vertex
i ^ T can he eliminated if the cost of the shortest path linking i and any vertex in T is larger
than B.

Test 10 (Minimum distance to terminal tree): Let T he the set of mandatory nodes and
STPc.iT) he the cost of the STP in G. A vertex i ^ T with a single incident edge (i.k) can he
eliminated if STPc(T) + Cik > B.

4.5 Summary of the reduction tests
Table 1 presents a summary of the reduction tests presented in this section. For each test, it is
possible to see its applicability to the different problems, the original reference in whieh the
test is described and the articles where it has been used as part of a preprocessing algorithm.

5. A COMPARISON WITH THE TRAVELLING SALESMAN
PROBLEM WITH PROFITS

The Travelling Salesman Prohlem wilh Profits (TSPP) is a variation of the classical TSP where
revenues are associated with vertices. It has received considerable attention as witnessed by
the review articles of Feillet, Dejax and Gendreau (200?) and Laporte and Rodri'guez-Martm
(2006). Beasley and Nascimento (1996) have written a survey of the more general Vehicle
Routing Prohlem with Projits. Several versions of the TSPP have been proposed, as in the
case of the STPP. Indeed, the similarities between the two problems are numerous. Concerning
the different versions, the TSPP also exists in a variation where both revenues and costs
are considered in the objective function (the Profitahle Tour Prohlem (PTP)). and there exist
variants where limits on either the revenues or the costs are imposed as constraints: these
are the Prize-Collecting Travelling Salesman Prohlem (PCTSP) and the Orienteering Prohlem
(OP), respectively. Concerning the solution methodologies for the two families of problems,
there are also some common features. As seen in Section 3, the approximation algorithm of
Bienstock, Goemans, Simchi-Levi and Williamson (1993) for the PCSTP has been adapted
from an algorithm for the PTP. Moreover, the generai framework of Goemans and Williamson
(1995) has been used to develop approximation algorithms both for the PCSTP and for the
PTP

Due to the closeness of the problems, we found that it could be insightful to present a
comparison between the methods proposed both for the STPP and for the TSPP. In Table 2,
we present a summary of these methods. For the STPP, we use Section 3 of this article, while
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for the TSPP, we use the articles surveyed in Feillet, Dejax and Gendreau (2005) and in Laporte
and Rodrfgue/Martin (2006).

Table 2 shows that the TSPP has received considerably tnore attention than the STPP. More
interesting, and perhaps less justifiable, is the fact that the research efforts for both problems
have been distributed differently. While for the TSPP, most research has concentrated on the
OP (where the costs are introduced in the constraints of the model), for the STPP almost all
research has been devoted to the NWSTP and the PCSTP.

6. CONCLUSIONS

We have studied the Steiner Tree Problem with Profits, and we have presented an overview
of the avaiiable algorithms for several variants of this problem. We have also presented an
overview of the existing reduction tests to eliminate or agglomerate vertices and edges of the
original graph. We have observed that the research efforts to solve the STPP are concentrated
on the PCSTP and NWSTP variants. Indeed, a single article mentions the budget version of
the STPP. only two articles its quota counterpart, and no author seems to have considered the
fractional STPP on general graphs. While this may not come as a surprise for the fractional
STPP (since it is hard to associate its objective function with a profit), this is less justifiable
for the other problems. In the particular case of the budget STPP. the absence of any study is
even more remarkable considering that most of the research conducted on the similar TSPP
has been devoted to the OP.

The question that arises is: are the budget variants only important in the context of the TSP
and not in the case of the STPP? There are at least two indications that the answer to this
question is negative. First, budget constraints seem to be relevant in practice in several design
problems. It is quite natural to conceive that they are also present in the major projets associated
with the expansion of telecommunications or heating networks, two important applications of
the STPP. Secondly, the PCSTP and NWSTP variants may present optimal solutions with the
same value but with very different practical implications. It is easy to construct an example
along the lines of Johnson, Minkoff and Phillips (2000). Consider two different solutions, both
with a profit of $100. The PCSTP and the NWSTP are insensitive to the fact that this solution
could have come from a situation where the sum of the costs are $10 and the sum of the
revenues are $110. or from a network with construction costs of $10,000 and revenues of
$10,100. The budget STPP as well as the quota STPP are more robust to this kind of situation,
since oniy the revenues (or the costs) are present in the objective function.

Even if the budget STPP also has its own flaws (as seen in the example of Figure lb,
where the unprofitable vertex 3 is unnecessarily spanned), this version of the problem seems
to deserve more attention than it has received so far in the literature. The existing knowledge
on the PCSTP and NWSTP versions can certainly be useful in developing methods that deal
with the particularities of this problem. An interesting study from a practical point of view is
the analysis of cost v.v revenue tradeoff curves, as suggested by Johnson, Minkoff and Phillips
(2000).

Concerning the preprocessing phases. Section 4 has presented an overview of the most
common reduction tests. These tests have been developed for the NWSTP and PCSTP and are
in general invalid for the other variants of the problem. Since the preprocessing phase which is
based on these reduction tests has become an important part of most algorithms, the need for
additional research for the different versions of the STPP is. again, justihed. We hope that this
survey will encourage such research efforts and prove a helpful source of ideas and references.
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