
Available online at www.sciencedirect.com
European Journal of Operational Research 190 (2008) 68–78

www.elsevier.com/locate/ejor
Discrete Optimization

Fast heuristics for the Steiner tree problem with revenues,
budget and hop constraints

Alysson M. Costa a,b,*, Jean-François Cordeau c, Gilbert Laporte b

a Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, CP 668, São Carlos 13560-970, São Paulo, Brazil
b Centre for Research on Transportation and Canada Research Chair in Distribution Management, HEC Montréal,

3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada, H3T 2A7
c Centre for Research on Transportation and Canada Research Chair in Logistics and Transportation, HEC Montréal,

3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada, H3T 2A7

Received 14 July 2006; accepted 5 June 2007
Available online 15 June 2007
Abstract

This article describes and compares three heuristics for a variant of the Steiner tree problem with revenues, which
includes budget and hop constraints. First, a greedy method which obtains good approximations in short computational
times is proposed. This initial solution is then improved by means of a destroy-and-repair method or a tabu search algo-
rithm. Computational results compare the three methods in terms of accuracy and speed.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Prize collecting; Network design; Steiner tree problem; Budget; Hop constraints; Heuristics; Tabu search
1. Introduction

Network design problems arise in a large variety of real-life situations. In particular, spanning trees are
used to model and solve planning problems frequently encountered in telecommunications (Voß, 2006) and
electricity distribution (Carneiro et al., 1996; Avella et al., 2005).

The purpose of this article is to develop heuristics for the Steiner Tree Problem with Revenues, Budget and

Hop Constraints (STPRBH). This problem is a generalization of several well-studied problems such as the
Minimum Spanning Tree Problem (MSTP) and the Steiner Tree Problem (STP) described as follows. Let
G = (V,E) be a graph with vertex set V = {1, . . . ,n}, where vertex 1 is the root vertex, and edge set
E = {(i, j) : i, j 2 V, i < j}. In what follows, (i, j) must be interpreted as (j, i) if i > j. Each vertex has an associ-
ated revenue ri P 0, and each edge has an associated cost cij P 0. Also, let T be a tree in G, and let v(T) and
e(T) be the sets of vertices and edges belonging to T, respectively. The STPRBH is the problem of determining
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.06.012

* Corresponding author. Tel.: +1 514 343 6111; fax: +1 514 343 7121.
E-mail addresses: alysson@crt.umontreal.ca (A.M. Costa), cordeau@crt.umontreal.ca (J.-F. Cordeau), gilbert@crt.umontreal.ca

(G. Laporte).

mailto:alysson@crt.umontreal.ca
mailto:cordeau@crt.umontreal.ca
mailto:gilbert@crt.umontreal.ca

A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78 69
a tree T of maximal revenue rðT Þ ¼
P

i2vðT Þri, rooted at vertex 1, and subject to two constraints: a budget con-
straint limiting the network cost

P
ði;jÞ2eðT Þcij to a maximum value b, and hop constraints limiting the number

of edges hi between i 2 v(T) and the root vertex to a maximum value h.
The STP is a well-studied problem and so is its version with revenues. The latter problem is useful in situ-

ations where one must decide whether or not to serve certain vertices. The idea is that one is not obliged to
serve all vertices as in the MST, or specified vertices as in the STP. Instead, the number and location of the
vertices to be served are part of the decision problem. For example, a cable television company planning to
expand its network can decide whether or not to serve a certain area, based on the combination of the expected
revenues that will come from the clients in that area and the network expansion cost. Steiner tree problems
with revenues have been used to solve design problems in local access networks (Canuto et al., 2001; Cunha
et al., 2003), and in heating networks (Ljubić et al., 2005). In network expansion problems, one is usually faced
with budgetary constraints that come from the fact that a limited investment budget is available for a certain
area or a certain period of time. Although it is quite easy to understand the practical aspect of these con-
straints, budget considerations are almost always ignored when dealing with STP with revenues (Costa
et al., 2006b).

Concerning the hop constraints, their inclusion enables the consideration of reliability or transmission
delays in the network. LeBlanc et al. (1999) have investigated the effect of hop constraints both on the reliabil-
ity and on the maintenance of the signal quality in packet-switched telecommunication networks. Gouveia and
Magnanti (2003) also use hop constraints to guarantee quality of service in telecommunications networks.
Other uses of hop constraints have also been proposed in the literature. Balakrishnan and Altinkemer
(1992) have imposed hop constraints to generate alternative communications networks, while Voß (1999)
has mentioned the utility of these constraints to model time durability constraints when solving some classes
of lot-sizing problems by means of spanning tree models.

In this article we propose heuristic methods for the STPRBH. A previous study (Costa et al., forthcoming)
has shown the limits of exact algorithms for this problem. The heuristic methods proposed here are intended
to obtain good approximations for large scale problems for which exact algorithms fail to converge. Several
exact and heuristic methods already exist for the STP with profits (Costa et al., 2006b) and for spanning prob-
lems with hop constraints but, to our knowledge, no one has ever proposed approximate algorithms for the
more general STPRBH. The closest problems solved by means of heuristic methods seem to be the MST and
the STP with hop constraints. Lagrangian relaxation heuristics have been proposed for the MST with hop
constraints (Gouveia, 1995, 1996, 1998; Gouveia and Requejo, 2001) and for the STP with hop constraints
(Gouveia, 1998), while Voß (1999) has developed a greedy method and a tabu search algorithm for the hop
constrained STP.

We first propose a fast greedy algorithm which is followed by one of the following two improvement
phases: a simple local search that destroys part of the solution and rebuilds it in a greedy fashion, or a more
flexible tabu search algorithm that explores the solution space by means of two simple neighborhoods. In the
remainder of this article we describe these three algorithms in detail. In the next section, we provide a math-
ematical formulation for the STPRBH in order to help understand the ideas behind the heuristics. Then, the
algorithms themselves are described. The greedy and the destroy-and-repair approaches are presented in Sec-
tions 3 and 4, respectively. Section 5 describes the tabu search algorithm while computational results are pro-
vided in Section 6. The paper ends with some conclusions in Section 7.

2. Mathematical formulation

We first recall the undirected Dantzig–Fulkerson–Johnson model for the STPRBH presented in (Costa
et al., forthcoming). Constraints (4) and (5) of this model are useful to understand our heuristics. Let xij

and yi be binary variables associated with edges (i, j) 2 E and vertices i 2 V, respectively. Variable yi is equal
to 1 if vertex i belongs to the solution (y1 = 1), and to 0 otherwise. Similarly, variable xij is equal to 1 if edge
(i, j) belongs to the solution, and to 0 otherwise. For S � V, define E(S) as the set of edges with both end ver-
tices in S. Let also P = (i1 = 1, . . . , i‘) denote a path originating at the root vertex and containing ‘ vertices.
Finally, define Ph as the set of paths P with ‘ = h + 2, i.e., paths with h + 1 edges. The STPRBH can then
be written as

70 A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78
Maximize
X
i2V

riyi ð1Þ

subject to
X
ði;jÞ2E

xij ¼
X
i2V

yi � 1; ð2Þ
X

ði;jÞ2EðSÞ
xij 6

X
i2Snfkg

yi; k 2 S � V ; jSjP 2; ð3Þ
X
ði;jÞ2E

cijxij 6 b; ð4Þ

X‘
t¼2

xit�1;it 6 h; P ¼ ði1 ¼ 1; . . . ; i‘Þ 2 Ph; ð5Þ

xij 2 f0; 1g; ði; jÞ 2 E;

y1 ¼ 1; ð6Þ
yi 2 f0; 1g; i 2 V n f1g: ð7Þ
The goal is to maximize the collected revenues while respecting the budget and hop constraints, (4) and (5),
respectively. Constraint (2) guarantees that in the solution the number of edges is equal to the number of ver-
tices minus one, and constraints (3) are the connectivity constraints.

3. Greedy algorithm

The idea of our greedy algorithm is to iteratively construct a rooted tree while maintaining the feasibility of
constraints (4) and (5). We start with a solution containing only the root vertex. At each step of the algorithm,
one adds a path connecting a non-selected profitable vertex to the existing solution. The algorithm stops when
it cannot find a profitable vertex that can be added to the solution without incurring a violation of either the
budget or the hop constraints. Two basic steps are needed to implement this idea. First, one must be able to
produce feasible paths connecting non-selected profitable vertices to the existing solution. Second, one must
evaluate these paths and choose the best one (in a greedy sense). These two steps are now detailed.

3.1. Finding feasible paths

Adding at each step of the algorithm a path not creating cycles to the existing solution guarantees the sat-
isfaction of constraints (2) and (3). In order to respect the budget constraint, the sum of the edge costs in the
added path plus the costs of the edges already in the solution must not exceed the budget value. Therefore, one
has interest in finding shortest paths connecting profitable vertices to the current tree. On the other hand, the
number of the edges in a path must be limited, in order to respect the hop constraints. It is important to note
that it does not suffice to guarantee that the added paths have less than h edges. Instead, one must also ensure
that the number of edges in the complete path from the added profitable vertex to the root vertex (which might
include edges that were already in the existing solution) is limited to h.

Based on these two considerations, it is easy to conclude that a building block for constructing feasible
paths is the hop constrained shortest path problem, i.e., the problem of determining a shortest path between
two vertices containing at most h edges. This problem can be solved efficiently by dynamic programming
(Lawler, 1976). Let L(i, j,‘) represent the cost of a shortest path between an origin vertex i and a destination
vertex j, containing at most ‘ edges. Then
Lði; i; 0Þ ¼ 0; i 2 V ;

Lði; j; 0Þ ¼ 1; i; j 2 V ; j 6¼ i;

Lði; j; ‘Þ ¼ minfLði; j; ‘� 1Þ; min
kjðk;jÞ2E

fLði; k; ‘� 1Þ þ ckjg; i; j 2 V ; ‘ P 1:
Note that, contrary to what happens in the shortest path problem, an optimal subpath between two vertices is
dependent on the complete path to which it belongs. This happens due to the hop constraints, as shown in

Fig. 1. Example of different optimal subpaths between two vertices depending on the complete path.

A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78 71
Fig. 1. Costs are shown next to the edges. The figure depicts optimal shortest paths from vertex 1 to the other
vertices in the graph, with a hop limit of 3. Consider the optimal subpath from vertex 1 to vertex 4. This sub-
path includes vertices 2 and 3 if vertex 4 is the destination, but, in order to respect the hop limit, it includes
only vertex 6 if vertex 5 is the destination. In implementation terms, this means that one must keep a prece-
dence array for each vertex of the graph vertices while solving the problem.

With an algorithm for the shortest path problem with hop constraints, one can evaluate the cost of con-
necting the non-selected profitable vertices to the existing tree and develop a simple algorithm. Let T be
the current solution. At the first iteration, v(T) = {1} and the candidate destination vertices j are those with
L(1, j, h) 6 b and rj > 0. Note that if a path violates the hop constraint, the hop constrained shortest path will
return1, since we stop the dynamic programming algorithm after h steps. Therefore, paths violating the hop
constraint will not be considered for insertion in the solution. When at least one path has been added, one
must not only consider the new paths that originate at the root vertex, but also all paths that are originated
at other vertices in v(T). The algorithm considers for insertion all shortest paths such that
Lði; j; h� hiÞ 6 b�
X

ði;jÞ2eðT Þ
cij; i 2 vðT Þ; j 62 vðT Þ; rj > 0:
Instead of running the hop constrained shortest path algorithm for all vertices in the current solution, we set
the costs of the edges in e(T) to 0 and run the algorithm a single time, with the root vertex as the origin. Be-
cause of the dynamic programming structure, a single run is able to compute the hop constrained shortest dis-
tances from the root to all the other vertices, saving computation time.

3.2. Evaluating the paths

At each step, a single new path is added to the solution. The criterion used to choose the path to be added is
an important part of the algorithm. If one makes a choice based only on profits, there is a risk of adding very
costly paths that will soon consume the whole budget. On the other hand, if one chooses to add shortest paths,
some vertices with a high revenue but at a moderate distance from the current solution may be ignored. Based
on preliminary tests, we found that the best strategy was to consider both the costs and the revenues when
deciding on the path to be added. We tested several ratios ra

j=cb, where a and b are two non-negative numbers,
rj is the revenue of the profitable vertex to be added, and c is the sum of the cost of the edges in the path. We
found that the best parameter setting was a = 3 and b = 1, which was used in all subsequent tests.

Algorithm 1. Greedy algorithm for the STPRBH

1: T is initially the root node: v(T) = {1}.
2: �p ¼ 1;
3: while �p 6¼ 0 do
4: �p ¼ 0;�c ¼ 0;�j ¼ �1.
5: for all vertices j 62 v(T) do
6: c = L(1, j,h);
7: p ¼ r3

j=c.
8: if

P
ði;jÞ2eðT Þcij þ c > b then

9: p = 0.
10: end if
11: if p P �p then
12: �j ¼ j;
13: �c ¼ c;
14: �p ¼ p.
15: end if
16: end for
17: if �p 6¼ 0 then
18: P is the path from 1 to �j: P ¼ ði1 ¼ 1; . . . ; i‘ ¼ �jÞ;
19: cit ;itþ1

¼ 0; t ¼ 1; . . . ; ‘� 1;
20: v(T) = v(T) [v(P);
21: destroy possible cycles.
22: end if
23: end while
24: Return T.

72 A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78
Algorithm 1, described in the figure above, presents the complete greedy algorithm in details. A few com-
ments on this algorithm are in order. First, note that when adding a path one can also add other profitable
vertices in addition to the end vertex. It has proved to be slightly better not to consider these profits when
deciding which path should be added. This way, the algorithm tends to add shorter paths first, thus reducing
the risk of making wrong decisions due to the myopic character of the choices. Second, because of the hop
constraints, one can sometimes introduce cycles when adding a path. Consider again Fig. 1 and the situation
where h = 3, all vertices are profitable and, after the first iteration of the greedy algorithm v(T) = {1,2,3,4}.
Assuming that the budget constraint is not violated, the algorithm will try to add vertex 5 to the solution,
using the edges (1, 6) and (6,4) in order to respect the hop constraint and therefore forming a cycle. When this
situation happens, the algorithm destroys the cycle by inspecting vertices with two incoming edges (in this
case, vertex 4) and eliminating the edge that was inserted first (in this case, edge (3, 4)). This way, the cycle
is eliminated and the hop constraints are respected for the entire graph.
4. Destroy-and-repair algorithm

The idea of destroying part of the solution and reconstructing it in a different way in order to obtain dif-
ferent and hopefully better solutions has already been used to solve other combinatorial problems. Ropke and
Pisinger (2006) have employed such a technique to solve vehicle routing problems with time windows, and
Pisinger and Ropke (2007) have applied it to a more general class of routing problems. Voß (1999) has suc-
cessfully used a similar idea to solve the STP with hop constraints. For the STPRBH, we propose a very simple
procedure that consists of sequentially blocking part of the current solution and rerunning the greedy
algorithm.

A feasible solution to the STPRBH consists of a tree. Given an initial solution, we simply set the cost of
some edges to infinity, one at a time, and we rerun the greedy algorithm with the modified costs. This is done
for all edges of the current solution that are incident to a leaf vertex, as shown in Fig. 2, and the best obtained
solution is retained. The procedure is repeated for the new solution until there is no gain obtained with the
blocking of a single edge. Algorithm 2 schematically presents the procedure.

Fig. 2. Edges incident to leaf vertices.

Algorithm 2. Destroy-and-repair algorithm for the STPRBH

1: T = solution of Algorithm 1;
2: best solution T ¼ T .
3: y = true
4: while y = true do
5: y = false
6: for all the edges (i,j) incident to a leaf vertex do
7: store original cost: �cij ¼ cij;
8: cij =1;
9: T= solution of Algorithm 1 (with modified costs).

10: if rðT Þ > rðT Þ then
11: y = true
12: T ¼ T .
13: end if
14: Restore original cost: cij ¼ �cij.
15: end for
16: end while
17: T ¼ T ;
18: return T

A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78 73
Other ways of preventing the greedy algorithm from repeatedly reaching the same solution can be used. For
example, one could block all edges in the solution, one at a time. We tested this idea and, although it was much
more time consuming, the results were not much better than the ones obtained with Algorithm 2. In a way this
was expected, since the greedy algorithm has a tendency to reconstruct a similar solution if an intermediate
edge has been blocked. By concentrating on the edges incident to profitable leaf vertices we increase the prob-
ability of really blocking that solution and obtaining something new.

We also tested other neighborhoods such as blocking a vertex of the solution (by setting the cost of all its
incident edges to infinity). The results turned out to be worse than those obtained with the original algorithm.
In this case, we think that the explanation comes from the fact that blocking a vertex is probably too restrictive
and by doing so we may eliminate several good solutions. Finally, we have also tested the possibility of block-
ing more than one arc at the same time. Although minor improvements were obtained, the computational
times were considerably larger and this option was also discarded.

74 A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78
5. Tabu search algorithm

A tabu search algorithm was also developed for the STPRBH. The main idea of tabu search is to define a
neighborhood for a solution and let the algorithm explore the search space by moving to the best allowed
neighbor solutions, while defining some forbidden or tabu moves in order to avoid cycling.

We define two basic moves for the STPRBH. The first is an add move. It consists of adding a path origi-
nating at a vertex of the current solution and ending at a profitable vertex. This is very similar to the basic step
of the greedy algorithm presented in Section 3, since this move also makes use of the shortest path with hop
constraints procedure and, therefore, maintains hop-feasibility during the whole search. In order to increase
the flexibility of the algorithm, we let the add move violate the budget constraint. The idea is to design an algo-
rithm capable of exploring infeasible parts of the search space in the hope of reaching feasible solutions that
could not be reached otherwise. To encourage the identification of feasible solutions during the search, a pen-
alty is associated with trees that violate the budget. The idea of letting the tabu search explore infeasible areas
of the search space has been used successfully in other combinatorial problems (see, e.g., Gendreau et al.,
1994).

The second move is remove, which consists of the deletion of a branch of the solution. It is the counterpart
of the add move in the sense that the add move is driven by revenue collection, while the remove move is driven
by budget-feasibility. In the following, the two moves are described in detail. A third move, which is called
destroy is also described. We have used this move only occasionally to help the search algorithm escape from
local optima.

With respect to several tabu search implementations developed for the solution of combinatorial optimiza-
tion problems, our algorithm is relatively simple. This is a deliberate choice. In line with Cordeau et al. (2002),
we believe it is preferable to design algorithms that are both accurate and simple. This makes them easy to
reproduce and it favours their adoption by other researchers.
5.1. Add move

An add move is like a single step of the greedy algorithm described in Section 3: one adds the hop con-
strained shortest path connecting the best non-selected vertex to the current tree. This is done by setting
the edge costs in the current solution to 0 and running the hop constrained shortest path procedure, which
returns the hop constrained shortest paths originating at the root and ending at each vertex of the graph. Once
a vertex has been added, it is declared tabu for a number of iterations. This way, the branch connecting the
previous solution to the newly added vertex will not be deleted by the remove move until its tabu status has
been lifted.

The tabu mechanism helps avoid cycling and forces the algorithm to explore new areas of the search space,
differentiating the tabu search from the greedy algorithm presented earlier. Another strategy is used to increase
the diversification of the solutions. At each iteration, one considers only a subset of randomly selected
vertices: the algorithm arbitrarily chooses a subset of the possible vertices and adds the best one. Note that
this is not done to save any computational time since the needed information was already available from
the hop constrained shortest path procedure even for the discarded vertices, but as a diversification
mechanism.
5.2. Remove move

The remove move consists of eliminating branches of the current solution. It was made necessary as a coun-
terpart of the add move in order to help the algorithm identify budget-feasible solutions. We carefully select
the branches to be eliminated in order to introduce only local perturbations in the current solution. This is
done by connecting a vertex with degree larger or equal to three to a leaf of the current tree. For a current
solution T, we call B(T) the set of vertices with degree larger or equal to three. These vertices are called break-

ing points, since it is at these vertices that the solution is cut. Fig. 3 depicts an example of a tree solution. The
breaking points are highlighted while the possible paths to be cut are shown in dotted lines.

Fig. 3. Breaking points and possible paths to be removed.

A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78 75
5.3. Destroy move

A destroy move that erases a whole subtree of the current solution has also been developed. This move acts
by randomly selecting a vertex in the current solution and deleting the whole subtree rooted at that vertex.
This move was only used after the algorithm spent a certain number of iterations without improving the best
known solution value.

The three moves just described have been incorporated within the tabu search algorithm. The add and
remove moves are evaluated together. First, the gain of all add moves is computed. The gain of one add move
connecting the profitable vertex i to the solution is given by the value of the revenue of the added vertex, minus
the difference between the penalties after and before the move:
cþi ¼ ri � pðT 0Þ þ pðT 00Þ;

where p(T) is the penalty associated with a solution T, and T 0 and T00 are the solutions before and after the
move, respectively. For a given solution T with total network cost

P
ði;jÞ2eðT Þcij, the penalty is given by
pðT Þ ¼

0 if
P

ði;jÞ2eðT Þ
cij 6 b;

/�
P

ði;jÞ2eðT Þ
cij � b

" #
if

P
ði;jÞ2eðT Þ

cij > b;

8>>><
>>>:
where / is a penalty parameter updated dynamically during the search. The parameter / is initialized at 1, but
the algorithm is robust with respect to this parameter.

In a complementary manner, the remove move for a node i 2 B(T) yields a gain equal to:
c�i ¼ �ri � pðT 0Þ þ pðT 00Þ:
At each iteration, the move with the best gain is performed and the penalty parameter / is updated. If the new
solution is budget feasible, / is halved, thus encouraging the algorithm to look for budget-infeasible solutions.
Similarly, if the new solution is budget-infeasible, / is doubled.

76 A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78
Algorithm 3 presents the tabu search algorithm in detail. It stops after a preset number of iterations.
Algorithm 3. Tabu search algorithm for the STPRBH

1: T = solution of Algorithm 1;
2: T ¼ T ;
3: / = 1.
4: while stopping criterion not reached do
5: Randomly select a subset R(T) of the profitable vertices not in the tree and compute gain,

cþi ¼ ri � pðT 0Þ þ pðT 00Þ; i 2 RðT Þ;
6: compute gain for all remove moves, c�i ¼ �ri � pðT 0Þ þ pðT 00Þ; i 2 BðT Þ;
7: perform move with best gain (c�i or cþi) and update T;
8: make move tabu for 5 iterations.
9: if solution is budget-feasible then

10: / = //2.
11: if rðT Þ > rðT Þ then
12: T ¼ T .
13: end if
14: else
15: / = 2/.
16: end if
17: if no improvement in more than 100 iterations then
18: apply destroy move.
19: end if
20: end while
6. Computational experiments

We have tested the algorithms just described on several instances obtained from the OR-Library (Beasley,
1990). The STP instances contain two set of vertices: mandatory vertices which must be present in the solution,
and Steiner vertices which can be used if their inclusion in the solution reduces the total cost. We have adapted
these instances for the STPRBH by using the mandatory vertices as profitable vertices with revenue given by a
discrete uniform distribution on 1 and 100. The Steiner vertices were attributed a zero revenue. Different val-
ues for the budget and for the hop limit were attributed to each instance, thus creating several scenarios.

Table 1 summarizes the results obtained for a mid-sized group of 144 instances, ranging from 50 to 500
vertices and from 63 to 625 edges. Note that for these instances, the exact methods presented by Costa
et al. (forthcoming) were able to converge within a time limit of 2 hours, allowing them to be used as bench-
marks to evaluate the approximate algorithms. In the table, for each method (greedy algorithm, destroy-and-
repair and tabu search), we report the mean and maximum gap, as well as the mean and maximum compu-
tation times. There are two entries for the Tabu search algorithm, each corresponding to a maximum allowed
number of iterations (2000 or 10,000). Complete results can be found in Costa et al. (2006a).

Even the simplest of the three algorithms can solve a large number of instances to optimality. Indeed, the
greedy algorithm finds an optimal solution for 73 out of the 144 instances. Note that we did not consider
instances with a budget equal to the total network cost since these instances are easy and the greedy algorithm
always finds an optimal solution. It is clear, however, that for some instances the greedy algorithm can be
trapped in a poor quality local optimum. In the worst of the cases, the algorithm generated a solution with
Table 1
Summary of results for the mid-sized instances

Method Gap (%) Max Gap (%) Seconds Max seconds

Greedy 2.50 31.97 <0.01 0.02
Destroy-and-repair 1.13 10.10 0.09 1.44
Tabu (2000) 0.52 ± 0.08 12.99 ± 7.55 0.38 0.90
Tabu (10,000) 0.24 ± 0.05 8.46 ± 8.01 1.80 4.21

Table 2
Summary of results for the larger instances

Method Improvement (%) Max improvement (%) Seconds Max seconds

Greedy – – 1.94 31.78
Destroy-and-repair 1.31 14.36 312.50 6493.60
Tabu (2000) 1.41 ± 0.06 20.80 ± 2.60 44.98 287.64
Tabu (10,000) 2.00 ± 0.04 23.05 ± 2.14 237.53 1668.60

A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78 77
an optimality gap almost equal to 32%. Finally, concerning the computational time, since the algorithm is
based on quick shortest paths calculations, a maximum of 0.02 seconds was required to solve any instance.

Starting from the solution of the greedy algorithm, both the destroy-and-repair and the tabu search were
able to reduce the optimality gaps. The first method reduced the mean gap from 2.50% to 1.13% and the max-
imum gap from 32% to 10.10%. The tabu search was able to further reduce these gaps. The mean gap (aver-
aged over ten runs) was reduced to 0.52% when 2000 iterations were allowed, and to 0.24% when 10,000
iterations were allowed. The maximum gaps for these two cases were 12.99% and 8.46%.

To better evaluate the efficiency of the improvement routines, we consider a second group of larger
instances with up to 500 vertices and 12,500 edges. For these instances, the exact algorithms described in Costa
et al. (forthcoming) generally did not obtain solutions within the allowed time limit of 2 hours, often failing to
even solve the linear relaxation at the root node. For this reason, we compare the results obtained by the
destroy-and-repair and the tabu search methods to the results obtained by the greedy algorithm. Table 2 pre-
sents a summary of the results. We can see that even for large instances, the greedy algorithm is very fast, tak-
ing on average 1.94 seconds, with a maximum of 31.78 seconds. Still concerning the times, it is interesting to
see how the destroy-and-repair can easily become very computationally inefficient, taking almost 2 hours to
solve some of the instances. The tabu search, even when run for 10,000 iterations, is on average 30% faster
than the destroy-and-repair algorithm and presents much more stable computing times. The complete set
of results is presented in Costa et al. (2006a).

Concerning the improvements, the destroy-and-repair algorithm yields mean and maximum improvements
of 1.31% and 14.36%, respectively. The tabu search can increase these percentages to 1.41% and 20.80% when
run for 2000 iterations, and obtains considerably better solutions when 10,000 iterations are allowed. It then
yields 2.00% average improvement in comparison to the greedy algorithm, and a maximum improvement of
more than 23%.
7. Conclusions

We have proposed three heuristics for a modified version of the Steiner Tree Problem with revenues includ-
ing budget and hop constraints. A former study (Costa et al., forthcoming) has shown that exact algorithms
based on existing formulations cannot be applied to large instances of this problem. The heuristics we have
proposed are based on simple construction and tabu search mechanisms. The greedy algorithm is extremely
fast but may be trapped in a local optimum due to its myopic nature. The destroy-and-repair method is a sim-
ple modification of the greedy algorithm which considerably improves its solutions, albeit at the cost of a large
increase in computation time. Finally, the tabu search is capable of consistently identifying optimal solutions
while maintaining the computational times at a reasonable level.
Acknowledgements

This work was supported by the Brazilian Federal Agency for Post-Graduate Education – CAPES, under
grant BEX 1097/01-6 and by the Canadian Natural Science and Engineering Research Council under grants
227837-04 and OGP0039682. This support is gratefully acknowledged. The authors also thank three anony-
mous referees for their valuable comments.

78 A.M. Costa et al. / European Journal of Operational Research 190 (2008) 68–78
References

Avella, P., Villacci, D., Sforza, A., 2005. A Steiner arborescence model for the feeder reconfiguration in electric distribution networks.
European Journal of Operational Research 164, 505–509.

Balakrishnan, A., Altinkemer, K., 1992. Using a hop-constrained model to generate alternative communication network design. ORSA
Journal on Computing 4, 192–205.

Beasley, J.E., 1990. OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41, 1069–1072.
Canuto, S.A., Resende, M.G.C., Ribeiro, C.C., 2001. Local search with perturbations for the prize-collecting Steiner tree problem in

graphs. Networks 38, 50–58.
Carneiro, M.S., França, P., Silveira, P.D., 1996. Long-range planning of power distribution systems: secondary networks. Computers and

Electrical Engineering 22 (3), 179–191.
Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., Semet, F., 2002. A guide to vehicle routing heuristics. Journal of the Operational

Research Society 53, 512–522.
Costa, A.M., Cordeau, J.-F., Laporte, G., 2006a . Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints,

Publication CRT-2006-16, Centre for Research on Transportation, Montreal.
Costa, A.M., Cordeau, J.-F., Laporte, G., 2006b. Steiner tree problems with profits. INFOR 44, 99–115.
Costa, A.M., Cordeau, J.-F., Laporte, G., forthcoming. Models and branch-and-cut algorithms for the Steiner tree problem with revenues,

budget and hop constraints, Networks.
Cunha, A.S., Lucena, A., Maculan, N., Resende, M.G.C., 2003. A relax and cut algorithm for the prize collecting Steiner problem in

graphs, In: Proceedings of Mathematical Programming in Rio, Búzios, Brazil, pp. 72–78.
Gendreau, M., Hertz, A., Laporte, G., 1994. A tabu search heuristic for the vehicle routing problem. Management Science 40, 1276–1290.
Gouveia, L., 1995. Using the Miller–Tucker–Zemlin constraints to formulate a minimal spanning tree problem with hop constraints.

Computers & Operations Research 22, 959–970.
Gouveia, L., 1996. Multicommodity flow models for spanning trees with hop constraints. European Journal of Operational Research 95,

178–190.
Gouveia, L., 1998. Using variable redefinition for computing lower bounds for minimum spanning and Steiner trees with hop constraints.

INFORMS Journal on Computing 10, 180–188.
Gouveia, L., Magnanti, T.L., 2003. Network flow models for designing diameter-constrained minimum-spanning and Steiner trees.

Networks 41, 159–173.
Gouveia, L., Requejo, C., 2001. A new Lagrangian relaxation approach for the hop-constrained minimum spanning tree problem.

European Journal of Operational Research 132, 539–552.
Lawler, E., 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York.
LeBlanc, L., Chifflet, J., Mahey, P., 1999. Packet routing in telecommunication networks with path and flow restrictions. INFORMS

Journal on Computing 11, 188–197.
Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M., 2005. Solving the prize-collecting Steiner tree problem to

optimality, Proceedings of ALENEX, Seventh Workshop on Algorithm Engineering and Experiments, Vancouver.
Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems. Computers & Operations Research (forthcoming).
Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows.

Transportation Science (forthcoming).
Voß, S., 1999. The Steiner tree problem with hop constraints. Annals of Operations Research 86, 321–345.
Voß, S., 2006. Steiner tree problems in telecomunications. In: Pardalos, P., Resende, M.G.C. (Eds.), Handbooks of Telecommunications.

Springer, New York.

	Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints
	Introduction
	Mathematical formulation
	Greedy algorithm
	Finding feasible paths
	Evaluating the paths

	Destroy-and-repair algorithm
	Tabu search algorithm
	Add move
	Remove move
	Destroy move

	Computational experiments
	Conclusions
	Acknowledgements
	References

