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a b s t r a c t

Crop rotation plays an important role in agricultural production models with sustainability considerations.

Commonly associated strategies include the alternation of botanical families in the plots, the use of fallow

periods and the inclusion of green manure crops. In this article, we address the problem of scheduling

vegetable production in this context. Vegetables crop farmers usually manage a large number of crop species

with different planting periods and growing times. These crops present multiple and varied harvesting periods

and productivities. The combination of such characteristics makes the generation of good vegetable crop

rotation schedules a hard combinatorial task. We approach this problem while considering two additional

important practical aspects: standard plot sizes (multiples of a base area) and total area minimisation. We

propose an integer programming formulation for this problem and develop a branch-price-and-cut algorithm

that includes several performance-enhancing characteristics, such as the inclusion of a family of subadditive

valid inequalities, two primal heuristics and a strong branching rule. Extensive computational experiments

over a set of instances based on real-life data validate the efficiency and robustness of the proposed method.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Sustainable agricultural production and distribution models have

ained attention in the literature in recent years (Alfandari, Lemalade,

agih, & Plateau, 2011; Bachinger & Zander, 2007; Detlefsen & Jensen,

007; Haneveld & Stegeman, 2005). In particular, we have been in-

erested in the use of crop rotation as a pest control and conservation

f productive resources strategy in the farming of vegetables. The

cheduling of vegetable crop rotation, especially when the goal is to

upply a given demand, presents several complicated characteristics

ssociated with the fact that crops with very different planting, grow-

ng and (multiple and coupled) harvesting times must be addressed

imultaneously.

In the past decade, a few mathematical formulations have been

roposed in the literature with the purpose of considering ecologically

ased constraints. Santos (2009) developed an integer programming

odel by considering the following three ecological based criteria:

i) crops of the same botanical family cannot be grown one after
∗ Corresponding author. Tel.: +55 16 33519525.
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nother in the same land plot, (ii) a green manure crop must be peri-

dically grown in each plot and (iii) there are requirements in terms of

allowness that must be respected. These criteria aim at reducing the

opulation growth of pests and weeds; recovering of the physical,

hemical and biological soil properties; increasing soil fertility and

ncorporating nitrogen into the system through biological fixation

Altieri, 1995; Dias, Dukes, & Antunes, 2014; Wezel et al., 2013). They

ave been used in a number of follow-up articles addressing vari-

nts of the model proposed in Santos (2009), including, for instance,

oncerns regarding the supply of demands (Santos, Costa, Arenales, &

antos, 2010), the management of perishable stocks (Costa, Santos,

lem, & Santos, 2014) and the extension of these ecologically based

onstraints to avoid growing crops from the same botanical family

imultaneously in neighbouring plots (Santos, Arenales, Costa, &

antos, 2010; Santos, Michelon, Arenales, & Santos, 2011). These

roblems have been solved with variants of a column generation al-

orithm (Lübbecke & Desrosiers, 2005; Vanderbeck & Wolsey, 2010)

n which the generated columns carry the crop planting schedule

nformation.

The articles mentioned above deal with the sizing of the plots, but

ollowing two different approaches. Either they assume that the plot

ize is an exogenous parameter (Santos, Arenales et al., 2010; Santos

t al., 2011) or they let the optimisation model to freely decide on plot

http://dx.doi.org/10.1016/j.ejor.2015.03.035
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sizes by using endogenous variables (Costa et al., 2013; Santos, Costa

et al., 2010). While both approaches might have their applicabilities,

they also have limitations. Fixing candidate plot sizes a priori reduces

the solution space and might, therefore, lead to sub-optimal config-

urations. On the other hand, imposing no sizing constraints usually

lead to a large number of plots, with very different and frequently

small areas. This is contrary to what is expected in practice, where

plot size standardisation is a welcome characteristic because it elim-

inates the need of dealing with very small plots (with sizes smaller

than the base area) and also facilitates farming management. Indeed,

many caring techniques, such as irrigation, are planned for or more

suitably used in plots with standard sizes.

In this paper, we focus on a crop rotation scheduling problem that

deals with the sizing of the plots endogenously, while imposing that

they are multiples of a base area. We also consider the ecological

based criteria mentioned earlier and an explicit area minimisation

objective. The idea of area minimisation has been already addressed

in Alfandari et al. (2011) and has clear advantages, such as the reduc-

tion of infrastructure and operational costs and the facilitation of the

maintenance of conservation spaces with wider environments, thus

reducing the pressure on areas that are more susceptible to degra-

dation. To tackle this problem, we propose an integer programming

model that minimises the planting area while guaranteeing that the

obtained plot sizes are multiples of a base value and supply a given

demand. Since the proposed model corresponds to an extensive for-

mulation, we develop a branch-price-and-cut (BPC) algorithm.

BPC algorithms have shown to be a powerful tool for solving hard

combinatorial problems (Barnhart, Johnson, Nemhauser, Savelsbergh,

& Vance, 1998; Vanderbeck & Wolsey, 2010). In the context of crop

scheduling, we are aware of two other applications of the method,

which deal with crops with different growth cycles (Santos, Arenales

et al., 2010) and equal growth cycles (Alfandari, Plateau, & Schepler,

2015). In Santos, Arenales et al. (2010), the authors propose a BPC for

a vegetable crop rotation (using criteria (i)–(iii)) with additional ad-

jacency constraints imposing that crops of the same botanical family

cannot be grown simultaneously in neighbouring areas. Plots loca-

tions and sizes were determined a priori, allowing the model to be

reformulated as a pure 0–1 master problem. In Alfandari et al. (2015),

the authors use a BPC algorithm to solve a crop rotation problem that

select plots from a candidate list in order to minimise the combined

area of chosen plots while meeting a given demand. They deal with

crops that have a single growing cycle (and therefore, one harvest

period) and only two possible planting periods per year, following

the same ideas proposed in Alfandari et al. (2011). These crop charac-

teristics allow the feasible crop rotations to be expressed by means of

a clever transition graph, so the subproblems can be solved by using

a shortest path algorithm. In both Santos, Arenales et al. (2010) and

Alfandari et al. (2015), the models are defined using a set of potential

plot sizes chosen a priori. This allows the use of binary variables as-

sociated with the selection of scheduling sequences for each plot and

the efficient use of traditional branching rules.

The BPC algorithm proposed in this paper is structurally different

from those proposed in Santos, Arenales et al. (2010) and Alfandari

et al. (2015). Indeed, since the model includes decisions on both plot

sizes and schedules simultaneously, the decision variables must be

defined as general integers, i.e., they are allowed to take any positive

integer value. To be effective in such context, the BPC has to rely on

branching rules based on sets of variables, aided with a strong branch-

ing strategy. In addition, we aim at tackling practical situations that

involve up to 20 crops with diverse characteristics and have to follow

a fine granularity of the time discretisation (each year represented as

48 time periods). These features lead to large instances which require

a number of further performance-enhancing characteristics, such as

the use of a set of newly developed family of valid inequalities, which

improve the quality of the bounds obtained by the column generation

subroutine, and two primal heuristics.
To verify the performance of the proposed BPC algorithm in prac-

ice, we have run an extensive set of computational experiments us-

ng instances based on real-life data. For all instances, the proposed

ethod was able to prove 1 percent-optimality within very reason-

ble computational times. The results also indicate the positive effect

f the proposed performance-enhancing features.

The remainder of this paper is organised to present this whole set

f ideas coherently. Section 2 defines the problem and presents the

eveloped mixed-integer model. The solution methodology is then

escribed in Section 3, in which we detail, in order, the column

eneration procedure, the branching strategy, the proposed valid

nequalities, and the primal heuristic procedures that compose our

ranch-price-and-cut method. Section 4 presents the results of the

omputational experiments while Section 5 ends this paper with con-

lusions and suggested routes for further investigation.

. Model

Let N be the number of different available crops and M be the num-

er of time periods (days, weeks, months, etc.) in which the growing of

hese crops is going to be scheduled to satisfy a given known demand.

he crop rotation scheduling problem (CRSP) consists of determin-

ng schedules for the crop rotation activity such that the production

f each crop at each period is sufficient to satisfy its corresponding

emand, while respecting a set of ecological criteria and biological

ethods. We consider that the main objective is to minimise the size

f the planting area. In addition, we assume that the planting area is

ivided into plots, which have a predefined minimum size denoted

y amin and that the size of any plot can only be a multiple of this

alue. Consider the following additional parameters:

C a set of crops that are planted to satisfy the demand;

G a set of crops that are available for green manuring;

N total number of crops, i.e., cardinality of C � G;

N + 1 index of a fictitious crop, representing the presence of

fallow;

NF number of botanical families;

F(p) set of crops from the botanical family p, p = 1, . . . , NF;

ti production time for crop i, including soil preparation and

harvesting;

Ii set of time periods in which crop i can be planted;

tf minimum time interval to wait between planting two crops

from the same botanical family.

We can write linear constraints forcing a single plot schedule to

espect the ecologically based criteria mentioned previously. Indeed,

sing binary variables:

ij =
{

1, if crop i is planted in time period j,
0, otherwise,

or i = 1, . . . , N + 1 and j = 1, . . . , M, these constraints read (Santos,

osta et al., 2010):

+1∑
i=1

ti−1∑
r=0

xi,j−r ≤ 1, j = 1, . . . , M, (1)

∑
∈F(p)

ti−1+tf∑
r=0

xi,j−r ≤ 1, p = 1, . . . , NF, j = 1, . . . , M, (2)

i∈G

∑
j∈Ii

xij = 1, (3)

M

j=1

xN+1,j = 1, (4)
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ij ∈ {0, 1}, i = 1, . . . , N + 1, j ∈ Ii (5)

here j − r < 0 is replaced by j − r + M in constraints (1) and (2).

onstraints (1) ensure that at most one crop is planted at each time pe-

iod (including fallow), whereas constraints (2) forbid planting crops

rom the same botanical family in a time interval smaller than tf. Con-

traint (3) imposes that a crop must be planted for green manuring

nd constraint (4) guarantees the presence of fallow. Both constraints

3) and (4) can be easily modified to incorporate the need of more

allows or green manure crops during the rotation period (Santos,

009).

The right-hand side in constraint (4) enforces the requirement

f a single period of fallow. This is not a limitation of the model,

ut a choice that follows our experience with vegetable farmers in

razil. The common practice among these farmers is to make intense

se of the land. In addition, we base this requirement on the recent

iterature that addresses the effect of a single short fallow on crop

ield (Babu, Rao, & Veeraraghavaiah, 2014; Dias et al., 2014; Gabriel

Quemada, 2011; Hunt & Kirkegaard, 2012) and on the fact that we

lso consider green manuring as a way of recovering soil chemical and

hysical properties and interrupting the population growth of pests

nd weeds (Allen, Pikul, Waddell, & Cochran, 2011; Kröbel et al., 2014;

anyanga, Mafongoya, & Tauro, 2014; Miller et al., 2011).

Let X be the set of all feasible schedules that satisfy constraints

1) to (5). Additionally, let S be the set of indices associated with the

chedules in X, such that each schedule in X can be denoted by xs for a

nique s � S. Given a schedule xs, we are interested in determining the

roduction that results from the use of such schedule in a given plot.

o obtain this information, the following parameters are needed:

pir total production of crop i on its rth harvesting;

oi time interval between the period crop i is planted and the

period of its first harvesting.

The production of crop i at time period j in an area of size equal to

he base area, when using schedule xs, is then given by

s
ij =

ti−oi−1∑
r=1

aminpirx
s
i,j−oi−r, (6)

here amin stands for the base plot area.

Relationship (6) converts schedule-based information to crop pro-

uction values. This is crucial for obtaining the following model,

hich aims at finding schedules with a combined production that

eets the required demand while minimising the total planting area:

in
∑
s∈S

us (7)

.t.
∑
s∈S

as
iju

s ≥ dij, i ∈ C, j = 1, . . . , M, (8)

s∈S

us ≤ L, (9)

s ∈ Z+, s ∈ S, (10)

here u is the vector of decision variables such that each component
s is the number of base-area plots of size amin that is assigned to

chedule s � S. Parameter dij is the demand of crop i in time period j,

or i � C and j = 1, . . . , M, and therefore constraints (8) ensure that

he required demand is met. Constraint (9) imposes that the number

f base-area plots does not exceed the upper limit L. This constraint

an be tightened by changing L in (9) to any known upper bound

n the solution of the problem. As we have observed in preliminary

omputational experiments, this strategy was helpful to speed up the

roposed solution method. We assume that planting area is homoge-

eous, as in practice the plots used to grow the vegetable crops have
ypically similar characteristics, as a result of years of similar crop-

ing management. The model can be easily extended to cope with

eterogeneous areas (see, for instance Santos, Arenales et al., 2010;

antos, Costa et al., 2010).

The usual large number of possible schedules and the integrality of

ariables us makes the resolution of such a model a difficult challenge.

he following section describes the method that has been proposed

or this purpose.

. Methodology

In this section, we describe the main components of the branch-

rice-and-cut method that we implemented to solve problem

7)–(10). First, we describe the column generation procedure used to

olve the linear relaxations at each branching node. Then, we present

strong branching strategy and propose a class of valid inequali-

ies used to tighten these linear relaxations. Finally, we present two

euristics used to further improve the computational performance of

he method.

.1. Column generation technique

As mentioned above, the number of schedules in S is usually very

arge even for problems with a small number of crops and periods,

aking the explicit resolution of model (7)–(10) impractical. A com-

on workaround in such cases is the use of the column generation

echnique which is based on the idea of artificially reducing the num-

er of variables and dynamically generating promising columns dur-

ng the solution method (Lübbecke & Desrosiers, 2005; Vanderbeck &

olsey, 2010).

In the case of this paper, this aim can be achieved by initially

olving a so-called restricted master problem (RMP), in which the

ntegrality of variables us is ignored and which contains just a (small)

ubset S ⊂ S of the variables:

in
∑
s∈S

us (11)

.t.
∑
s∈S

as
iju

s ≥ dij, i ∈ C, j = 1, . . . , M, (12)

s∈S

us ≤ L, (13)

s ≥ 0, s ∈ S. (14)

After solving the RMP, the method searches for promis-

ng columns, i.e., columns with negative reduced cost. Let

π ∗
11, π ∗

12, . . . , π ∗|C|M) and σ ∗ be the dual variables associated with

onstraints (12) and (13), respectively, in the optimal solution of the

MP. The reduced cost of a column us is given by:

˜s = 1 −
∑
i∈C

M∑
j=1

as
ijπ

∗
ij − σ ∗.

Therefore, the aim is to find a schedule xij � {0, 1}, i = 1, . . . , N + 1,

= 1, . . . , M, respecting constraints (1)–(5) with associated column
s minimising the above expression. Relations (6) enable such pricing

ubproblem to be written as follows:

ax
∑
i∈C

M∑
j=1

ti−oi−1∑
r=1

pirxi,j−oi−rπ
∗
ij s.t. x ∈ X.

et x� represent the optimal solution of this subproblem. If

− amin

∑
i∈C

M∑
j=1

ti−oi−1∑
r=1

pirx
�
i,j−oi−rπ

∗
ij − σ ∗ < 0,
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then the column obtained from x� is attractive. This column can be

written as (a∗
11, a∗

12, . . . , a∗|C|M, 1)T and be inserted in the RMP. As be-

fore, parameters a∗
ij

can be obtained using the relationship given in (6).

After a new column is inserted, the RMP is solved again, and the

method iterates. The optimal solution of the linear relaxation of the

master problem is obtained when no column with a negative reduced

cost can be found. Such an optimal solution corresponds to a lower

bound for the optimal solution of the integer programming problem

(7)–(10). An integer solution, in turn, can be obtained by branching

on fractional us variables. This is discussed in the following section.

3.2. Branching

In a branch-price-and-cut algorithm, defining an efficient branch-

ing strategy is typically more complicated than in the classical branch-

and-bound method. Indeed, the standard variable dichotomy rule

may compromise the structure of the subproblem as well as lead

to an unbalanced tree (Vanderbeck, 2000b; Vanderbeck & Wolsey,

2010). Hence, more elaborate strategies are often required to achieve

good computational performance.

We propose branching constraints of the type (Vance, 1998;

Vanderbeck, 1999; 2000a):∑
s∈Q

us ≤ α − 1,
∑
s∈Q

us ≥ α, (15)

which simultaneously use several RMP variables at a time. Set Q,

which contains the indices of the variables in the branching con-

straints, and the RHS value α are obtained as follows. For each i � C

and j = 1, . . . , M, we define the set

Sij = {s ∈ S : as
ij > 0}, (16)

which is given by the indices of master variables us with positive

coefficient as
ij

in the associated constraint (12). In other words, Sij

contains the indices of the columns (schedules) that contribute to the

production of crop i in period j. If the following summation

αij =
∑
s∈Sij

u
s

(17)

is fractional, then Sij is a candidate branching set. Q is chosen as the

candidate set corresponding to pair (i, j) leading to the minimum

value

θij =
∑
s∈Sij

as
iju

s − dij, (18)

over all i � C and j = 1, . . . , M, where θ ij is the extra production of

crop i in period j in the current solution u. The value αij = �αij� is

used to set α in (15). By using the minimum θ ij to define set Q, we

aim at selecting a branching set composed by master variables with

nonzero coefficients in an active constraint of the RMP, according to

the current optimal solution. Therefore, this strategy increases the

chances of effectively perturbing the RMP of the child nodes.

Alternative rules can be used to define the candidate branching

sets. For instance, let a�
ij

be the largest coefficient in the RMP row

associated with pair (i, j). The candidate branching set may be defined

as follows:

Sij = {s ∈ S : as
ij ≥ a�

ij}. (19)

Notice that in this case, only a subset of the master variables with

a nonzero coefficient in row ij will be selected, namely those with the

largest coefficient. In Section 4, we compare the impact of these two

choices within the branch-price-and-cut method.

3.2.1. Strong branching and implementation details

An efficient branching strategy should have a relatively small com-

putational cost and deliver the most significant increase in the lower

bounds of each child node. The branching rule proposed above uses
he minimumθ ij to decide which candidate set Sij should be chosen for

ranching. Although this increases the chances of making an effective

hoice, additional analysis may be helpful to improve the quality of the

ranching decision. Hence, we propose a strong branching strategy

Achterberg, Koch, & Martin, 2005; Linderoth & Savelsbergh, 1999)

n which we estimate the candidate branching sets that are likely to

ost improve the lower bounds of the generated child nodes.

For each i � C and j = 1, . . . , M, let zL
ij

and zR
ij

be the optimal values

f the two linear programming problems obtained from the current

MP after adding the constraints
∑

s∈Sij
us ≤ αij − 1 and

∑
s∈Sij

us ≥
ij, respectively. No columns are generated when solving these two

roblems to quickly obtain zL
ij

and zR
ij

. As a result, these values only

rovide estimates for the lower bounds of the left and right child

odes in cases where Sij is chosen as the branching set. The pair

i, j) yielding the largest estimates zL
ij

and zR
ij

is the one selected for

ranching in the branch-price-and-cut algorithm.

To reduce the computational cost of this search, we sort the pairs

i, j) in nondescending order of the associated values θ ij and restrict

ur search to those pairs in the first positions. More specifically, we

nitially define set Q as the candidate set Sij corresponding to the

mallest θ ij. Then, by analysing each pair (i, j) in the pre-defined

rder, we redefine Q whenever better values for zL
ij

and zR
ij

are found.

e stop this search when Q is redefined for the second time. Typically,

nly few candidates are investigated using this strategy before a good

uality choice is obtained, as the pairs with small θ ij are expected to

enerate better branching constraints.

Some remarks are in order. In cases where the problem used to ob-

ain zL
ij

or zR
ij

is infeasible, the associated estimate value assumes LB+2

where LB is the current lower bound of the current node), somehow

rioritising candidates that lead to pruning. Because the LHS in the

onstraints (15) is a summation over variables, this value might be an

nteger even if the individual variables are not. There is, therefore, a

isk of finding no valid branching constraint. In these cases, one must

se the traditional dichotomy rule, i.e., given a fractional component
s of the optimal solution, we create two child nodes by imposing one

f the following variable bounds to each subproblem

s ≤ �u
s� − 1, us ≥ �u

s�. (20)

In our tests, this branching rule was rarely required.

.2.2. Changes in the subproblem

Branching with column generation is not a trivial task. In addition

o the typical difficulty in finding an effective branching strategy, we

ust also consider the changes they imply at the subproblem level.

ranching rules of type (20) generally imply quite complex changes,

s they must avoid a subset of schedules to become the optimal so-

utions of the subproblem. The difficulty of solving the subproblem

ncreases for each new variable bound added to the RMP. Branching

onstraints of type (15) require milder modifications to the subprob-

em. In fact, assume that in a given node of the branch-and-bound

ree we have K branching constraints in the RMP, which are deter-

ined by K branching sets Q1, Q2, . . . , QK. In association with the

ranching constraints, we have their dual variables (δ1, δ2, . . . , δK)

hat must be considered at the subproblem level. Hence, for each

= 1, . . . , K, we add a binary variable wk to the subproblem, which

ssumes the value 1 only if schedule x leads to a positive production of

rop i at time period j, such that pair (i, j) was used to define branching

et Qk. This means that the index of the column resulting from this

chedule must be added to the kth branching set. To ensure this re-

ationship holds, we add the following constraint to the subproblem,

or each k = 1, . . . , K:

ik
−oik

−1∑
r=1

xik,jk−oik
−r = wk,
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here ik and jk are the crop and period associated with the branching

et Qk.

When the left-hand-side of the above equation equals 1, this value

ignals that there is production of crop ik at time period jk and thus we

ust have wk = 1. Notice that the result of this summation can be at

ost 1, as the production originates from a single planting (see model

1)–(5)). Finally, it remains to be mentioned that the binary variables

ust also be added to the objective function of the subproblem. Their

osts are given by the dual variables associated with the branching

onstraints in the RMP. Hence, we add the following summation to

he objective function of the subproblem

δ1w1 − δ2w2 − . . . − δKwK .

The changes in the objective function must also be applied to the

omputation of the reduced costs. It is worth mentioning that all these

equired changes do not affect significantly the difficulty of solving

he subproblem in practice, as we will see in the computational results

resented in Section 4.2.

.3. Valid inequalities

To improve the quality of the lower bounds provided by the

aster problem, we propose a family of valid inequalities. These

nequalities, called the special rounding inequalities, correspond

o general-purpose cuts such as the Chvátal–Gomory inequalities

Nemhauser & Wolsey, 1988). They are inspired by the dual feasible

unctions proposed in Fekete and Schepers (2001) for the bin-packing

roblem.

.3.1. Special rounding inequalities

The special rounding inequalities are derived from constraints (8)

f the RMP. They have the following form:

s∈S̄

Fk
ij(a

s
ij)u

s ≥ Fk
ij(dij) (21)

or each i � C and j = 1, . . . , M, where dij > 0 and as
ij

≤ dij, for each

∈ S̄. The family of functions Fk
ij

: [0, dij] → [0, k + 1] is defined as

k
ij(x) =

{
(k+1)x

dij
, if kx

dij
∈ Z,

� kx
dij

�, otherwise,
(22)

or k = 1, . . . , dij and 0 � x � dij. Notice that Fk
ij
(dij) = k + 1, for any

� C, j = 1, . . . , M and k = 1, . . . , dij. Based on Proposition 4.1 in

emhauser and Wolsey (1988, p. 231), to verify that (21) is a valid

nequality for P = Z
n ∩ {u ∈ R

|S̄|
+ :

∑
s∈S̄ as

ij
us ≥ dij}, it is sufficient to

how that each function Fk
ij

is subadditive, non-decreasing and sat-

sfies Fk
ij
(0) = 0. From definition (22), it is clear that Fk

ij
(0) = 0 and Fk

ij

s non-decreasing. In Proposition 3.1, we show that this function is

ubadditive as well.

roposition 3.1. The function Fk: [0, d] → [0, k + 1] defined as

k(x) =
{

(k+1)x
d

, if kx
d

∈ Z,

� kx
d �, otherwise,

(23)

s subadditive, for any d ∈ Z+ and k = 1, . . . , d such that d > 0.

roof. To be subadditive, the function must satisfy Fk(x) + Fk(y) �
k(x + y), for any x, y, x + y ∈ R ∩ [0, d]. Hence, given x, y � [0, d] such

hat x + y � [0, d], we have one out of the following possible cases:

1. kx
d

,
ky
d

∈ Z. Hence, Fk(x)+ Fk(y) = (k+1)(x+y)
d

= Fk(x + y);

2. kx
d

∈ Z,
ky
d

/∈ Z. Consequently, k(x+y)
d

/∈ Z. Hence, Fk(x)+ Fk(y) =
(k+1)x

d
+ � ky

d � ≥ kx
d

+ � ky
d � = � kx

d
+ ky

d � = Fk(x + y);

3. kx
d

,
ky
d

/∈ Z, but k(x+y)
d

∈ Z. First, as kx
d

and ky
d

are fractional, then

� kx
d � + � ky

d � must be strictly larger than kx
d

+ ky
d

. Because kx
d

+ ky
d

is an integer, it follows that � kx
d � + � ky

d � = kx
d

+ ky
d

+ 1. Addition-

ally, x + y ∈ [0, d] ⇒ x+y
d

≤ 1. Hence, Fk(x)+ Fk(y) = kx
d

+ ky
d

+ 1 ≥
(k+1)(x+y)

d
= Fk(x + y);

4. kx
d

,
ky
d

,
k(x+y)

d
/∈ Z. Thus, Fk(x)+ Fk(y) = � kx

d � + � ky
d � ≥ � kx

d
+ ky

d � =
� k(x+y)

d � = Fk(x + y).

Since Fk(x) + Fk(y) � Fk(x + y) in all cases, the proof is complete. �

Inequalities (21) have two advantageous properties. First, they are

quivalent to or dominate a class of rank-1 Chvátal–Gomory inequal-

ties. Second, we need to generate only those inequalities with k odd,

s they dominate the inequalities obtained with other values of k.

roposition 3.2 state and prove these properties.

roposition 3.2. Special rounding inequalities (21) are equivalent to or

ominate any rank-1 Chvátal–Gomory inequalities of the form

s∈S̄

�γ as
ij�us ≥ �γ dij� (24)

ith γ ∈ ( 1
dij

, 1), for i � C, j = 1, . . . M and dij > 0. Moreover, the in-

qualities defined with Fk
ij
(x)are equivalent to or dominate those defined

ith F2k
ij

(x), for any k � {1, . . . , dij} and 0 � x � dij.

roof. To prove that inequalities (21) are equivalent to or dominate

nequalities (24), we have to show that �γ as
ij
� ≥ Fk

ij
(as

ij
) whenever

γ dij� = Fk
ij
(dij), with γ ∈ ( 1

dij
, 1). Given γ such that �γ dij� = Fk

ij
(dij) =

+ 1, it follows that γ dij > k and hence γ x > kx
dij

, for any x � (0, dij).

f kx
dij

∈ Z+ then �γ x� ≥ kx
dij

+ 1 ≥ kx
dij

+ x
dij

= (k+1)x
dij

= Fk
ij
(x). Otherwise,

kx
dij

/∈ Z+ implies in �γ x� ≥ � kx
dij

� = Fk
ij
(x), which completes the first

art of the proof.

We prove now the dominance of special rounding inequalities

efined with Fk
ij
(x)over those defined with F2k

ij
(x). From (21), it follows

hat

s∈S̄

2Fk
ij(a

s
ij)u

s ≥ 2k + 2,

s Fk
ij
(dij) = k + 1. On the other hand, we have also from (21) that

s∈S̄

F2k
ij (as

ij)u
s ≥ 2k + 1. (25)

or any feasible solution of the master problem we have that

s∈S̄ us ≥ 1. Using this fact and (25), we can write

s∈S̄

(F2k
ij (as

ij)+ 1)us ≥ 2k + 2.

Following the same reasoning of the first part of the proof, it suf-

ces to show now that (F2k
ij

(as
ij
)+ 1) ≥ 2Fk

ij
(as

ij
). Indeed, we have one

ut of the following three cases:

1. 2kx
dij

/∈ Z. In such case, kx
dij

/∈ Z. Hence, 2Fk
ij
(x) = 2� kx

dij
� = � kx

dij
� +

� kx
dij

� ≤ � 2kx
dij

� + 1 = F2k
ij

(x)+ 1.

2. kx
dij

∈ Z, so that 2kx
dij

∈ Z. Hence, 2Fk
ij
(x) = 2 (k+1)x

dij
and F2k

ij
(x)+

1 = (2k+1)x
dij

+ 1 = 2kx
dij

+ x
dij

+ 1 ≥ 2kx
dij

+ 2x
dij

, as x
dij

≤ 1. As a result,

F2k
ij

(x)+ 1 ≥ 2kx
dij

+ 2x
dij

≥ 2 (k+1)x
dij

= 2Fk
ij
(x).

3. 2kx
dij

∈ Z and kx
dij

/∈ Z. Hence, 2� kx
dij

� − 2 kx
dij

< 2 which implies that

2� kx
dij

� − 2 kx
dij

= 1. It follows that 2� kx
dij

� = 1 + 2 kx
dij

= 1 + �2 kx
dij

�.

Since F2k
ij

(x) = (2k+1)x
dij

and 2Fk
ij
(x) = 2� kx

dij
�, we obtain from the

bove implications that 2Fk
ij
(x) = F2k

ij
(x)+ 1, which completes the

roof. �
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The separation of special rounding inequalities can be achieved

with a simple full enumeration algorithm, which is called each time

the column generation algorithm converges. The violated inequalities

of type (21) are added to the RMP and the process is restarted until

no violated inequality is found.

3.3.2. Changes in the subproblem

Similar to the discussion presented in Section 3.2, adding the spe-

cial rounding inequalities to the RMP also requires modifying the

subproblem to take into account the corresponding dual variables.

However because each valid inequality is based on the coefficients

of a single master constraint of type (12), the original dual variable

can be used and we do not need to create any additional variable

in the subproblem. More specifically, let ip � C, jp � {1, . . . , M}

and kp ∈ {1, . . . , dipjp} be the parameters that were used to gener-

ate the pth valid inequality in the RMP. Let σ p be the dual variable

for constraint (12) associated with such parameters. The subproblem

is then modified by adding the term F
kp

ipjp
(aminpipr)σp to the cost of

each variable xip,jp−oip
−r, for r = 1, . . . , tip − oip − 1. Needless to say,

the changes in the objective function must also be applied to the

computation of the reduced costs. As it was the case when adding

branching constraints, the changes required by the valid inequalities

did not significantly increase the difficulty of solving the subproblem.

3.4. Primal heuristics

Primal heuristics are typically useful to accelerate the conver-

gence of a branch-and-price algorithm. Hence, we propose two sim-

ple heuristic procedures to improve the performance of the branch-

price-and-cut method, namely the rounding heuristic (RH) and the

constructive heuristic (CH).

3.4.1. Rounding heuristic (RH)

The RH is called just before the branching procedure, after the

column generation has finished. The purpose of this heuristic is to

obtain a feasible integer solution based on the columns currently

available at the last solved RMP. The heuristic works by simply im-

posing integrality to the master variables and then calling a generic

MIP solver for a limited amount of time. At the end of this procedure,

if a feasible solution is found, this solution corresponds to a feasi-

ble solution of the original problem (7)–(10). MIP-based heuristics

have been widely used in the column generation literature (Joncour,

Michel, Sadykov, Sverdlov, & Vanderbeck, 2010). Although very sim-

ple, they have shown to be powerful in practice, in special for the case

we address here, as we will verify later in Section 4.2.4.

3.4.2. Constructive heuristic (CH)

The CH is a classical residual heuristic that is called in the middle of

the column generation procedure. The main purpose of this heuristic

is to find an integer solution that is feasible for the original MP (7)–

(10). In addition, it helps in the diversification of the types of columns

obtained in the column generation procedure. At each iteration of this

heuristic, a new column is generated by calling a modified version

of the subproblem. The schedules corresponding to the generated

columns are combined to provide a tentative solution, which may

lead to a feasible solution when the heuristic procedure terminates.

We may call the CH during any iteration of the column generation

procedure after solving the subproblem and obtaining an attractive

new column. To describe the heuristic procedure, let d̃ be the residual

demand vector, which is initially defined as the original demand d. Ad-

ditionally, let (1, a′
11, a′

12, . . . , a′|C|M, 1)T represent the last generated

column. The procedure begins by adding this column to the current

RMP, setting d̃ as the right-hand side and then solving this problem.
sing the entries of the column and d̃, we compute the value

′ = min

{⌈
d̃ij

a′
ij

⌉
: d̃ij > 0 and a′

ij > 0; i ∈ C; j = 1, . . . , M

}
,

hich corresponds to the minimum relative area required to satisfy

t least one of the demand values d̃ij by the corresponding production
′
ij
. The resulting u′ is used to fix the current column in the tentative

olution, i.e., the schedule used to generate the column is assigned to

plot of relative size u′, as part of a potential feasible solution of the

riginal problem. After computing u′, we update the residual demand

s follows:

˜
ij = max{d̃ij − u′a′

ij, 0}, for i ∈ C, j = 1, . . . , M.

In the case d̃ij = 0 for all i � C, j = 1, . . . , M, the tentative solution

s complete and feasible for the original MP (7)–(10), and thus the

rocedure terminates. Otherwise, a new column should be generated

hrough another call to the subproblem. In our implementation, we

se a modified version of the subproblem, in which the objective

unction is adjusted according to the residual demand d̃. For each

ariable xij in the subproblem, with i � C and j = 1, . . . , M, we assign

he residual cost

res
ij =

ti−oi−1∑
r=1

aminpird̃i,j+oi+r.

The rationale behind this idea is to force the subproblem to gen-

rate schedules for the production of crops in time periods for which

here is still a residual demand. After solving this subproblem, a new

olumn is generated and the process is repeated. Calling the CH at

ach iteration of the column generation algorithm may be computa-

ionally expensive. Hence, we call the CH heuristic periodically (e.g.,

t every five outer iterations of column generation and at every 10

odes of the branch-and-price tree). In Section 4.2.4, we present com-

utational experiments to show the behaviour of this heuristic when

t is embedded in the branch-price-and-cut algorithm.

. Computational experiments

In this section the performance of the BPC method is assessed

hrough computational experiments. To test the proposed method we

eveloped a C++ implementation on top of the CPLEX 12.4 Concert

ibrary, which is used to solve each RMP and subproblem.

.1. Data generation

We generated a set of CRSP instances based on real-life data ob-

ained from a producer in Barbacena, in the countryside of Brazil (21

egrees 3 arcminutes 30 arcseconds S and 43 degrees 46 arcminutes

5 arcseconds W, 1165 metres above sea level). The original dataset

ncluded 26 crops with their different planting and growing times

nd productivities (Santos, Costa et al., 2010). This set was used to

andomly generate classes of instances with different planning hori-

ons, namely M = 48 and 96 periods, corresponding to 1 and 2 years,

espectively. At each period, a percentage (df) of the possible har-

esting periods of each crop (according to periods of crop planting)

as assumed to have positive demands, with df = 20–50 percent

r 60–90 percent. These assumptions yielded four classes, which we

esignate P48-20/50, P48-60/90, P96-20/50 and P96-60/90. Each of

hese classes contains 15 instances with different numbers of crops

five instances for each N = 10, 15, and 20). In all experiments, amin has

een fixed at 1 square metre and the initial L has been set to 50, 000, a

ufficiently large value so that no instance would become infeasible.

.2. Results

We are interested in the overall performance of the proposed

PC method, as well as in the effect of the various features of the
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lgorithm discussed in the previous sections. The complete version of

his method has been implemented with the following features:

• The strong branching strategy presented in Section 3.2 and us-

ing branching sets (16) which includes all variables with positive

coefficients in the constraint;
• The special rounding valid inequality (SR) proposed in Section 3.3.

The separation procedure is called at every node, when the column

generation procedure finishes;
• The rounding heuristic (RH) described in Section 3.4.1. This heuris-

tic is called once at every 50 processed nodes (the first time being

in the root node) and is allowed to run for at most 100 seconds in

each call;
• The constructive heuristic (CH) described in Section 3.4.2. This

heuristic is called once at every five outer iterations of column

generation, but only at every 10 processed nodes (the first time

being in the root node);
• Best-bound search node selection strategy.

We have chosen this configuration based on the performances

bserved in preliminary computational experiments with different

ersions of the BPC method. Some of these experiments are later

ummarised in this section. Before that, we present and analyse the

verall results of the complete version. To obtain these results, we

ave limited the maximum running time to 1 hour.

.2.1. Overall performance

Table 1 shows the results of solving the CRSP instances using the

omplete version of the proposed BPC method. For each instance,

he first two columns of Table 1 give the class and the name of the

nstance, respectively. The name is given in the format N–k, where N is

he number of crops and k is the instance identifier. The third column

UB) gives the value of the best integer solution found by the method.

he fourth column (Gap) shows the relative gap (in percent) between

he UB value and the best lower bound (LB) found by the method.

his gap is computed as 100(UB − LB)/(10−10 + UB). The relative gap

t the root node is given on the fifth column (Gap root) and is computed

sing the UB and LB available at the end of the root node, just before

ranching and after solving the rounding heuristic. Columns 6 and

give the total number of nodes (Nodes) and cuts (Cuts) generated

n the branching tree, respectively. Columns 8–11 give the total CPU

ime (Total), the CPU time spent in the root node only (Root), the total

PU time spent solving all the pricing subproblems and the total CPU

ime spent with the rounding heuristic (Rounding), all in seconds. The

ime spent in the root node includes the time required by the first run

f the rounding heuristic. The instances that reached the maximum

unning time are marked with the symbol ‘∗’ in the total CPU time

olumn. Finally, the last two columns of Table 1 show the number of

rocessed nodes and the elapsed time needed to find the best integer

olution corresponding to the UB value.

The results in Table 1 show that the proposed BPC algorithm was

ble to solve all instances to 1 percent-optimality (i.e., with a relative

ap less than or equal to 1 percent). Moreover, most of the instances

ould be solved to optimality. The class P96-60/90 was the most chal-

enging for the method, as many instances could not be solved to

ptimality with the imposed maximum running time. On the other

and, class P96-20/50 was the easiest, as the method could solve to

ptimality all of the instances in this class. The total CPU time and the

umber of nodes were typically small for the instances solved to opti-

ality. In most of the instances, the best integer solution was found at

he root node (node 0) by using the rounding heuristic. Nevertheless,

ranching was useful in several instances to reduce the relative gap

nd to prove optimality.

Having discussed the overall performance of the proposed BPC

ethod, we are interested now in analysing the effect of each com-

onent of this algorithm. Hence, in the following subsections, we
resent the results of computational experiments with different vari-

nts of the method. For the sake of clarity, we analyse the performance

f these variants in terms of the percentage of proven optimal solu-

ions obtained in 1 hour of running time. To evaluate each of these

ndividual algorithm aspects, we present the results obtained when a

ingle feature is turned off at a time. In all of the tables below, the first

olumn gives the name of the instance class; columns 2–4 present

he results for the complete (best) version of the algorithm; and the

emaining columns present the results for other versions of the algo-

ithm. For each version, the tables show the percentage of instances

hat were solved to optimality (Opt), to 0.1 percent-optimality (�0.1),

nd to 1 percent-optimality (�1).

.2.2. Branching rules

Table 2 presents the percentages of optimal, 0.1 percent-optimal

nd 1 percent-optimal solutions for different variants of the branching

trategy proposed in Section 3.2. We have included the results of the

ollowing strategies:

• Rule 1: The standard strategy used in the complete version of the

algorithm;
• Rule 2: Same configuration as in Rule 1, except for not using strong

branching. The candidate branching sets are analysed in the non-

descending order of values θ ij for each row ij, as described in

Section 3.2;
• Rule 3: Same configuration as in Rule 1, but using (19) as branching

set;
• Rule 4: Same configuration as in Rule 1, but using strong branching

with the variable dichotomy rule described in (20).

The results indicate that Rule 1 (which includes all proposed fea-

ures) is indeed the most efficient algorithmic version, as optimal-

ty was proven for a larger percentage of instances. By comparing

ules 1 and 2, we were able to observe the importance of using the

trong branching technique. The choice of an appropriate branching

et is also important, as fewer instances were solved to optimality

sing Rule 3. As expected, using the variable dichotomy rule (Rule

) resulted in a drastic reduction of the method’s performance, even

hough the strong branching technique was still used. Computational

xperiments using Rules 3 and 4 without using strong branching

ielded significantly worse results. A number of other variants of the

ddressed rules were also tested during the computational experi-

ents, but none of them presented interesting results.

.2.3. Valid inequalities

In this section, we compare different versions of the BPC method

egarding the use of valid inequalities. The complete version of the

ethod uses the special rounding (SR) inequality, as proposed in

ection 3.3. The first variant that we consider does not use any valid in-

quality, while the second one uses only the rank-1 Chvátal–Gomory

ChG) inequality. As mentioned earlier, the SR inequality dominates

he ChG inequality. The results presented in Table 3 indicate that

nly the proposed SR inequalities were beneficial to the convergence

f the algorithm. On the other hand, the bound improvement obtained

y the use of the ChG inequalities did not compensate for the time

pent generating them, as the overall performance of the correspond-

ng variant was worse than the performance of the variant that did

ot rely on any valid inequality.

.2.4. Heuristic procedures

In Section 3.4, we described two primal heuristics to be used

ithin the BPC method, namely the rounding heuristic (RH) and the

onstructive heuristic (CH). Table 4 presents the results obtained with

ifferent configurations of the method regarding the use of these

euristics: when CH and RH are both used (CH: yes, RH: yes), when

nly one is used (CH: no, RH: yes/CH: yes, RH: no), and when both are

gnored (CH: no, RH: no). The results indicate that RH is crucial for
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Table 1

Results of solving the CRSP instances using the complete version of the proposed branch-price-and-cut algorithm.

Instance UB Gap (percent) Gap root (percent) Nodes Cuts CPU time (seconds) UB

Class Name Total Root Subproblem Rounding Node Time (seconds)

P48-20/50 10-1 1090 0 0 1 6 0.46 0.46 0.34 0.10 0 0.46

10-2 518 0.193 0.386 2735 262 * 129.16 693.38 2406.54 0 129.16

10-3 1349 0 0 1 90 25.28 25.28 24.69 0.13 0 25.28

10-4 805 0 0.124 5 55 5.77 5.31 4.34 1.10 0 5.31

10-5 839 0 0 1 5 0.33 0.33 0.20 0.06 0 0.33

15-1 1900 0 0.053 101 235 246.61 185.04 209.51 0.57 100 246.61

15-2 837 0.119 0.239 1201 351 * 209.83 694.35 2004.26 0 209.83

15-3 1966 0 0.102 11 107 134.74 131.00 129.77 0.22 0 131.00

15-4 1720 0 0.058 13 176 254.86 249.89 147.66 100.26 0 249.89

15-5 1496 0.067 0.267 4959 120 * 21.29 1641.63 411.65 100 147.61

20-1 1977 0 0.051 3 55 204.02 202.42 195.79 0.08 0 202.42

20-2 1032 0 0.194 239 266 772.58 517.74 595.66 14.97 0 517.74

20-3 1051 0.285 0.381 701 488 * 738.30 1044.80 1448.76 0 738.30

20-4 1920 0 0.104 33 96 94.58 80.07 86.71 0.21 0 80.07

20-5 1624 0 0.062 487 282 1010.35 524.72 707.31 101.38 0 524.72

P48-60/90 10-1 280 0 1.071 1805 612 1658.11 158.24 704.42 347.61 0 158.24

10-2 390 0 0 1 0 9.75 9.75 9.63 0.01 0 9.75

10-3 754 0 0.265 365 293 397.20 195.41 169.06 156.11 0 195.41

10-4 283 0 0.353 11 4 6.95 5.51 6.60 0.07 0.00 5.51

10-5 2503 0 0 1 10 0.41 0.41 0.28 0 0 0.41

15-1 5464 0 0 1 75 34.35 34.35 33.06 0.11 0 34.35

15-2 3737 0 0.080 347 392 1696.67 515.21 499.86 602.41 200 1383.61

15-3 3019 0 0.132 91 309 836.63 637.64 536.08 200.48 0 637.64

15-4 1605 0.062 0.187 2001 369 * 225.02 1060.61 1690.68 0 225.02

15-5 2741 0 0.109 65 177 170.52 145.32 161.73 0.25 0 145.32

20-1 2377 0 0.084 763 881 2366.11 618.93 1298.25 6.83 0 618.93

20-2 1773 0.056 0.113 571 1093 * 1175.99 1659.94 426.60 0 1175.99

20-3 2284 0 0.088 37 361 835.14 785.16 689.97 100.40 0 785.16

20-4 3079 0 0.032 31 581 596.01 550.70 553.91 0.98 0 550.70

20-5 2033 0.049 0.148 1181 585 * 660.47 1558.58 1106.76 0 660.47

P96-20/50 10-1 1491 0 0.134 7 45 26.96 23.31 25.22 0.20 0 23.31

10-2 568 0 0.176 3 73 50.44 49.04 49.12 0.21 0 49.04

10-3 792 0 0 1 13 10.48 10.48 9.82 0.17 0 10.48

10-4 2169 0 0 1 25 0.78 0.78 0.66 0.01 0 0.78

10-5 543 0 0 1 80 14.30 14.30 13.23 0.11 0 14.30

15-1 1090 0 0.183 451 230 1279.45 150.07 290.74 105.30 450 1279.45

15-2 1477 0 0.135 17 115 277.81 245.32 262.89 2.44 0 245.32

15-3 1392 0 0 1 14 115.53 115.53 110.62 0.15 0 115.53

15-4 1019 0 0 1 156 107.12 107.12 101.55 0.70 0 107.12

15-5 1285 0 0 1 40 100.31 100.31 97.30 0.15 0 100.31

20-1 979 0 0 1 167 357.79 357.79 310.84 18.34 0 357.79

20-2 803 0 0.124 51 394 1453.30 1020.29 1062.72 121.67 50 1453.30

20-3 685 0 0.292 285 541 2178.49 442.20 808.55 301.12 0 442.20

20-4 779 0 0.384 101 468 1979.87 581.28 582.68 213.79 100 1979.87

20-5 1033 0 0 1 346 577.04 577.04 535.36 4.04 0 577.04

P96-60/90 10-1 38258 0 0.003 7 0 24.28 6.75 6.43 0.04 6 24.28

10-2 43529 0 0.002 25 118 89.16 17.98 22.74 0.04 0 17.98

10-3 8963 0 0.011 133 170 840.38 131.38 113.15 200.24 0 131.38

10-4 16753 0 0.006 69 246 200.69 11.16 48.26 0.36 0 11.16

10-5 34209 0 0.006 151 346 650.69 29.68 105.65 0.51 150 650.69

15-1 9633 0.073 0.073 15 291 * 2751.71 2744.67 100.47 0 2751.71

15-2 6888 0.174 0.174 35 540 * 2060.10 2039.75 100.93 0 2060.10

15-3 8272 0.169 0.181 18 889 * 1138.94 1794.76 100.51 0 1138.94

15-4 9216 0.065 0.076 34 500 * 641.65 1412.30 100.49 0 641.65

15-5 16552 0 0.030 195 268 1539.49 130.53 418.49 100.27 0 130.53

20-1 9053 0.044 0.066 59 562 * 661.94 892.25 201.21 0 661.94

20-2 6873 0.291 0.291 4 843 * 1568.64 2767.16 100.64 0 1568.64

20-3 9729 0.051 0.062 22 595 * 817.21 1300.17 100.60 0 817.21

20-4 9229 0.108 0.130 41 694 * 295.27 2524.47 100.60 0 295.27

20-5 8980 0.145 0.156 6 709 * 2016.85 2711.29 100.80 0 2016.85

∗ The maximum running time was reached (3600 seconds).

p

e

u

4

p

c

improving the convergence of the method. Indeed, the performance

of the method was considerably affected when this heuristic was dis-

regarded. On the other hand, all instances could be solved within a 1

percent optimality gap when this heuristic was used. Regarding CH,

the percentages in Table 4 lead to a mixed conclusion. By comparing

the case in which both heuristics are ignored against the case using

CH alone, the constructive heuristic has a negative effect on conver-

gence. Nevertheless, when RH is present, the inclusion of CH improves
erformance. One possible explanation for this result is that CH gen-

rates extra columns that have little value by themselves but can be

sefully incorporated in the rounding procedure of RH.

.2.5. Effect of increasing demand

In this section, we analyse how the performance of the com-

lete version of the algorithm varies when the demands are in-

reased. Table 5 shows the results for the following different demand
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Table 2

Results of using different branching rules.

Rule 1 Rule 2 Rule 3 Rule 4

Class Opt � 0.1 � 1 Opt � 0.1 � 1 Opt � 0.1 � 1 Opt � 0.1 � 1

P48-20/50 73.3 80.0 100.0 40.0 73.3 100.0 66.7 80.0 100.0 26.7 46.7 100.0

P48-60/90 80.0 100.0 100.0 33.3 60.0 93.3 60.0 100.0 100.0 20.0 46.7 93.3

P96-20/50 100.0 100.0 100.0 66.7 80.0 100.0 86.7 86.7 100.0 53.3 60.0 100.0

P96-60/90 40.0 66.7 100.0 6.7 73.3 100.0 26.7 73.3 100.0 6.7 66.7 100.0

Table 3

Results of the branch-price-and-cut method using the special rounding inequality (SR), the rank-1 Chvátal–Gomory

inequality (ChG), and without using any inequality.

SR inequalities No valid inequalities ChG inequalities

Class Opt � 0.1 � 1 Opt � 0.1 � 1 Opt � 0.1 � 1

P48-20/50 73.3 80.0 100.0 40.0 66.7 100.0 40.0 66.7 100.0

P48-60/90 80.0 100.0 100.0 60.0 93.3 100.0 53.3 86.7 100.0

P96-20/50 100.0 100.0 100.0 80.0 80.0 100.0 80.0 80.0 100.0

P96-60/90 40.0 66.7 100.0 20.0 66.7 100.0 13.3 20.0 46.7

Table 4

Results of different versions of the branch-price-and-cut method regarding the use of the heuristics.

CH: yes, RH: yes CH: no, RH: yes CH: yes, RH: no CH: no, RH: no

Class Opt � 0.1 � 1 Opt � 0.1 � 1 Opt � 0.1 � 1 Opt � 0.1 � 1

P48-20/50 73.3 80.0 100.0 73.3 80.0 100.0 40.0 40.0 53.3 33.3 33.3 60.0

P48-60/90 80.0 100.0 100.0 66.7 93.3 100.0 40.0 40.0 40.0 40.0 40.0 40.0

P96-20/50 100.0 100.0 100.0 73.3 80.0 100.0 26.7 26.7 26.7 33.3 33.3 33.3

P96-60/90 40.0 66.7 100.0 40.0 66.7 100.0 13.3 20.0 46.7 40.0 26.7 46.7

Table 5

Results obtained with the original demands and with the demands multiplied by two and by four.

Original demand Demand ∗ 2 Demand ∗ 4

Class Opt � 0.1 � 1 Opt � 0.1 � 1 Opt � 0.1 � 1

P48-20/50 73.3 80.0 100.0 80.0 100.0 100.0 73.3 100.0 100.0

P48-60/90 80.0 100.0 100.0 73.3 100.0 100.0 53.3 93.3 100.0

P96-20/50 100.0 100.0 100.0 86.7 100.0 100.0 80.0 100.0 100.0

P96-60/90 40.0 66.7 100.0 26.7 93.3 100.0 26.7 100.0 100.0
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cenarios: using the original demands dij of the instances (Original

emand), using dij multiplied by two (Demand ∗ 2), and using dij mul-

iplied by four (Demand ∗ 4). No clear conclusions can be drawn from

hese results because in some cases the performance was slightly im-

roved whereas in others, the performance was slightly degraded.

ore importantly, however, these results appear to suggest that the

ethod is robust to demand variations, as it was still able to solve

ll instances within 1 percent of optimality (considering the same 1

our running time limit).

Table 5 can also be seen as an analysis of different values for the

min parameter, as increasing all the demand is equivalent to reducing

he size of the minimum accepted plot. These results indicate that the

ethod seems to be robust to variations on this parameter.

. Conclusions

Here, we have addressed a sustainable vegetable crop rotation

cheduling problem with the goal of minimising the planting area

hile supplying the given demands and respecting standardised plot

izes. The production of vegetables usually occurs in coupled sequen-

ial harvesting periods, which differentiates this situation from other

ulti-period scheduling problems, such as the cutting stock problem.

he existence of multiple harvests, in which a single planting might

upply the demands for various future periods, is associated with the

eed to use integer variables to model the requirement of standard

lot sizes and the fact that real-life instances usually address a large
umber of periods, making this a very difficult combinatorial prob-

em. To solve this problem, we have proposed a branch-price-and-

ut method that incorporates enhanced features, such as a strong

ranching strategy using branching sets, a family of newly developed

ubadditive valid inequalities, and primal heuristics procedures.

To verify the performance of the proposed method, we randomly

enerated four classes of instances based on real-life data. The results

f the computational experiments on these instances suggest that the

esulting method is efficient and robust to demand variation. Most of

he instances could be solved to optimality. The relative gap of the

6 instances for which optimality was not achieved was less than 1

ercent. In addition, we analysed the impact of the main features of

he method on its overall performance. Our analyses indicate that the

olumn generation combined within a MIP-based rounding heuris-

ic at the root node could be used to provide high quality solutions

nd are probably sufficient in practice. Nevertheless, branching could

mprove both lower and upper bounds for a number of instances.

he strong branching technique and the proposed valid inequali-

ies contributed significantly to the improvement of the performance

f the branch-price-and-cut method. Furthermore, primal heuris-

ics were shown to be crucial to the accelerated convergence of the

ethod.

Future research in this area should incorporate additional aspects

hat might make the obtained solutions even more suitable in prac-

ice, including a multi-objective analysis of factors as total area, num-

er of plots and other ecologically based criteria.
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