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Abstract

Path relinking has been used for solving deterministic problems by exploring the neighborhood of elite
solutions in an intelligent way. We present an algorithm that combines a mixed-integer linear solver with
a truncated path-relinking method in order to solve two-stage stochastic integer problems with complete
recourse and first-stage integer variables. This method takes advantage of a possible scenario-based decom-
position in an innovative way. Therefore, path relinking is used to combine optimized solutions from different
scenarios in order to pursue good stochastic solutions. To assess the computational performance of this
method, we use the stochastic lot sizing and scheduling problem dealing with perishable products. In this
problem, first-stage decision variables are linked to production sequences and production quantities. After
the uncertain demand is unveiled, the second-stage variables decide on the inventory usage. Computational
results show a clear advantage of the proposed method when compared to a state-of-the-art mixed-integer
linear solver.

Keywords: path relinking; mixed-integer solver; stochastic programming; lot sizing and scheduling; demand uncertainty

1. Introduction

Stochastic mixed-integer linear models have been used to formulate numerous planning problems,
and a multitude of solution approaches are available to solve them. In the review of Bianchi et al.
(2008), an exhaustive analysis of exact methods and metaheuristics that are used to solve such
problems has been performed. Basically, almost every traditional metaheuristic and exact method
has been adapted to solve these hard problems, such as tabu search (Costa and Silver, 1998), ant
colony optimization (Gutjahr, 2003), and branch and bound (Gutjahr et al., 2000). Among these
solution methods, some take advantage of the scenario sampling structure that characterizes a large
portion of these problems. A paradigmatic example of an algorithm that uses this decomposition
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is the progressive hedging, which was first proposed by Rockafellar and Wets (1991). This method
considers a set of representative scenarios, which should grasp the stochasticity in the second-stage
parameters. Each of these scenarios is solved by means of a deterministic model that captures
the related subproblem. By the end of the first step, a pool of solutions independently optimizing
the scenarios is obtained. Afterwards, through an averaging procedure of all considered solutions,
a compromise is obtained between all possible uncertain outcomes. Several improvements and
enhancements of the base algorithm have been suggested (Lokketangen and Woodruff, 1996),
and the readers are referred to Watson and Woodruff (2010) for an updated overview of this
method.

This paper presents a hybrid solution method that also uses a scenario-based decomposi-
tion. However, this method takes advantage of the resulting subproblems by combining, through
path relinking, the individual solutions of each scenario. This algorithm combines a truncated
path-relinking method and mixed-integer programming-based method. It uses the determinis-
tic integer variables values obtained from the solution of each stochastic scenario in order to
approach the global optimum of the stochastic model. The truncated path-relinking is simi-
lar to a standard path-relinking, but stops the search in between the starting and guiding so-
lutions. The proposed solution method is designed to solve two-stage stochastic integer prob-
lems with complete recourse and first-stage integer variables, which can be generally formulated
as

min(c-x+b-y)+ Y ¢'(f,z,) (1
ve[V]
subject to
(x,y,z,) €D, VvelV] 2)
x, z, > 0; y € {0, 1}, 3)

where ®, 1s the set of feasible solutions for the decision variables (x, y, z,). [V] is the set of scenarios
v, and ¢, b, f, are scalars. Note that f, is a stochastic parameter.

The first contribution of this paper is to extend a solution method (path relinking) that has been
mainly used to solve deterministic problems to address stochastic ones. The second contribution
of this paper relates to the hybrid nature of the extension. Therefore, this paper shows another
possibility of combining exact and heuristic methods to solve stochastic problems.

The paper is organized as follows. Section 2 describes the proposed solution method. In Section
3, a mathematical description of the problem used to test the algorithm is given. In Section 4, the
computational results are reported. Finally, Section 5 resumes the main findings and indicates paths
for future research.

2. The hybrid path-relinking method

Path relinking is a method that explores the neighborhood of elite solutions in a systematic way.
This method was proposed by Glover and Laguna (1993) and readers are referred to Resende et al.
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(2010) for a deeper understanding of this method and its variants, such as forward, backward,
and mixed path-relinking. The key reasoning behind path relinking is that good solutions should
share a similar structure among them. Thus, in the basic version of path relinking, two solutions
are chosen at each time and the solution elements of one of these solutions are changed through
a path that finalizes when the starting solution changes to the target solution. The usage of path
relinking has been mostly associated with GRASP (Festa and Resende, 2009, 2011, 2013), but
there are also other hybridizations in the literature focusing on more specific problems (Zeng et al.,
2013).

We cross-fertilized this general path-relinking concept with the idea proposed in Rockafellar
and Wets (1991): “The idea is that by studying the different sub-problems [scenarios] and their
[subJoptimal solutions one may be able to discover similarities and trends and eventually come
up with a ‘well hedged’ solution to the underlying problem, something which can be expected to
perform rather well under all scenarios, relative to some weighting of scenarios.” Therefore, in this
paper, we reframe the idea of path relinking by applying it to stochastic mathematical problems
represented by a set of scenarios with different probabilities.

The natural structure of the two-stage stochastic integer problems with continuous second-stage
decision variables is used to develop a hybrid heuristic approach. As mixed-integer linear solvers do
not take advantage of the structure of this kind of problems, we tackle this issue heuristically using
a hybridization of path relinking with a solver that independently explores the set of scenarios. Our
reasoning is that an optimal solution should potentially lie somewhere in between different scenario
solutions. The first step of the algorithm is to optimize individually the deterministic problems
associated with each scenario. Afterwards, solutions are ranked based on the objective function
value of the stochastic problem in which the first-stage integer decisions are fixed to the values
found for the respective scenario (stochastic evaluation). This ranking will define the sequence of
guiding solution entering the path-relinking phase. Through path relinking, the integer part of
the most promising solutions is combined and, again, the intermediate solutions are evaluated
by the stochastic objective function with the deterministic equivalent model (DEM). The best
solution found in all iterations through this last evaluation step is returned as the best. Figure 1
shows the main outline of the method. In this scheme, the first phase is performed with a branch-
and-bound procedure. After exploring each scenario independently, a linear programming (LP)
solver is used to evaluate solutions. The figure exemplifies the first iteration of the path relinking.
After finding the best solution of this iteration, it will serve as a starting solution for the next
one.

Note that all solutions found in the first step are ranked according to their performance in
the stochastic setting and those with better performance are preferred. Nevertheless, in case
the stopping criterion is not met, all solutions might end up being used in the path-relinking
phase.

Throughout the algorithm execution, two different types of calls to the mixed-integer solver are
executed. (1) A given scenario is solved with a certain demand realization and (2) the linear problem
arising is solved when fixing the first-stage integer variables of the stochastic model (stochastic
evaluation). These last subproblems are solved rather quickly in comparison to a complete scenario
(solved in the first call).

Algorithm 1 describes the pseudocode of the hybrid path-relinking where these calls are used. In
the first loop, a feasible solution is found for every demand scenario (y,) within a certain time limit
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Fig. 1. Outline of the hybrid path relinking.

(branch-and-bound procedure of Fig. 1). These solutions are evaluated for the stochastic setting
with the DEM having the first-stage integer variables fixed to the values found before (depicted
with the LP solver step in Fig. 1). With this information, a truncated path-relinking is restarted
multiple times with the most promising guiding solutions (using a “stochastic evaluation”) until
one of the two stopping criteria is met: there are no more solutions of scenarios to be served as
guiding solutions or the last guiding solution did not lead to a better solution. The first starting (s¢r)
and guiding (gdg) solutions are set to the two best solutions found (according to the “stochastic
evaluation”). New guiding solutions are inserted at each path-relinking restart and the starting
solution is updated to the best solution found in each iteration. Within each path-relinking iteration,
the vectors of first-stage integer decision variables from the starting and guiding solutions are
compared. The set of positions with different values (8) is used to transform the starting into the
guiding solution until reaching a degree of resemblance set by the € criterion. Setting € to |3
converts this truncated path-relinking into a standard one. All these steps are condensed into the
path-relinking phase, as shown in Fig. 1. Every intermediate solution is evaluated for the stochastic
setting. Note that the position i of the vector of first-stage integer decision variables ', is denoted

byyi,v'
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Algorithm 1. Pseudocode for the hybrid path-relinking

for v € [V] do
L Yo 1= argminy(c “x+b- Y+ fl,' ’ ZU) : (wayvzv) € 90;
str:=argmin,y)(c -z +b- gy + fo - 20) : (7, 2,) € Dy;

strB = str;
V] :=[V]\ {str};
ObjG = 4o0;

while ObjG < ObjB and [V] # {} do

gdg := argmin,eyi(c-x+b-g, + fo - 2,) 1 (T,2,) € Dy;
V1= [V]\{gdg};

str = strB;

5 = {Z = 17 i ‘gstr| : y;tr # y;dg}a

ObjM,0bjB = +o0;

while |§| > € do

for : € § do _ _

Ystr 1= {7y:;ﬂ17y;d9yi?}17 }7

Ob] = min(c - + b . ggn + fq,v ° ZU) : (.T, Zz;) < 907
if Obj < ObjM then

ObjM = Oby;
strM .= str;
Umax = 1

0= 5\ {i171am};

if ObjM < ObjB then
ObjB := ObjM;

L strB := strM,

if ObjB < ObjG then
| ObjG := ObjB;

6utput: ObjG

The best stochastic solution found within the multiple path-relinkings is returned as the solution to the problem (Ob;G).

3. Stochastic lot sizing and scheduling problem dealing with perishable products

Within supply chain planning tasks, the lot sizing and scheduling problem is responsible for de-
termining the size of each production lot and the sequence in which these lots are produced in
a medium- to short-term planning horizon. Stochastic lot sizing and scheduling problems ap-
pear when parameters’ uncertainty is taken into account. Lot sizing and scheduling problems
are known to be NP-hard and therefore optimal solutions are difficult to obtain and prove even
for medium-sized instances. Moreover, the stochastic version of this deterministic problem, where
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demand is unknown in advance, usually requires even more computational effort to be solved. We
focus on the stochastic lot sizing and scheduling problem dealing with perishable products (S-LSP-
PP) arising in the food consumer goods industries that use “direct store delivery.” The main impact
of this delivery practice is an increased responsibility of producers for all downstream processes of
the supply chain until reaching the final customer. This responsibility entails a heavier burden in
the case of food companies producing perishable products that have a limited shelf life, inhibiting
the abusive use of intermediate storage to hedge against demand uncertainty. This lot sizing and
scheduling problem was first introduced in Amorim et al. (2013). As this was the first time that this
problem was discussed, no solution method was ever proposed to solve it.

The S-LSP-PP can be classified as a two-stage stochastic integer problem with complete recourse
and first-stage integer variables. In this problem structure, first-stage (lot sizing and scheduling)
decisions are responsible for the production planning without knowing the exact demand (tactical
level), whereas second-stage variables allocate the inventory and production output to the realized
demand (operational level).

3.1. Formal problem description

Consider productsi, j = 1, ..., N that are to be scheduledon/ = 1, ..., L parallel production lines
over a finite planning horizon consisting of macroperiods t =1, ..., T with a given length. The
changeover time and cost between products on a line depends on the sequence.

A macroperiod is divided into a fixed number of nonoverlapping microperiods with a variable
length. Since the production lines can be independently scheduled, this division is done for each line
separately. Let [.S},] denote the set of microperiods s =1, ..., S, belonging to macroperiod ¢ and
production line /. The number of microperiods of each macroperiod defines the upper bound on the
number of products to be produced on each line. The length of a microperiod is linked to the decision
variable accounting for the quantity of products produced. A product lot may continue over several
micro- and macroperiods since setup carry-over is considered. Thus, a lot is independent of the
discrete time structure of the macroperiods. Note that the lot sizing and scheduling time structure
is based on the general lot sizing and scheduling structure for parallel lines (Meyr, 2002).

The demand for each product j at its fresher state in macroperiod ¢ (d?,”) is stochastic and obtained
through the sampling of discrete scenarios v =1, ..., V. Each of these scenarios has an associated
probability ¢, such that ¢” > 0, Vvand ), ¢" = 1. In Amorim et al. (2013), the authors study the
influence of different consumer purchasing behavior. For testing the hybrid path-relinking, several
simplifications were considered. Therefore, no product families arrangements are considered, every
product is assumed to have a fixed shelf life (u;), consumer purchasing behavior related to picking
up the fresher product available is disregarded, and the demand over the age of the product varies
in the same manner as the price. The present study considers a linear willingness to pay shape for
customers who are rather sensitive to product freshness. Therefore, we acknowledge the decreasing
customer’s value to an aging product. With Equation (4), the demand parameter for product j with
age a in period ¢ according to scenario v (given by d7') is calculated. Moreover, Fig. 2 presents an
example of a demand curve plotted using the following equation:

0.5d%a

4y = d% — .
I I le] _ 1

4)
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Fig. 2. Example of an age-dependent demand curve.

Consider the following indices, parameters, and decision variables.

Indices
/ parallel production lines
i,j products
t macroperiods
s microperiods
a age (in macroperiods)
v scenarios
Parameters
[S/] set of microperiods s within macroperiod ¢ and line /
C, capacity (time) of production line / available in macroperiod ¢
a;; capacity consumption (time) needed to produce one unit of product j on line /
¢ production costs of product j (per unit) on line /
p; price of each product j sold
1z cost incurred for each product j spoiled
u'j shelf-life duration of product j right after being produced (time)
my; minimum lot size (units) of product j when produced on line /
s1:7(7;;)  sequence-dependent setup cost (time) of a changeover from product i to product j on line /
Yijo equals 1, if line / is set up for product j at the beginning of the planning horizon (0
otherwise)
First-stage decision variables
Qi quantity of product j produced in microperiod s on line /
Vijs equals 1, if line / is set up for product j in microperiod s (0 otherwise)

Zyjjs equals 1, if a changeover from product i to product j takes place on line / at the beginning
' of microperiod s (0 otherwise)
Second-stage decision variables
Wi/ inventory of product j with age a available at macroperiod ¢ in scenario v

av

g quantity of product j with age a delivered at macroperiod ¢ in scenario v

© 2014 The Authors.
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We denote a given set {1,2,..., M} as [M]. Further note that variables w9/ and ¢ are only
instantiated for a certain domain to ensure that no perished product is kept in stock or used to
fulfill demand. Hence, the dynamic set [4,,] = {a € Z" |a < min{u st —1}} and the set [4,] = {a €
Z"la < min{u ;— 1,¢ —1}} are used depending on the corresponding decision variable. Without
loss of generality, we assume that both inventory at the beginning and end of the planning horizon

are null.
S-LSP-PP
’ _u,y
madeﬂ Zpﬂlf}? —ZPJW,{ - Zslijzlijs_zcquljs
v J.t,a Jit 1, s 1,j,s
subject to

Yy <dy VjielNltelTlvelV]
v <dy Vje[N),te[T],ae[4,],vel[V]

wir = (Wi =) VieNLrelT+1]ael4,]\(0),ve[V]

Jt =1~ V-

> gy =wy VjelNLte[TlLvelV]
1,5€[S,]

G .
Gujs < v VIEIL]j€NLr € [T] s €[S)]
1j

Z Tij Ziijs T Z a9, <C, Vle[l],te[T]
i, j,s€[S),] J.s€lS,,]

> y=1 VielLlte[T]selS,]

J

Qi =m0 — Vo) VIE[L] j €[Nt €[T] s €[S)]
Z/ijs = Vi s—1 +yljs -1 Vvie [L]v I ] € [N]v le [T]’ s € [S]I]

av av .
Vi s Wils Qs Ziijs = 05 vy € {0, 1}

)

(6)

@)

®)

©)

(10)

(11)

(12)

(13)

(14)

(15)

Objective function (5) maximizes the profit over the planning horizon by subtracting the revenue
of the sold products, the spoilage cost, sequence-dependent setup cost, and variable production cost.
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The quantity of spoiled products that reach the end of the shelf life without being sold is obtained
in a straightforward manner with the proposed formulation since it corresponds to the inventory
that reaches an age of u; (it is given by wtf’v).

Equation (6) does not allow the quantity of sold products of a given age to be above the demand
curve derived from the customer willingness to pay. Equation (7) forces the sum of all sold products
of different ages not to exceed the total demand for the product with the fresher state for each
scenario. Hence, in this formulation, a strong assumption is made regarding the perfect control
of the retailer over the inventory available to customers. The discussion about other inventory
policies is out of the scope of this work. The readers are referred to Amorim et al. (2013) for more
details.

Constraints (8) establish the inventory balance constraints that are modeled here in a propagation
form that updates the age of the inventories throughout the planning horizon for each demand
scenario and discounts the products sold. Equation (9) establishes that the production in a certain
macroperiod on all lines for a given product is equal to the available stock of that same product
with age 0 (maximum freshness). These constraints link the production planning with the demand
fulfillment requirements and, thus, link the first- and second-stage decision variables of the stochastic
model. Constraints (10) ensure that in order to produce a certain product, the necessary setup is
performed. Moreover, at each moment only one product may be produced on a certain line (12) and
each product lot is subject to a minimum lot size (13). Constraints (11) limit the use of the capacity
with setups and production in each macroperiod and, finally, constraints (14) are responsible for
tracking the changeover between products. Note that the integrality condition of variables z;;;; is
not necessary.

4. Computational study

In this section, the performance of the hybrid path-relinking method is assessed through compu-
tational experiments on instances of the S-LSP-PP. To test the proposed method, we run a C++
implementation of the algorithm with the mixed-integer programming solver CPLEX 12.5.1 on a
PC with an Intel Core 17-3770-3.40 GHz processor under a Microsoft Windows 7 platform.

4.1. Data generation

A total of 54 instances were systematically generated, following a methodology similar to the one
proposed by Haase and Kimms (2000); therefore, L was set to 1. For all products ¢;; = 1, ¢;; = 0.5,
p; =2, and p; = 2. Moreover, the machine is set up for product 1 at the beginning of the planning
horizon. The number of products N is 5, 10, and 15. The number of macroperiods 7 is 5, 10,
and 20. The number of microperiods within a macroperiod (|S,, |) is set at the value of N allowing
for all products to be produced in each macroperiod with minimum lot sizes (1n,;) of 1 unit. For
the setup times between products (t;;;), the interval [2,10] was used for the 15 products (except
for the case where i = j, and the setup is 0). Shelf lives (u;) were generated for all 15 products
for each possible planning period length choosing randomly from the interval [1, T']. The setup
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cost s;; for a changeover from product i to product j on line / is computed as s;;; = 507;;;. Each
element of the initial demand matrix (d]QtV) for the average scenario with 15 products (rows) and
20 macroperiods (columns) was randomly generated on the interval [40, 60]. Afterwards, using
Equation (4) the complete demand for all ages is created (dj‘ft"). For the possible demand realizations,
five different scenarios were generated by multiplying the average demand elements by 0.6, 0.8, 1.2,
and 1.4. We assume that every scenario has the same probability of occurrence and test two cases:
(a) all five scenarios and (b) three scenarios only with the intermediate scenario and less extreme
ones (multiplying the average demand by 0.8 and 1.2). Finally, the capacity per macroperiod C), is
determined according to

o
Cll — h’ VZ’ l’
uivll

where the capacity utilization U is equal to 0.7, 0.8, and 0.9. It is important to note that the
utilization of capacity is a rough estimate, as setup times do not influence the computation of C;,
and an average value for demand is considered across all scenarios. In summary there are

115, 10, 15} x |{5, 10, 20}| x |{3, 5}| x |{0.7, 0.8, 0.9}| = 56 instances.

4.2. Parameters setting

The proposed hybrid path-relinking method only requires a few parameters to be set. The effort
was expended for solving each scenario with the branch-and-bound procedure, which was set using
both the integrality gap and solving time criteria. Therefore, a scenario is solved only while either
the integrality gap is greater than 20% or solving time is below 300 seconds. These parameters were
set after preliminary results showed that besides finding fast feasible solutions for each scenario, it is
relevant to feed near-optimal solutions for each scenario in order to find solutions that have a good
performance in a stochastic setting with the hybrid path-relinking method. For the parameter ¢,
which is responsible for controlling the neighborhood exploration of each path-relinking iteration,
its value is chosen in such a way that about 70% of the starting solution is converted into the guiding
one.

4.3. Results

To assess the performance of our algorithm, we compared it to the solutions found for the DEM
using CPLEX. The hybrid path-relinking was lasted with the specified parameters (Section 4.2)
and CPLEX with its default parameters. Moreover, for both methods, a time limit of 3600 seconds
was set.

Performance profiles are used (Dolan and More, 2002) in order to assess the performance of
both approaches. These performance profiles allow a fair comparison of methods (s € S) within
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Fig. 3. Performance profile for CPLEX and HPR.

an instance set (p € P) by using a performance measure (), which is the value of the stochastic
objective function. For each instance p and each method s, a performance ratio r,  is obtained
using the following expression:

_ max{m, s eSt—m,;
ps

r

(16)

max{m,, : s € S}

Having computed these values, for each method s the proportion of instances solved with a
performance ratio less or equal than t (p,(7)) is obtained using the following expression (17):

lpeP:r,, <1l
|P|

IOS(T) = (17)

Figure 3 plots the performance profile of both CPLEX and HPR. The value p,(7) acts as a
cumulative function and therefore the closer the curve to the top left curve the better it is.

Overall, the graph shows that the HPR performs better than CPLEX for the considered instances
set. Its curve completely dominates the one related with CPLEX. In the worst case, the HPR has a
deviation t of around 6% while the deviation 7 for CPLEX is about 20%.

The best-found solutions (BFSs) for each method and all instances are presented in Tables 1 and
2. For each instance, the best solution, running time, and relative difference between the solutions
of both methods are reported. Moreover, averages for the running times and obtained improvement
are also presented.
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Table 1
Results for the best-found solution of each method (instances with three scenarios)

Instance Solution value Running time (seconds) Improvement (%)
NxTxVxU CPLEX HPR CPLEX HPR (HPR-CPLEX)/CPLEX
5x5%x3x%x0.7 475.94 475.94 3600 934 0
Sx10x3x0.7 1339.11 1339.11 3600 954 0
5x20x3x0.7 2370.14 2334.97 3600 2471 -1
10x 5x3x%x0.7 1045.03 1045.03 3600 1172 0
10 x 10 x 3 x 0.7 2576.16 2576.16 3600 3068 0
10 x 20 x 3 x 0.7 4552.60 4482.30 3600 3600 -2
15x5%x3x0.7 1342.97 1379.08 3600 2367 3
I5x 10 x 3 x0.7 3408.90 3476.50 3600 3600 2
15x20 x3x0.7 4418.02 5539.56 3600 3600 25
5x5%x3x%x0.8 477.73 474.73 3600 920 -1
S5x10x3x0.8 1301.97 1314.40 3600 966 1
5x20x3x0.8 2368.78 2289.23 3600 1872 -3
10 x 5x3x0.8 1052.15 1052.25 3600 1265 0
10 x 10 x 3 x 0.8 2544.56 2575.98 3600 3600 1
10 x 20 x 3 x 0.8 4441.84 4262.25 3600 3600 —4
15x5%x3x%x0.8 1417.07 1459.90 3600 3600 3
I5x10x3x0.8 3402.98 3298.49 3600 3600 -3
15x20x3x0.8 4403.11 5222.62 3600 3600 19
5x5%x3x%09 467.83 467.83 3600 982 0
S5x10x3x0.9 1320.30 1325.61 3600 1323 0
5x20x3x%x0.9 2354.01 2314.70 3600 3061 -2
10x5x3x%x09 1040.80 1040.80 3600 1363 0
10 x 10 x 3 x 0.9 2583.06 2460.51 3600 3600 =5
10 x 20 x 3 x 0.9 4399.30 4143.65 3600 3600 —6
I5x5x3x%x09 1379.63 1355.91 3600 3469 -2
I5x10x 3 x0.9 3257.51 3061.00 3600 3600 —6
15x20x3x09 4309.61 4695.92 3600 3600 9
Average — - 3600 2569.89 1

These detailed results, disaggregated per instance, indicate that the proposed method outperforms
CPLEX especially in the hardest instances (with 15 products and 20 periods). Moreover, the average
of the improvement is higher for the instances with five scenarios. This suggests that by managing
more candidate solutions, the HPR is able to incorporate the information of the individual scenarios
and deliver a better result. For the smallest instances, both methods perform very similarly. However,
these better results were found, on average, in a less amount of time.

Figure 4 plots the deviation to the BFS over the running time for both CPLEX and HPR. The
graph shows that until around 300 seconds, CPLEX is obtaining better solutions than the HPR.
This is mainly due to the warming period of the proposed method, when it is exploring the individual
scenarios. After this period, the HPR outputs on average a solution that is closer to the BFS of a
given instance.
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Table 2
Results for the best-found solution of each method (instances with five scenarios)
Instance Solution value Running time (seconds) Improvement (%)
NxTxVxU CPLEX HPR CPLEX HPR (HPR-CPLEX)/CPLEX
5x5x5x0.7 1302.27 1305.56 3600 1609 0
5x10x5x0.7 3154.17 3105.36 3600 1736 -2
5x20x5x0.7 5769.23 5784.58 3600 3600 0
10 x 5x5x0.7 2739.27 2733.30 3600 2409 0
10 x 10 x 5 x 0.7 6114.01 5965.76 3600 3600 -2
10 x 20 x 5 x 0.7 11,080.02 11,068.47 3600 3600 0
I5x5x%x5x0.7 3891.21 3958.42 3600 3600 2
15x 10 x 5 x 0.7 8178.86 8776.06 3600 3600 7
15%x20x5x%x0.7 12,933.11 15,078.69 3600 3600 17
5x5x5x0.8 1306.77 1305.56 3600 1647 0
S5x10x5x0.8 3128.57 3131.04 3600 1551 0
5x20x%x5x%x0.8 5739.09 5765.77 3600 3600 0
10 x 5x5x0.8 2738.35 2738.86 3600 2345 0
10 x 10 x 5 x 0.8 6082.92 5994.21 3600 3600 -1
10 x 20 x 5 x 0.8 11,266.63 10,900.85 3600 3600 -3
I5x5%x5x%x0.8 3837.00 3940.28 3600 3600 3
15x 10 x 5% 0.8 8215.51 8255.34 3600 3600 0
15x20 x5 x0.8 12,800.18 14,904.89 3600 3600 16
5x5x5x09 1305.56 1305.56 3600 1647 0
5x10x5x0.9 3111.59 3141.44 3600 1699 1
5x20x5x%x0.9 5768.48 5769.47 3600 3600 0
10x5%x5x09 2677.13 2738.86 3600 2345 2
10 x 10 x 5 x 0.9 6102.88 5994.21 3600 3600 -2
10 x 20 x 5 x 0.9 10,958.37 10,900.85 3600 3600 -1
I5x5%x5x%x09 3697.93 3940.28 3600 3600 7
15x10x 5% 0.9 8270.28 8255.34 3600 3600 0
15x20 x5 x 0.9 12,183.20 14,904.89 3600 3600 22
Average - - 3600 3029.19 2
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Fig. 4. Efficiency profile in terms of time for CPLEX and HPR.
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5. Conclusions and future work

This paper shows the suitability of hybrid methods to solve complex stochastic problems, such as the
stochastic lot sizing and scheduling of perishable goods. Specifically, we propose a novel hybridiza-
tion of a truncated path-relinking with a mixed-integer solver that takes advantages of the special
structure of these type of problems. This method is innovative because the path-relinking method
is applied in a completely different context than its original use. From a reasonable (good) upper
bound for each demand scenario separately, a path-relinking method works on the most promising
solutions from the stochastic point of view. Since we are dealing with a two-stage stochastic model
with only linear second-stage variables, each iteration evaluation of the path-relinking is rather fast.
Results show the increased advantage of this method over CPLEX alone especially for the hardest
instances.

Future work is to be performed in three directions. Improve the decision on which starting and
guiding solutions to use, reduce the need of the mixed-integer linear solver in order to improve
scalability, and finally, assess the performance of this method under harder instances.

Acknowledgments

The first author appreciates the support of the FCT Project PTDC/EGE-GES/104443/2008 and
the FCT Grant SFRH/BD/68808/2010.

References

Amorim, P, Costa, A., Almada-Lobo, B., 2013. Influence of consumer purchasing behaviour on the production planning
of perishable food.OR Spectrum DOI 10.1007/s00291-013-0324-9.

Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J., 2008. A survey on metaheuristics for stochastic combinatorial
optimization. Natural Computing 8, 239-287.

Costa, D., Silver, E., 1998. Tabu search when noise is present: an illustration in the context of cause and effect analysis.
Journal of Heuristics 23, 5-23.

Dolan, E.D., More, J.J., 2002. Benchmarking optimization software with performance profiles. Mathematical Program-
ming 91, 201-213.

Festa, P, Resende, M., 2009. Hybrid grasp heuristics. In Abraham, A., Hassanien, A.E., Siarry, P., Engelbrecht, A.
(eds) Foundations of Computational Intelligence, Vol. 3. Springer, Berlin and Heidelberg Studies in Computational
Intelligence, Vol. 203, pp. 75-100.

Festa, P., Resende, M., 2011. Grasp: basic components and enhancements. Telecommunication Systems 46, 253-271.

Festa, P, Resende, M., 2013. Hybridizations of grasp with path-relinking. In Talbi, E.G. (ed.) Hybrid Metaheuristics.
Springer, Berlin and Heidelberg Studies in Computational Intelligence, Vol. 434, pp. 135-155.

Glover, F., Laguna, M., 1993. Tabu search. In Reeves, C. (ed.) Modern Heuristic Techniques for Combinatorial Problems.
Blackwell Scientific Publishing, Oxford, pp. 70-141.

Gutjahr, W., 2003. A converging ACO algorithm for stochastic combinatorial optimization. In Albrecht, A., Steinhofel,
K. (eds) Stochastic Algorithms: Foundations and Applications. Springer, Berlin and Heidelberg, Lecture Notes in
Computer Science, Vol. 2827, pp. 10-25.

Gutjahr, W.J.,, Strauss, C., Wagner, E., 2000. A stochastic branch-and-bound approach to activity crashing in project
management. INFORMS Journal on Computing 12, 125-135.

© 2014 The Authors.
International Transactions in Operational Research © 2014 International Federation of Operational Research Societies



P. Amorim et al. / Intl. Trans. in Op. Res. 22 (2015) 113127 127

Haase, K., Kimms, A., 2000. Lot sizing and scheduling with sequence-dependent setup costs and times and efficient
rescheduling opportunities. International Journal of Production Economics 66, 159-169.

Lokketangen, A., Woodruff, D.L., 1996. Progressive hedging and tabu search applied to mixed integer (0, 1) multistage
stochastic programming. Journal of Heuristics 2,2, 111-128.

Meyr, H., 2002. Simultaneous lotsizing and scheduling on parallel machines. European Journal of Operational Research
139, 277-292.

Resende, M.G., Ribeiro, C.C., Glover, F., Martin, R., 2010. Scatter search and path-relinking: fundamentals, advances,
and applications. In Gendreau, M., Potvin, 1.Y. (eds) Handbook of Metaheuristics. Springer, New York, International
Series in Operations Research & Management Science, Vol. 146, pp. 87-107.

Rockafellar, R., Wets, R., 1991. Scenarios and policy aggregation in optimization under uncertainty. Mathematics of
Operations Research 16, 119-147.

Watson, J.-P., Woodruff, D.L., 2010. Progressive hedging innovations for a class of stochastic mixed-integer resource
allocation problems. Computational Management Science 8, 355-370.

Zeng, R.Q., Basseur, M., Hao, J.K., 2013. Solving bi-objective flow shop problem with hybrid path relinking algorithm.
Applied Soft Computing 13, 4118-4132.

© 2014 The Authors.
International Transactions in Operational Research © 2014 International Federation of Operational Research Societies



