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Abstract - This work deals with the problem of 
scheduling jobs to identical parallel processors with 
the goal of minimizing the completion time of the last 
processor to finish its execution (makespan). This 
problem is known to be NP-Hard. The algorithm 
proposed here is inspired by the immune systems of 
vertebrate animals. The advantage of combinatorial 
optimization algorithms based on artificial immune 
systems is the inherent ability to preserve a diverse 
set of near-optimal solutions along the search. The 
results produced by the method are compared with 
results of classical heuristics. 

I. INTRODUCTION 

The problem of minimizing the makespan while 
scheduling jobs to  identical parallel processors is a clas- 
sical combinatorial optimization problem. Following the 
%field classification scheme proposed by Graham et al. 
[l], this problem is denoted by PllCmaz. The goal is to 
distribute the jobs amongst the processors, in a way that 
the makespan, i.e., the ending time of the last job in the 
most loaded processor, is as low as possible. In 1974, 
Bruno et al. [2] showed that this problem is NP-Hard 
and, therefore, there is no polynomial-time algorithm to 
obtain the optimal solution. 

Several heuristic methods have been proposed for this 
problem, including the Longest Processing Time (LPT) 
[3] and the Multifit [4], both classified as constructive 
methods, i.e., heuristics that obtain solutions through 
additive steps, trying to improve the current solution gain 
at each step. Lee and Massey [5] hybridized these two 
heuristics and obtained results always better than the 
ones obtained by each heuristic individually. 

Besides constructive heuristics, improvement heuris- 
tics are also abundant in the literature. These heuristics 
are designed for improving the results, via modifications 
in an initial solution [6]-[B]. Ho and Wong [6] used meth- 
ods based on lexicographic search, able to find the opti- 
mal schedule in the two-processors case as an improve- 

ment algorithm for the general case. FranGa et al. [B] 
proposed a 3-phase algorithm that uses a new job clas- 
sification scheme which avoids, in the constructive and 
improvement phases, the use of sorting. Computational 
tests showed that 3-phase found better results than LPT 
and Multifit. 

Classical heuristics strategies, like Tabu Search, have 
also been adopted to search for near optimal solutions to 
the problem. Piersma and Dijk [9], for instance, studied 
the problem focusing on the effect of the tabu neighbor- 
hood. 

More recently, as for other combinatorial problems, 
there has been a tendency toward using evolutionary al- 
gorithms. Min and Cheng [lo] proposed a genetic algo- 
rithm for this problem. Cheng and Gen [ll] proposed a 
memetic algorithm to  the extended problem of consider- 
ing the jobs’ execution times sequence-dependent. 

In this work, we present a new search algorithm for 
the problem, based on the way the vertebrate immune 
system works. Artificial Immune Systems (AIS) [12], [13] 
are used in several domains of engineering, in particular 
in scheduling problems [14]-[16]. In this work, we extend 
the ideas proposed by De Castro and Von Zuben [17] to 
adapt the AIS mechanisms to our scheduling problems. 

The results obtained are compared with the results of 
the following heuristics: LPT, Multifit (both followed by 
a local search heuristic) and Simulated Annealing. 

In the next section, we formally define the problem. 
In section 3, we briefly present the heuristics to be com- 
pared. In section 4, the proposed method is detailed. 
The instance set and the computational results are pre- 
sented in sections 5 and 6, respectively. Conclusions are 
outlined in section 7. 

11. PROBLEM DEFINITION 

The problem of scheduling jobs to  identical parallel 
processors consists of executing n jobs in m identical par- 
allel processors. All the jobs must be run once and the 
completion time of the last processor to  finish execution 
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must be the lowest possible. 
In mathematical terms, given a set of n numbers, we 

must group them into m subsets in a way that each num- 
ber is in one and only one subset, and the sum of the 
elements of the biggest subset is as low as possible. 

A mathematical formulation is given below: 

Minx M 

It is clearly a mixed-integer optimization problem 
where: 

M is the makespan, 

X is a n x n matrix with binary elements, 

1, 
xii = 0, otherwise 

pi is the ith job size . 

if job i is placed on processor j { 
The first restriction assures that it4 is the makespan 

of the problem while the second assures that all jobs are 
executed only once. 

111. THE HEURISTICS TO BE COMPARED 

In this section, we briefly describe the heuristics used 
for comparisons with the method to  be proposed. The 
constructive heuristics are presented first, followed by the 
local search adopted to improve their performance. Fi- 
nally, the Simulated Annealing method is outlined. 

A. Longest Processing Time (LPT) 

The constructive heuristic LPT consists in sorting the 
jobs, by size, in a descending order and, then, scheduling 
the jobs, one by one, to the processor with the current 
least load. 

B. Multifit 

The Multifit heuristic, as the LPT, sort the jobs by size in 
a descending order. However, instead of scheduling each 
job to the least loaded processor, it tries to schedule the 
jobs to the same processor, until it is not possible to put 
jobs in the processor without exceeding its capacity C 
(optimization parameter). Only then, it goes to the next 
processor. The process continues until there is no more 
processors or jobs, i.e.: 

all the jobs have 
been placed in one of the processors. It means the 

1 - no more jobs to be placed: 

makespan of the problem is less or equal to  the 
actual capacity C. C is reduced and the process 
restarts, trying to find a smaller makespan. 

2 - no more processors and still jobs to  be placed: it 
was not possible to  execute all jobs considering that 
the processors had a capacity C. C is increased and 
the process restarts. 

After N iterations the process terminates and the best 
solution is chosen. 

C. Local Search (LS) 

A local search heuristic is used to improve the solutions 
obtained by the constructive heuristics. 

The neighborhood generation mechanism is defined 
as all pairs of jobs, laying in processors with different 
charges, one of which must be the most loaded one. 

The local search consists in visiting the pairs of jobs 
and accepting a change if it reduces the difference in 
charge of the two processors. Once a change has been 
made, the neighborhood is reconstructed and the search 
is restarted. 

The search is interrupted when the whole neighbor- 
hood has been visited and no improvement was made 
(local optimum). 

D. Simulated Annealing (SA) 

Search strategies based on SA are widely used as combi- 
natorial problem solvers [18]-[20]. It consists of a search 
strategy that, in a few words, allows the escape of local 
optima by accepting changes that degrade the solution if 
these changes satisfy one acceptation fuction. 

The SA algorithm used in this work is presented bel- 
low: 

Simulated Annealing 

Chose an initial Solution S = SO; 
T = To, To 2 0; t = 0; 
Repeat: 

n=O; 
Repeat: 

Take the next element, S,,, in N ( S ) ;  

if 6 < 0 then S = S, 

else, do S = S,, with a probability e T  ; 
n = n + l ;  

while n < N .  
t = t + l ;  

6 = f(SW) - f(S); 
- 6  

T = T ( t ) ;  
while stopping criteria is not satisfied. 
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The neighborhood N ( S )  is the same one adopted in 
the local search and the initial solution used was given 
by the LPT rule. 

IV. ARTIFICIAL IMMUNE SYSTEMS 

The Vertebrate Immune System acts defending the or- 
ganism against invaders (antigens) and has several de- 
sired features for optimization purposes, like robustness, 
flexibility, learning ability and memory. These character- 
istics are frequently useful in scheduling problems. Some 
examples of applications of AIS to scheduling can be 
found in [14]-[16]. 

Mori et 01. [14] used an AIS for controlling a semicon- 
ductor production line. In their work, the control of the 
production line was done by a set of agents (named de- 
tector, mediator, inhibitor and restoration agents). Each 
agent interacted with the production line and with the 
other agents. The way this interaction occurred was 
based on the vertebrate immune system. 

Hart et a2. [15] worked with the job-shop problem, 
with the goal of minimizing the maximum tardiness. 
Each solution (a complete schedule) was an antibody. 
The proposed algorithm constructed these antibodies 
from a set of libraries. These libraries were previously 
evolved using a genetic algorithm. Once the libraries 
were defined, 1000 individuals were evaluated and 1000 
clones of the best individual found were generated. The 
clones were mutated and the best clone found was se- 
lected as the solution of the problem. 

Russ et al. [16] created an AIS model for task allo- 
cation in computer systems. The goal was to design a 
system capable of adapting to a changing environment. 
This was done in a way similar to the one proposed in 
[14]. Agents interacted with the system and amongst 
themselves as the B-cells and T-cells do in the natural 
immune system. 

In this work, as in [15], we map the scheduling pos- 
sibilities in a string of integers, and use these strings as 
antibodies of our AIS. The evolution of these antibod- 
ies in the AIS follows, basically, two principles: Clonal 
Selection (CS) and Affinity Maturation (AM). The CS 
principle dictates that the best defense cells (antibodies) 
should be selected to be cloned. The newly generated 
cells undergo hypermutation (a mutation with high prob- 
ability) and receptor editing [21], [22], guiding to a pro- 
cess of Afsnity Maturation. This principle is so called 
because the processes of mutation with high rates, to- 
gether with selection, allow the immune system cells to 
improve their affinities with the recognized antigens. The 
number of clones is proportional to the antibody afFmity 
(level of antigen matching), while the rate of mutation 
is inversely proportional to the affinity of the parent cell 

with the recognized antigen. 
The CS and the AM principles are processes that occur 

simultaneously: during the CS process, each newly gener- 
ated cell goes through a blind variation process, whereas 
during the AM process, the ones that best match the 
invaders (antigens) are selected. 

Optimization operators may be modeled based on 
these principles. In this paper, we used an adaptation of 
one of the proposals of the literature, known as CLON- 
ALG [17]. In this algorithm, candidate solutions for a 
problem are coded. After that, selection and mutation 
operators are applied. The simplified algorithm is de- 
scribed below : 

Algorithm for Clonal Selection and Affinity Maturation 
Create a population of k antibodies (feasible solutions to 
the problem); 

For each generation, do: 
For each antibody, do: 

decode the antibody; 
determine the antibody affinity; 

determine the number of clones of each antibody; 
determine the number of mutations; 
do cloning and mutation; 
For each clone, do: 

decode the clone; 
determine the clone f f i i ty ;  
if dn(c1one) > &(antibody) + antibody = 

clone; 
while stopping criterion = false. 

For the PIIC,,, problem, each feasible solution, i.e., 
a complete schedule, was coded in a string of fixed size n 
(n = number of processes). Each position on the string 
is associated with a process. The value of each position 
i indicates the machine where the process is allocated. 

Each antibody (solution) of the population has an 
affinity. This affinity, as illustrated in the equation bel- 
low, reflects the quality of the solution. 

LB 
Affinity(k) = 

(1 + M ( k )  - LB) 

where 
M ( k )  is the makespan of the solution represented by 

the antibody IC and LB is a lower bound of the problem. 
In this paper, we have used the solution to  the problem 

with preemption (i.e., allowing the split of jobs into two 
or more processors) as lower bound. This lower bound is 
calculated by the sum of all job processing times divided 
by the number of processors. 

The denominator in the d n i t y  expression states that 
for solutions where M(k) is closer to LB - i.e., the solution 
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Difference between the affinity 
of antibody k and the affinity 
of the current best antibody. 

> 0.003 

Numb. of mutations 
per antibody 

9 

....~ 

< 0.00001 I 2 

. 

0.002 - 0.003 
0.001 - 0.002 
0.0005 - 0.001 
0.0004 - 0.0005 
0.0003 - 0.0004 

0.00001 - 0.0003 

TABLE I 
NUMBER OF MUTATIONS PER ANTIBODY 

8 
7 
6 
5 
4 
3 

The number of clones was given by the following equa- 
tion: 

N C ( k )  = 5 .  - N M ( k ) )  + 1 

Where N C ( k )  is the number of clones of antibody k, 
Nm,, is the maximum number of mutations that can 
be applied to a cell (9, in this paper), and N M ( k )  is the 

number of mutations of each cell generated from antibody 
k .  

This expression was chosen in order to  give the less 
evolved individuals, i.e., with higher number of muta- 
tions (see Table I), a few clones and vice versa. The 
numbers were selected in a way that the individuals with 
the maximum mutation rate had just one clone and indi- 
viduals with the minimum mutation rate had 36 clones. 
Intermediary individuals had a number of clones between 
these two values. 

The use of the antibodies affinity t o  estimate the num- 
ber of newly generated cells and the mutation rate to be 
adopted for each cell is an inherent aspect of an immune- 
based approach. 

The stopping criterion was a given number of genera- 
tions with no improvement on the best solution. Another 
criterion used was the end of the available time for each 
instance, as explained in section VI. 

V. INSTANCE SET GENERATION 

For the computational experiments, two groups of in- 

In the first group, for each combination of 
keK, with i < j, we generated 10 instances 

stances were used. 

i d ,  jd, 
as described below: 

the instance has i processors; 
the instance has j jobs; 
the processing time of the jobs obeys an uniform 

In this paper, we worked with the sets I = {5,10,25}, 
J = {10,50,100,500,1000} and K = {100,1000,10000}. 
We generated 10 instances for each possible combination, 
yielding a total of 390 instances. Optimal solutions for 
these instances were obtained by solving a sequence of 
bin packing problems within a bisection search scheme 
(see F’ranca et al. [8] for details). We also worked with 
another five instances with a stepwise distribution, pro- 
posed by Graham [3]. This distribution generates worst- 
case instances for the LPT algorithm. 

The second group of instances has been borrowed from 
a similar problem, the number partitioning problem, in 
which there are only two processors. The set of instances 
was especially generated in a way that the best local min- 
ima - and consequently the optima - are located in very 
deep valleys. 

These instances are expected to  be very difficult to 
solve for many algorithms, especially because of the val- 
ues of the jobs’ processing times (in the order of 10 digits 
long) [23]. We used 25 instances, all with two processors 
and 15, 35, 55, 75 or 95 jobs. 

distribution in the interval [l, k ] .  

0-7803-7282~lO2B 10.00 02002 IEEE 923 



VI. RESULTS 

The maximum computational time for the optimiza- 
tion of each instance was given by 13 . Zog(13) Zog(n2), 
where n is the number of jobs of the instance. This time 
only limits the execution of the Artificial Immune Sys- 
tems. All the other heuristics had execution times lower 
than the maximun time given. 

The algorithms were coded in JAVA and executed in 
a Sun workstation Ultra 1. 

Table I1 shows the results (% of optimal solutions 
found) for the first group of instances. The number of op- 
timal solutions found by each method appears in paren- 
thesis. The table also shows the total time used for the 
optimization of all instances in this group. 

Method I % optima I Total time (9) ] 

Multifit 
22 % (88) 

1986 
AIS 88 % 1346) 10402 

r I Simulated Annealins I Art. Immune Systems I I 

TABLE I11 
RESULTS FOR THE SECOND GROUP OF 25 INSTANCES, 

PRESENTED IN TERMS OF THE LOAD DIFFERENCE BETWEEN 
THE TWO PROCESSORS (ALL VALUES HAVE BEEN DIVIDED BY 

105). 

TABLE I1 
RESULTS FOR THE FIRST GROUP OF 395 INSTANCES. 

Amongst the constructive heuristics, the LPT has 
shown to be better than the Multifit. The local search 
(LPT + LS) improved the LPT result from 22% to 63% 
while for the Multifit the improvement (Multifit + LS) 
raised from 19% to 35%. 

The table also shows that the proposed heuristic, AIS, 
for this group of instances, obtained results that are sim- 
ilar to the results of the Simulated Annealing, but with 
a much larger computational time. 

Table I11 presents the results obtained by the best two 
heuristics' when applied to  the second group of instances. 
In this table, we show the final load difference between 
the two processors. The table shows the statistical anal- 
ysis (mean and standard deviation) for the SA and the 
AIS, after five runs2. 

In the table, the bold values indicate the best val- 
ues found. The last column shows the optimal solu- 
tions found by Korf's exact algorithm [24], used here as 
a benchmark, given that it is very time-consuming and 
not comparable to heuristics. ' , 

The first conclusion that can be taken is that this group 
of instances is much harder than the first one. For this 
group of instances, the proposed heuristic was much more 

'The other heuristics were not able to find any reasonable result. 
2As a matter of fact, the SA did not use all the time allowed, 

converging to a solution before the end of the simulation time. In 
order to make a fairer comparison, the SA algorithm was allowed 
to run again and again until the time was over. 

efficient than the Simulated Annealing. This can be seen 
not only by the best results obtained (see columns Best) 
but also by the robustness of the method, showed by 
the columns Mean and Std. The explanation for this 
different behavior lies on one inherent characteristic of 
combinatorial optimization algorithms based on AIS: the 
maintenance of the diversity of the population. 

For the first group, the diversity was not essential, 
once there is a large number of global optima for each 
instance, scattered across the search space. Every time a 
job, belonging to a processor, is equal to the sum of some 
jobs belonging to another processor, we can exchange the 
jobs obtaining equivalent solutions. The number of these 
equivalent solutions is very high for the first group of in- 
stances, since we have an uniform distribution. However, 
for the second group, one can hardly find two equivalent 
solutions in different points of the search space. Diversity 
is, therefore, fundamental for an effective exploration of 
the search space. Additionally, it is well known the diffi- 
culty of SA to solve instances with local optima located 
in deep valleys, or said in other words, with rugged land- 
scape. 

VII. CONCLUSION 

In this work, one algorithm based on the way the ver- 
tebrate immune system works was proposed to  the prob- 
lem of makespan minimization, when scheduling jobs to 
identical parallel processors. The results produced by 
the proposed algorithm, when compared with alterna- 
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tive strategies, indicate that immune-based algorithms 
applied to makespan minimization are effective in deal- 
ing with instances characterized by the presence of jobs 
with long processing times and a small number of ma- 
chines. This kind of instances present a small set of good 
solutions through the search space, leading to a poor per- 
formance when single-solution strategies are considered. 

The proposed strategy is based on a population of can- 
didate solutions at each iteration, and the maintenance 
of diversity is considered the distinctive aspect to explain 
the better performance. 
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