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a b s t r a c t

We investigate the problem of balancing assembly lines with heterogeneous workers while considering

job rotation schedules. This problem typically occurs in assembly lines in sheltered work centers for

disabled. We propose a hybrid algorithm that uses a Mixed Integer Programming (MIP) to select

appropriate schedules from a pool of heuristically constructed solutions. A local search based on MIP

neighborhoods is used as a post-optimization method. Our results show that this approach is fast,

flexible and accurate when compared with current available methods.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

We deal with the problem of balancing assembly lines with
heterogeneous workers while considering job rotation schedules. This
problem has been introduced in the literature by Costa and Miralles
(2009), based on an application found in the context of sheltered
work centers for the disabled, and is described in the following.

Given a set of ordered workstations, a set of workers and a
partially ordered set of tasks, a schedule is defined as an assignment
of workers and tasks to the ordered workstations which respects the
tasks partial ordering. The load of a workstation is the time the
worker assigned to that workstation needs to execute the tasks
assigned to the workstation while the cycle time of a schedule is the
maximum load among all workstations. The planning of job rotation
schedules in assembly lines with heterogeneous workers consists in
finding a set of schedules, one for each subperiod of a complete
rotation period. The problem has two main goals: the minimization of
the sum of cycle times and the maximization of the number of
different tasks each worker executes in a complete rotation period,
considering all the subperiod schedules. The first metric is clearly
associated with the line efficiency while the second one relates to
ergonomic and training objectives.

Costa and Miralles (2009) have modeled the first goal as con-
straints and used the second goal as objective function. The rationale
used was to maximize the job rotation gains while guaranteeing a
minimum level of efficiency. This level could be adjusted according to
the external demand of products: in periods with high demand,
ll rights reserved.

oreira),
highly productive schedules would be preferred and in periods with
low demand the efficiency constraints could be softened in order to
obtain schedules with high job rotation characteristics. The authors
have used the proposed model in a decomposition approach that
solves mixed-integer programming (MIP) subproblems in order to
decide the schedules for each single period. This approach presents
good results but is not scalable, since the MIP subproblems are
already of high complexity.

In this paper, we propose a new solution method for this
problem. The method is composed of three main steps. First, a
pool of single-period schedules is obtained with different heur-
istic methodologies (which are borrowed from the literature or
proposed in this paper). A mixed-integer problem is then used to
select appropriate schedules from the pool and compose a
complete rotation planning. Finally, a post-optimization routine
based on large-scale MIP neighborhoods is used to improve the
solution.

The proposed approach is evaluated with a rigorous computa-
tional study in which we compare versions of the same algorithm
with different pool sizes and single-period heuristics. With this
study, the most important characteristics of the methodology are
highlighted. These include the ability to generate a diverse set of
single-schedule solutions and the power of appropriately combin-
ing these solutions in complete rotation schedules. This differs
from the available method in the literature in its capacity of
considering the full schedule period. Moreover, the proposed
method is scalable to much larger instances, as shown by the
computational experiments.

The remainder of this paper is organized as follows. In the
following section, we review the related literature. A formal
definition of the problem and the relevant mathematical models
are presented in Section 3. In Section 4, we detail the heuristic
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methods used to solve the single-period problems and in Section
5 the proposed approach is described. Section 6 discusses the
obtained results and, in Section 7, final comments and conclu-
sions are presented.
2. Literature review

Assembly lines are flow oriented industrial production systems
in which the tasks needed to assemble a product are executed
sequentially, by different workers or machines. The simple assembly

line balancing problem (SALBP) is the fundamental associated opti-
mization problem which main assumption is the fact that workers
are homogeneous with respect to task execution times. The rich
literature on the SALBP and some closely related problems contains
a number of both classical and recent review and research papers
(Salveson, 1955; Tonge, 1961; Baybars, 1986; Ghosh and Gagnon,
1989; Scholl, 1999; Scholl and Becker, 2006; Boysen et al., 2007,
2008, 2012; Boysen and Fliedner, 2008; Scholl et al., 2010).

An extension of the SALBP in which task execution times are
worker-dependent has been proposed in the literature by Miralles
et al. (2007) and named the assembly line worker assignment and

balancing problem (ALWABP). In this extension, each task has
different execution times depending on the selected worker. A
branch-and-bound algorithm has been developed for the ALWABP
(Miralles et al., 2008) but due to the problem’s complexity, most
of the research has focused on heuristic solution methodologies.
These include simple heuristics such as greedy algorithms
(Moreira et al., 2012), classical metaheuristics such as tabu search
(Moreira and Costa, 2009), Beam search (Blum and Miralles, 2011)
and Genetic Algorithms (Moreira et al., 2012) and new metaheur-
istics such as clustering search (Chaves et al., 2009).

We are interested in studying the ALWABP when job rotation is
taken into consideration. The importance of job rotation in assembly
lines has been largely discussed in the literature. Indeed, many
authors relates job rotation planning to ergonomic factors, directly
linking good schedules to the well being of assembly line workers.
Some authors have addressed the problem of minimizing the number
of tasks with potential for injury that are executed by a single worker
(Carnahan et al., 2000; Tharmmaphornphilas and Norman, 2007;
Aryanezhad et al., 2008) while others have concentrated on mini-
mizing the amount of strenuous jobs executed by a worker (Sec-kiner
and Kurt, 2007, 2008). Sato and Coury (2009), in turn, have studied
the effects of the job rotation concerning discomfort, disorders and
sick leave of workers, while Azizi et al. (2010) studied the influence of
job rotation strategies in employee’s boredom.

All the mentioned studies kept the SALBP assumption that task
execution times were worker-independent. To our knowledge,
Costa and Miralles (2009) were the only authors to consider job
rotation planning in the ALWABP. These authors analyzed assem-
bly lines in sheltered work centers for the disabled. In this
context, job rotation might not only bring the usual benefits such
as increased motivation and less injuries but also be associated
with therapeutical treatments.

The strategy proposed by Costa and Miralles (2009) relied on the
decomposition of the original problem in a planning problem in
which the schedules for the periods were obtained sequentially. This
allowed the obtention of good quality solutions for small instances
but had the limitation of not being scalable, since it depended on the
resolution of complex mixed-integer problems.
3. Formal definitions and mathematical formulations

We first present the ALWABP model, associated with the
problem of scheduling a single period of the job rotation plan.
Let S be a set of ordered workstations, W be a set of workers and
ðN,r Þ be a partially ordered set of tasks. For tasks i,jAN, we write
io j when ir j and ia j and i}j when i immediately precedes j.
Each worker wAW\Wi executes a task iAN in time pwi, where Wi

is the set of workers that are unable to execute task i. With this
notation, a mathematical model can be written for the ALWABP as

Min C ð1Þ

subject toX
sAS

X
wAW\Wi

xswi ¼ 1 8iAN, ð2Þ

X
iAN

X
wAW\Wi

xswiZ1 8sAS, ð3Þ

X
sAS

ysw ¼ 1 8wAW , ð4Þ

X
wAW

ysw ¼ 1 8sAS, ð5Þ

X
sAS

X
wAW\Wi

s � xswir
X
sAS

X
wAW\Wj

s � xswj 8i, jAN, i}j, ð6Þ

X
iAN

X
wAW\Wi

pwi � xswirC 8sAS, ð7Þ

X
iAN9w=2Wi

xswir9N9ysw 8sAS, 8wAW , ð8Þ

yswAf0,1g 8sAS, 8wAW , ð9Þ

xswiAf0,1g 8sAS, 8wAW\Wi, 8iAN: ð10Þ

where the variables are:
xswi
 binary variable; equals 1 only if task i is assigned to worker w

at workstation s,

ysw
 binary variable; equals 1 only if the worker w is assigned to

workstation s,

C
 cycle time.
Model (1)–(10) minimizes the cycle time. Constraints (2)
indicate that each task must be executed, while (3) guarantee
that each workstation will have at least one task. Constraints
(4) and (5) ensure that each worker is assigned to a single
workstation and each workstation receives a single worker,
respectively. Precedence constraints between tasks are given by
constraints (6). Constraints (7) and (8) allow a worker to execute
more than one task provided that the line cycle time is respected.

Costa and Miralles (2009) extended the model presented
above to the planning of job rotation schedules, where a set of
T subperiods, T ¼ ½1 . . . T �, is given and schedules are obtained for
each subperiod tAT . The new model variables are:
xswit
 binary variable; equals 1 only if task i is assigned to worker
w at workstation s at period t,
yswt
 binary variable; equals 1 only if the worker w is assigned to
workstation s at period t,
zwi
 binary variable; equals 1 only if the worker w executes task i

in at least one subperiod.
where the new binary variables zwi indicate if a worker w ever
executes a task i. With the additional notation:
t
 index for rotation subperiods,

Ct
 cycle time of subperiod t,

C
 maximum mean allowed cycle time.
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The job rotation model for the ALWABP can be defined as
follows:

Max z¼
X

wAW

X
iAN

zwi ð11Þ

subject toX
sA S

X
wAW\Wi

xswit ¼ 1 8iAN, 8tAT , ð12Þ

X
iAN

X
wAW\Wi

xswit Z1 8sAS, 8tAT, ð13Þ

X
sA S

yswt ¼ 1 8wAW , 8tAT , ð14Þ

X
wAW

yswt ¼ 1 8sAS, 8tAT , ð15Þ

X
sA S

X
wAW\Wi

s � xswit r
X
sA S

X
wAW\Wj

s � xswjt 8i,jAN,i:j, 8tAT, ð16Þ

X
iAN9wAW\Wi

pwi � xswit rCt 8sAS, 8tAT, ð17Þ

X
iAN9w=2Wi

xswit r9N9yswt 8sAS, 8wAW , 8tAT, ð18Þ

X9T9
t ¼ 1

Ct r9T9C , ð19Þ

zwir
X9T9
t ¼ 1

X
sA S

xswit 8iAN, 8wAW\Wi, ð20Þ

yswt Af0,1g 8sAS, 8wAW , 8tAT, ð21Þ

xswit Af0,1g 8sAS, 8iAN, 8wAW\Wi, tAT , ð22Þ

zwiAf0,1g 8wAW , 8iAN: ð23Þ

The objective function (11) maximizes the number of different
tasks executed by each worker. Constraints (12)–(18) enforce that
the original problem constraints are respected for each subperiod.
To guarantee that the mean cycle time of the rotation period does
not exceed the desired cycle time C , constraints (19) are required.
Finally, constraints (20) compute the execution (or not) of task i

by worker w.
4. Heuristic methods for the ALWABP

Good quality schedules for single periods are key to the
obtention of good quality job rotation plans. In this section, we
describe the approaches that are used to obtain such schedules.
Four methods are briefly presented: the constructive heuristics
and the random-key genetic algorithm proposed by Moreira et al.
(2012) and two new methods, an extension of the minimalist tabu
search of Moreira and Costa (2009) and a GRASP metaheuristic.
These two latter methods are described in a slightly more detailed
manner. The rationale for using these specific methods was the
search for solutions with different characteristics. We use both
populational and neighborhood-based methods and both sophis-
ticated and simple meta-heuristics and heuristics.
4.1. Constructive heuristics (CH)

Moreira et al. (2012) have developed simple constructive
heuristics for the ALWABP based on the constructive heuristics
proposed by Scholl and Voß (1996) for the SALBP. The idea is to
sequentially add tasks to the workstations, respecting the pre-
cedence constraints and using an order given by a heuristic
priority rule. Two main differences are present in the new
algorithm: first of all, most of task priority rules proposed in
(Scholl and Voß 1996) are dependent on task execution times,
which is not suitable for ALWABP, since task time relies upon the
chosen worker. Second, there is no strategy to select the worker to
be assigned to each workstation.

The authors have proposed 16 heuristic rules adapted to the
ALWABP case for prioritizing which tasks should be considered
first, and three similar criteria for assigning workers. The method
runs very fast with any of the criteria combination (fractions of
seconds are needed to run the largest instances) and obtains
reasonable results (average gaps of 18% are obtained with the best
criteria).

4.2. Hybrid genetic algorithm (HGA)

The same authors have used the simple heuristic procedures
mentioned above as decoders in a biased random-key genetic
algorithm (Moreira et al., 2012). The fitness of each individual is
given by the value returned by the constructive heuristics. Each
individual defines the values of the priority criterion to be used
when evaluating the fitness, i.e., the chromosome is a matrix of
dimensions 9N9� 9W9 in which each cell corresponds to the
priority value of a given pair task �worker. Elitism is enforced
by maintaining a set of elite solutions. At the selection phase of the
algorithm, one of the mating parents always comes from this elite
set. The algorithm also uses a local search heuristic (based on
insertion and swap moves) that is applied to each new individual.
Another feature is the immigration phase, which consists in the
insertion of randomly generated individuals at each iteration of
the algorithm. With this algorithm, the authors presented some of
the best results available in the literature.

4.3. Tabu search (TS)

We extend the Tabu Search algorithm presented in Moreira
and Costa (2009) for the ALWABP with the introduction of
intensification and diversification procedures. The original algo-
rithm is based on three types of move:
�
 Insertion: moves a task from one workstation to another;

�
 Tasks swap: swaps two tasks between two workstations;

�
 Workers swap: swaps two workers between two workstations.

Infeasible solutions are allowed but penalized. We consider
two kinds of infeasibilities: (a) associated with violated prece-
dence constraints (Ip) and (b) associated with the assignment of
tasks to workers unable to execute them (Iw). The objective
function is given by f ¼ Cþaw � Iwþap � Ip, with aw,apAR, and
these infeasibilities are calculated as follows:

Iw ¼
X
iAN

X
wAWi

X
sAS

xswi, ð24Þ

Ip ¼max 0,
X9S9�1

s ¼ 1

X9S9
s0 ¼ sþ1

X
i,jAN9i}j

xswi � xs0wj � ðs
0�sÞ

8<
:

9=
;: ð25Þ

We use dynamic penalty factors, as proposed by Gendreau
et al. (1994). In this scheme, a penalty factor is increased after
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each iteration in which the solution was infeasible with respect to
the associated constraint, and decreased otherwise.

Algorithm 1. Tabu search algorithm for the ALWABP.
1:
 input: s: initial solution generated randomly or by a
heuristic;
2:
 s’s,

3:
 Initialize penalty factors;

4:
 while stopping criterion not reached do

5:
 let n be the best neighbor in N(s);

6:
 if n is tabu then

7:
 if n is feasible and f ðnÞo f ðsÞ then

8:
 Apply LS1, LS2 and LS3 on n;

9:
 s’n, s’n;

10:
 else

11:
 let n be the best non-tabu neighbor in N(s);

12:
 end if

13:
 end if

14:
 s’n; update penalty factors;

15:
 apply intensification (IP1 and IP2) or diversification (DP1

and DP2) if criterion is reached;

16:
 apply restart if criterion is reached;

17:
 end while

18:
 output: solution s.
Algorithm 1 gives an overview of the method. An aspiration
criterion is used to accept tabu solutions which are feasible and
are better than the best solution found so far (lines 6–9). If no
such solution is found, the method finds the best non-tabu
solution in the neighborhood of the current solution (line 11).
The appropriate penalty weights are doubled (halved) every time
the best neighbor is an infeasible (a feasible) solution with respect
to the associated constraint (line 14).

This method is an extension of the method presented by
Moreira and Costa (2009). In this new version, we added several
features to the algorithm, which are described in the following.
Three local search procedures precede the execution of the
aspiration criteria: LS1, LS2, and LS3. LS1 effects a local search
with insertion movements that only considers tasks belonging to
critical workstations (without idle time), swap tasks, swap work-
ers and enchained swap tasks (sequence of two swap move-
ments). LS2 fixes the workers at their current stations and makes
a call to the constructive heuristic presented in Section 4.1. LS3
applies worker swap movements and also calls the constructive
heuristic.

Two intensification (IP1 and IP2) or two diversification (DP1
and DP2) movements are used (line 15). The algorithm alternates
between them every 2000 iterations. IP1 (DP1) makes a call to LS1
fixing in the solution the most (less) common tasks � work-
stations pairs. IP2 (DP2) makes a call to LS2 after fixing in the
solution the most (less) common workers � workstations pairs.

A restart is made after 5000 iterations (line 16). A 10,000
iterations limit is used as stopping criterion.

4.4. GRASP

The greedy randomized adaptative search procedure (GRASP) is a
multi-start metaheuristic proposed by Feo and Resende (1989). It
consists of two phases: initial solution construction and solution
improvement via local search.

We propose a GRASP for the ALWABP which strongly relies on
the constructive heuristics presented in Section 4.1. The main
idea is to obtain a different constructive solution at each GRASP
iteration. A pseudo-code is presented in Algorithm 2.
Algorithm 2. GRASP algorithm for the ALWABP.
1:
 input: P: set of priority rule to be used;

2:
 s’ best known solution (empty if no solution is known);

3:
 for pAP do

4:
 while stopping criteria not reached do

5:
 Run randomized constructive heuristic with rule p,

yielding solution n;

6:
 Apply LS1 on n;

7:
 if f ðnÞo f ðsÞ then

8:
 s’n;

9:
 end if

10:
 end while

11:
 end for

12:
 output: solution s.
In this implementation we used P containing the three rules
that presented the best results in Moreira et al. (2012), all of them
based on tasks positional weights. For each rule, the stopping
criterion was set in terms of numbers of iterations (1000 itera-
tions for each rule).

At each step of the construction (line 5), a restricted candidate
list is formed by the first 9N9=5 tasks presenting the best values of
the used priority rule. Therefore, the considered priority rule is
computed for all available tasks at a given moment and the tasks
presenting the best criterion values are included in the list. Then,
the task to be inserted is chosen randomly from this list. The
initial obtained solution is improved by means of a local search
procedure similar to LS1, which was described in the last subsec-
tion. Finally, the best solution is updated in line 8.
5. Hybrid algorithm

A recent trend on optimization is the hybridization of solution
methods, which might include metaheuristics, mathematical
programming and human iterative procedures. Blum et al.
(2011) argue that the focus on research has notably shifted from
an algorithm-oriented point of view to a problem-oriented point
of view, where the goal of researchers is no longer to promote a
certain metaheuristic but rather to efficiently solve a problem.
This claim is supported by the large amount of research that has
been recently devoted to hybrid methods (El-Abd and Kamel,
2005; Puchinger and Raidl, 2005; Maniezzo et al., 2009; Günther
et al., 2010).

We propose a hybrid algorithm for the job rotation scheduling
problem with heterogeneous workers (HAJR) that follows these
ideas and makes use of the heuristic and metaheuristic proce-
dures presented in the previous section and of additional math-
ematical programming models to obtain good rotation schedules.
The HAJR first creates a pool J of warehouse solutions (Rochat and
Taillard, 1995) for the ALWABP, with the application of the four
heuristic methods cited previously. Then, an integer linear pro-
gramming model is used to select T of these schedules, while
respecting the coupling constraints (19), and maximizing the
objective function (11). Finally, two local search approaches based
on large MIP-neighborhoods are executed in order to improve the
objective function.

In the following, we give a description of the implemented
HAJR. Section 5.1 explains the construction and management of
the warehouse solutions. Section 5.2 explains the selection of the
T schedules that will belong to the initial job rotation solution, J0,
and Section 5.3 describes how this initial solution is improved. A
complete view on the algorithm is finally presented.
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5.1. Management of feasible solutions

The pool of feasible solutions J is created with the execution of
the heuristic methods described in Section 4. The main idea is to
generate a set of diverse, good-quality solutions. It is important to
limit the size of the pool, Ps, since it affects the time needed in the
next phase of the method. Therefore, the set includes:
1.
 sHGA feasible solutions from the last generation of the HGA,
sHGAr100;
2.
 Sixteen feasible solutions obtained with the best configuration
of the constructive heuristics (see Moreira et al., 2012);
3.
 Ps�sHGA�16 feasible solutions obtained with the TS and with
the GRASP, equally distributed.

5.2. Solutions selection

We propose a mixed-integer programming model to select the
T solutions that will constitute J0, the subperiod schedules in the
job rotation, from the set J of warehouse solutions. The idea of this
model is to select schedules that will respect the coupling
constraints concerning the minimum level of efficiency while
maximizing the diversity of tasks criterion. The complete for-
mulation is presented in the following:

Max z¼
X

wAW

X
iAN

zwi ð26Þ

subject to

X9J9
k ¼ 1

Ck � bkr9T9C , ð27Þ

zwir
X9J9
k ¼ 1

akwi � bk 8wAW , 8iAN, ð28Þ

X9J9
k ¼ 1

bk ¼ T , ð29Þ

zwiAf0,1g 8wAW , 8iAN, ð30Þ

bkAf0,1g k¼ 1, . . . ,9J9, ð31Þ

where,
Ck
 cycle time of solution kA J,

akwi
 binary parameter; equals to 1 only if task i is assigned to

worker w in solution kA J,

bk
 binary variable; equals to 1 only if solution kA J is chosen as

subperiod schedule,

zwi
 binary variable; equals to 1 only if worker w executes task i

in at least one subperiod.
The objective of the model (26) is the maximization of
different tasks executed by workers in a complete job rotation
period. Constraints (27) enforce the coupling constraints (19).
Constraints (28) guarantee that variables zwi represent the execu-
tion of task i by worker w. Finally, T solutions must be chosen
according to constraints (29), one for each job rotation subperiod.

5.3. Local search

After an initial solution is found for the job rotation problem,
two local search procedures are used to improve its quality. These
local search procedures rely on large MIP-based neighborhoods
and are described in the following.
Let xswit and ysw denote the variables assuming one in the
current solution, given by the schedules in J0. The first procedure,
named local search for job rotation 1 (LSJR1), receives as input a
solution J0 and allows minor modifications in its structure.
Indeed, the local search allows tasks to remain in their current
stations or to be assigned to immediately neighboring stations.
This can be easily done by fixing the appropriate variables
at zero and solving a new version of model (11)–(23), as shown
below.

Max z¼
X

wAW

X
iAN

zwi ð32Þ

subject to

ð12Þ�ð23Þ

xswit rxswitþ
X

w0AW\Wi

xs�1w0itþ
X

w0AW\Wi

xsþ1w0 it

8sAS, 8wAW\Wi, 8iAN,8tAT , ð33Þ

yswt ¼ yswt

8sAS,8wAW ,8tAT : ð34Þ

Constraints (33) enforces variables xswit to be set at zero if task
i is not assigned to station s nor to any of its neighbors (s�1 and
sþ1) in the original solution J0. Note that variables xs�1wit (xsþ1wit)
must be ignored in the constraints if station s is the first (last)
station in the line. Constraints (34) ensure that the workers are
kept at their current positions.

The second procedure, named local search for job rotation 2

(LSJR2) receives as input a feasible job rotation solution and a
subperiod bt . It then reduces the search space by fixing the
solution at all subperiods with the exception of subperiod bt and
solves the resulting model, shown below

Max z¼
X

wAW

X
iAN

zwi ð35Þ

subject to

ð12Þ�ð23Þ

xswit ¼ xswit 8sAS,8wAW\Wi,8iAN,8tAT\dtf g, ð36Þ

yswt ¼ yswt 8sAS,8wAW ,8tAT , ð37Þ

In this case, constraints (36) ensure that all tasks from a
subperiod different from bt must remain in their original work-
stations. Finally, to guarantee the original allocations of workers
in the T subperiods, constraints (37) are required.

5.4. Summary of the algorithm

A complete view of the HAJR is shown in Algorithm 3. The
algorithm is a sequential application of the several construction
and improvement methods described so far. First, the four
heuristic methods are applied (lines 1–5): the final pool will
include 16 solutions obtained with the constructive heuristics
(line 2) and all feasible solutions of the last generation of the
genetic algorithm with population size equal to 100 (line 3). The
remaining solutions in the pool are obtained from the Tabu
Search and the GRASP metaheuristics. In order to keep a limited
size of Ps solutions, a maximum of ðPs�9J9Þ=2 solutions are added
by each of these methods, where 9J9 is the number of solutions
added so far (lines 4–5).

After the pool is obtained, model (26)–(31) is used to select 9T9
single schedule solutions and form the first complete solution
(line 6). This solution is then improved with the MIP-based local
search procedures of Sections 5.3. First, model (32)–(34) is used to
search for better solutions which keep the tasks at the same or at
neighboring stations (line 7). Finally, the MIP model (35)–(37)
is used to look for better solutions while keeping almost all
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variables fixed and releasing the values of the variables of a
period, for all periods, one at a time.

Algorithm 3. Hybrid Algorithm for the Job Rotation (HAJR).
Table 1
Instanc

Fami

Roszi

Hesk

Tong

Wee-
1:
 Construct pool of solutions J:

2:
 Add to J the 16 solutions obtained with the Constructive

Heuristics of Section 4.1;

3:
 Add to J all feasible solutions found in the last generation

of the biased random-key genetic algorithm of Section
4.2;
4:
 Add to J at most ðPs�9J9Þ=2 feasible solutions found with

the tabu search algorithm of Section 4.3;

5:
 Add to J ðPs�9J9Þ feasible solutions found with the GRASP

method of Section 4.4;

6:
 Run model (26)–(31) using J to select 9T9 solutions and

add them to J0;

7:
 Run model (32)–(34) on J0: J0’LSJR1ðJ0Þ;

8:
 Run model (35)–(37) for each schedule period:

9:
 for bt ¼ 1 . . . T do

10:
 J0’LSJR2ðJ0,btÞ;

11:
 end for

12:
 output: set of selected schedules, J0.
6. Computational experiments

In this section, we describe a number of computational
experiments and analyze their results to examine the perfor-
mance of the proposed HAJR. Section 6.1 presents the test
problems and methodology used while Section 6.2 shows the
numerical results.

6.1. Test problems and methodology

In order to test the proposed methodology, we have used a set
of instances available in the literature (Chaves et al., 2007). This
data set is adapted from SALBP instances and grouped in four
families: Roszieg, Heskia, Tonge and Wee-Mag, each one contain-
ing 80 instances. These data are generated in such a way that each
family of problems contains 10 instances for each combination of
three experimental factors: number of workers, the variability of
task execution times, and the number of infeasible task-worker
pairs. In each situation, each one of these factors assume a low or
a high level.

As described in Chaves et al. (2007), for instances with low
variability, the task execution times are obtained with an uniform
distribution in the interval ½1,ti�, where ti is the task execution
time of the original SALBP instance. In case of high variability, the
interval used is ½1,3ti�. The low and the high levels associated with
the number of infeasible task-worker pairs are 10% and 20%,
respectively. Table 1 lists the main characteristics of each family
of instances.

We compare our results with the decomposition algorithm (DA)
proposed by Costa and Miralles (2009). As these authors, we
consider a parameter R indicating the allowed percentage cycle
time increase. We use values of R as 5%, 10%, 25% and 50%.
e characteristics.

ly 9N9 9W9 Order strength

eg 25 4 (groups 1–4) or 6 (groups 5–8) 71.67

ia 28 4 (groups 1–4) or 7 (groups 5–8) 22.49

e 70 10 (groups 1–4) or 17 (groups 5–8) 59.42

Mag 75 11 (groups 1–4) or 19 (groups 5–8) 22.67
Concerning the number of subperiods, we analyzed 9T9¼ 2, 4 and
7. The combination of the different values of R and 9T9 yield 12
scenarios.

For the Roszieg and Heskia families, we use the optimal single
period cycle time as the base cycle time value C . For instances of
Tonge and Wee-Mag families, C is determined as the best value of
cycle time present in the pool of solutions.

The algorithms were implemented in Cþþ and all numerical
tests were carried out on a Pentium Core 2 Duo with 2.2 GHz and
3.0 Gb RAM. For the resolution of linear models, we used CPLEX
12.1, with a time limit of 3600 s to solve each model. Each
instance was executed five times and the same pool of initial
solutions was used to solve the 12 scenarios.

6.2. Numerical results

We first compare the results of our proposed algorithm with
those obtained by the decomposition algorithm of Costa and
Miralles (2009), which was run on a Pentium machine with
2.33 GHz and 4.0 Gb RAM. Their algorithm heuristically decom-
poses the problem by period. A version of model (1)–(10) is then
run for each period. Once a period is solved, its solution is kept
fixed. The objective function at each run is modified to maximize
the number of new different tasks chosen for that period and a
constraint limiting the cycle time in each period is included.

We use the following metrics:
�
 GapðiÞ: average deviation of a method to the best known
solution for instance i

GapðiÞð%Þ ¼
zbest

i �zi

zi
� 100%, ð38Þ

where zi is the average objective function obtained by the
algorithm being considered in all runs; zbest

i is the best known
objective function considering both HAJR and DA;

�
 GapbðiÞ: best deviation of a method to the best known solution

for instance i

GapbðiÞð%Þ ¼
zbest

i �zni
zni

� 100%, ð39Þ

where zni is the best objective function obtained by the
algorithm being considered in all repetition runs;

�
 t and tmax: average and maximum computational time, in

seconds, needed to solve instances of each family;

�
 #nhajr and #nda: number of solutions improved by the HAJR

and the DA, respectively, for each scenario.

In all results we used a pool of Ps ¼ 10,000 solutions. In
preliminary tests, this was found to be a good compromise
between solution quality and computational time. Much smaller
pools led to lower solution quality while much larger ones
increased computational times.

The results for the Roszieg and Heskia family are presented in
Tables 2 and 3, respectively. In the tables, we present the average
gaps over all 80 instances for each configuration R and 9T9. Since
each instance was run five times for the HAJR, we present the
average results when considering the mean value of the five
repetitions and when considering the best value over all repeti-
tions: Gap ¼

P80
i ¼ 1 GapðiÞ and Gapb ¼

P80
i ¼ 1 GapbðiÞ. Moreover,

average and maximum computational times for each class are
also reported.

We note that the HAJR outperforms the DA in all scenarios in
terms of solution gaps and in terms of computational efficiency,
with a lower value of t and tmax in most of cases. Although the
computer we used in the new tests was a slightly better machine,
the time comparisons in these smaller instances is not as relevant



Table 2

Comparision of HAJR and DA for instances of Roszieg family (best Gap in bold).

9T9 R HAJR DA

Gap (%) Gapb (%) t (s) t max (s) #nhajr Gap (%) t (s) tmax (s) #nda

2 1.05 0.771.7 0.1 10.8 32.9 37 2.373.0 73.7 305.1 15

1.10 0.571.1 0.1 11.0 32.9 34 2.172.9 81.1 327.9 10

1.25 0.370.7 0.1 11.1 32.9 19 1.072.0 66.3 325.6 11

1.50 0.170.3 0.0 11.1 32.9 10 0.571.6 51.9 252.4 1

4 1.05 1.471.8 0.2 12.1 32.9 55 6.578.4 108.5 488.7 17

1.10 1.471.7 0.1 12.0 33.1 68 7.178.4 125.4 508.6 9

1.25 1.471.2 0.1 13.3 42.5 63 4.974.4 134.6 594.1 15

1.50 1.371.2 0.2 16.1 100.4 59 4.073.5 84.8 295.0 20

7 1.05 1.772.1 0.3 41.0 503.6 62 9.6710.3 151.2 720.1 16

1.10 1.471.5 0.1 54.8 1045.8 68 9.3711.9 183.2 796.9 10

1.25 1.271.3 0.2 41.3 396.5 53 4.078.7 198.6 745.4 18

1.50 1.271.8 0.4 54.8 777.8 22 1.576.5 134.5 528.7 31

Average 1.071.4 0.2 4.476.0

Table 3

Comparision of HAJR and DA for instances of Heskia family (best Gap in bold).

9T9 R HAJR DA

Gap (%) Gapb (%) t (s) tmax (s) #nhajr Gap (%) t (s) tmax (s) #nda

2 1.05 1.773.8 0.5 33.5 75.4 39 1.571.7 87.1 893.3 29

1.10 1.171.6 0.3 34.4 76.8 35 1.471.8 102.7 795.9 27

1.25 1.471.1 0.3 35.1 81.0 12 0.671.2 106.4 1124.9 48

1.50 0.670.8 0.1 35.7 83.0 2 0.070.3 64.1 771.2 34

4 1.05 3.376.6 1.4 36.4 136.4 48 4.174.9 130.4 960.7 28

1.10 2.272.0 0.7 37.7 104.4 39 2.573.6 187.3 1200.1 39

1.25 2.771.6 1.0 53.7 323.5 19 1.171.8 242.5 1506.3 56

1.50 2.771.9 1.2 65.9 559.8 22 1.071.4 267.0 1866.6 57

7 1.05 3.978.6 2.0 46.5 174.1 46 4.475.6 188.0 1096.8 32

1.10 2.772.4 1.1 55.8 349.0 44 3.273.8 271.2 1698.1 33

1.25 2.472.0 1.1 131.0 846.8 25 0.971.5 396.1 2461.1 52

1.50 2.972.7 1.8 243.3 2076.0 6 0.270.7 475.3 4260.2 63

Average 2.372.9 1.0 1.772.4

Table 4
Results of the HAJR for instances of the Tonge family.

9T9 R HAJR

After

LSJR1 (%)

After LSJR1

þ LSJR2 (%)

t (s) tmax (s)

2 1.05 8.0 13.0 1710.6 3136.2

1.10 3.2 5.2 1708.6 3137.5

1.25 0.9 1.5 1712.3 3140.1

1.50 0.5 0.7 1711.4 3142.5

4 1.05 10.5 16.1 1892.8 4365.7

1.10 7.5 10.6 1949.1 5011.6

1.25 4.8 6.5 2257.8 5103.4

1.50 7.3 8.5 2151.7 5112.5

7 1.05 11.6 16.8 2927.5 5881.6

1.10 9.4 12.6 3166.0 5893.3

1.25 7.7 9.5 3931.9 8132.2

1.50 13.2 14.8 5218.8 9345.9

Average 7.1 9.6
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as the fact that the proposed method is scalable to larger
instances while the DA fails in solving even middle-sized ones.
HAJR was also more robust than DA, as shown by standard
deviations values. Besides, HAJR is able to improve a large number
of solutions and present significantly lower gaps.

Table 3 shows the results for the Heskia instances. Overall,
the HAJR performs better than the DA for the harder instances
(those with smaller values of R). The smaller solution gaps
of the HAJR over the DA represented more tasks executed by
the workers over the rotation periods. For the Roszieg family, for
instance, an average of 3.4% more tasks could be executed at each
rotation of 2, 4 or 7 periods. For the larger instances, it is not
possible to establish comparisons between the two methods,
but just the local search procedures enabled improvements of
around 10% in terms of different tasks that could be executed
by the workers over the planning period, as can be seen in
Tables 4 and 5.

Tables 4 and 5 present the results of HAJR for the largest
instances, from Tonge and Wee-Mag families. To measure the
quality of solutions, besides using t and tmax, we consider the
percentage improvement of a solution after local search LSJR1
(third column) and after local searches LSJR1þLSJR2 (fourth
column) are applied. In both cases, the results are compared with
the original solution obtained by the model (26)–(31). Note that
the decomposition algorithm of Costa and Miralles (2009) is no
longer used as a benchmark for it cannot solve large instances.
The figures in the tables show that LSJR1 performs well in all
the 12 scenarios, yielding improvements of up to 13% over the
original solution given by model (26)–(31). The tables also show
that LSJR2 can further improve these results. Considering the
computational times, a maximum allowed time of 3h was used
and never reached. Moreover, the local search procedures had a



Table 5
Results of the HAJR for instances of the Wee-Mag family.

9T9 R HAJR

After LSJR1 (%) After LSJR1 þ LSJR2 (%) t (s) tmax (s)

2 1.05 6.5 16.3 926.2 4709.2

1.10 3.7 9.6 885.1 1413.6

1.25 2.1 4.8 908.1 1557.5

1.50 0.9 1.3 978.1 2116.7

4 1.05 8.6 18.2 1497.7 4715.5

1.10 5.8 11.7 1373.9 4709.6

1.25 4.8 9.3 3120.7 4862.5

1.50 5.7 9.5 5887.5 8385.1

7 1.05 9.0 16.7 2427.6 4786.2

1.10 7.5 12.3 2596.2 4787.5

1.25 5.7 9.2 3657.0 5264.7

1.50 6.9 10.2 6814.5 8457.8

Average 5.6 10.8

Table 6
Percentage of solutions coming from the heuristic methods chosen by model

(26)–(31).

Family Heuristic method

HGA (%) CH (%) TS (%) GRASP

Roszieg 5.6 0.5 71.9 22.0

Heskia 5.4 3.7 28.9 61.9

Tonge 28.9 6.5 2.9 61.6

Wee-Mag 37.5 16.6 1.1 44.8

Table 7
Average solution gap obtained by HAJR with different pool construction methods

(instances Tonge and Wee-Mag; R¼1.5).

T Heuristic methods

CHþHGA (%) TS (%) GRASP (%) Complete HAJR (%)

2 0.2 0.5 0.1 0.1

4 5.2 9.8 2.0 1.0

7 8.5 17.1 2.7 1.2

Average 4.7 9.1 1.6 0.73
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maximum allowed computational time of 7200 s (3600 s for each
routine). In average, the time spent in both routines was 13 s,
35 s, 821 s and 1714 s for the instances in the Roszieg, Heskia,
Tonge and Wee-Mag, respectively.

Since, for these larger instances, no other method in the
literature was available for comparison, we implemented a simple
random search algorithm (RSA). This kind of algorithms have
been used in the literature to evaluate the difficulty of solving
problem instances (see, for example, Otto et al., 2011). In our tests
of the RSA, we used the same pool of solutions that was generated
in the HAJR. From this pool, we randomly selected 9T9 single
schedule solutions and evaluated objective (1). This was repeated
for 1000 s and the best feasible solution found was selected. The
idea was to observe if a simple random method was able to
perform as well as the proposed selection and improvement
models described in Section 5, once good solutions for the
ALWABP were available.

The computational tests showed that the RSA had difficulties
even finding feasible solutions. Indeed, the method found an
average of 29.9% of feasible solutions. Among these solutions the
average obtained gap was 9.8%. It is important to highlight that
these figures were obtained while considering both the easier
(larger values of R) and the most difficult (smaller values of R)
instances. When these results are evaluated by groups of
instances, it becomes even clearer the inefficiency of the method
for hard instances. Indeed, the RSA found an average of 0.0%, 1.3%,
28.2% and 86.7% of feasible instances for the instances with values
of R equal to 1.05, 1.10, 1.25 and 1.50, respectively.

An interesting aspect to analyze is the composition of the final
solution in terms of the original methods used to generate their
single schedule solutions. Table 6 shows the percentage of
solutions coming from the HGA, CH, TS and GRASP that were
selected by the model (26)–(31). The proposed GRASP algorithm
gives most of solutions in the last three families, while the TS was
important in the Roszieg and Heskia families. Although the HGA
and the CH contributed less in the first two cases, they had a
fundamental role in the composition of the pool for the largest
instances. Our conclusion is that the set of heuristic methods
provide a diversity of solutions that was needed for the success
of HAJR.

To further study this point, we analyzed the efficiency of the
HAJR algorithm when just part of the methods described in
Section 4 were used. Sixteen instances in families Tonge and
Wee-Mag (the first instance in each family group) were solved for
all combinations of parameters R and 9T9 and the conclusion was
that the diversity was needed for the method to obtain good
solutions. Indeed, when the method was run only with the
Constructive Heuristics and the Genetic Algorithm, feasibility
was reached in 65.9% of the cases. In these cases, an average
gap of 4.7% was obtained. The results when only the Tabu Search
or the GRASP methods were used were similar. When Tabu Search
was used, the method obtained an average of 32.7% feasible
instances (with an average gap, for these instances, of 9.1%) and
when GRASP was used, the method obtained an average of 47.7%
feasible instances (for which an average gap of 1.6% was reached).
Table 7 shows the percentage gaps obtained by the complete
HAJR and by the HAJR with each of the ALWABP solution
methods. In order to enable a fair comparison, in the table, the
gaps are computed only over the instances for which all methods
obtained feasible solutions and, therefore, the situation with
R¼1.5 was selected for illustration.

In concordance with Table 7, GRASP was the pool initialization
method that was able to obtain the better results. Nevertheless, it
is still less effective than using a diverse set of methods, even for
the easiest instances (R¼1.5).
7. Conclusions

The purpose of this study was to examine the problem of
balancing assembly lines with heterogeneous workers while
considering job rotation schedules. We have developed a hybrid
algorithm (HAJR) which uses heuristics methods, and mixed-
integer programs to select the initial solutions and as post-
optimization improvement methods. In a series of computational
tests, this approach proved flexible, accurate and much more
scalable when compared with the decomposition algorithm Costa
and Miralles (2009). We believe this success is due to the
diversity of solutions obtained by the different proposed heuristic
algorithms that composed the structure of the HAJR, and to the
efficiency of the proposed MIP neighborhoods.
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