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In this paper, we develop a stochastic mixed integer programming model to optimise the tactical master 

surgery schedule (MSS) in order to achieve a better patient flow under downstream capacity constraints. 

We optimise the process over several scheduling periods and we use various sequences of randomly gen- 

erated patients’ length of stay scenario realisations to model the uncertainty in the process. This model 

has the particularity that the scenarios are chronologically sequential, not parallel. We use a very sim- 

ple approach to enhance the non-anticipative feature of the model, and we empirically demonstrate that 

our approach is useful in achieving the desired objective. We use simulation to show that the most fre- 

quently optimal schedule is the best schedule for implementation. Furthermore, we analyse the effect of 

varying the penalty factor, an input parameter that decides the trade-off between the number of cancel- 

lations and occupancy level, on the patient flow process. Finally, we develop a robust MSS to maximise 

the utilisation level while keeping the number of cancellations within acceptable limits. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

A major challenge for the healthcare industry in Australia and

across the world is to keep up with the growing demand for ser-

vices. In Australia, public hospitals maintain elective surgery wait-

ing lists, and hospital management aims to maximise the number

of operations performed. 

In order to achieve this goal, we need to analyse and opti-

mise patient flow in the surgical suite in such a way that we can

get maximum throughput. Some researchers have modelled pa-

tient flow as a queuing network, (see Cote, 20 0 0 ). However, there

are many disadvantages in modelling elective patient flow as a

queuing network. First, the elective patient arrival process is under

management’s control, and it can be adjusted to obtain better pa-

tient flow. Second, there are some operational restrictions on the

arrival process, for example no elective patients are operated on

during weekends or holidays, whereas downstream resources are

still available. Although we can develop a discrete event simula-

tion model to analyse the elective patient flow process, it is diffi-

cult to schedule elective patients’ operations optimally in order to

obtain a better patient flow. In simulation models, we select an ar-

rival process and a service process, and we observe the behaviour
∗ Corresponding author. 
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f the system. We may improve the system by adjusting the arrival

rocess intuitively or with simulation optimisation techniques (see

igueira & Almada-lobo, 2014 ), but it can be difficult to obtain the

ptimal arrival process. 

To develop a deterministic optimal schedule, we can model the

atient flow process as a flow shop scheduling problem where

ach patient represents a job, each set of resources represents a

achine, and a patient’s length of stay (LoS) represents its ser-

ice time, (see Pham & Klinkert, 2008 ). However, as we discuss be-

ow, there are some important aspects of the patient flow process

hat are difficult to capture in a flow shop model. As a result, the

chedule obtained cannot ensure smooth patient flow. We propose

 mixed integer programming (MIP) model because it can incorpo-

ate scenarios to mimic the uncertainty in the process, and it has

exibility that allows us to model other essential characteristics of

he patient flow. The main characteristics of the patient flow pro-

ess are 

• The LoS is random and we only know its distribution. The range

of LoS is quite large. For example, a patient may stay in an in-

tensive care unit (ICU) after surgery from one day to 60 days.

Moreover, LoS distributions are generally positively skewed and

long-tailed. 
• At no point in time are all the resources in a downstream fa-

cility available. For example, if we are developing a four-week

schedule to optimise patient flow in the ICU, then on the first

day of each four-week period there will be some patients from
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the previous periods occupying the ICU beds with an unknown

remaining LoS. This means that not only is the LoS random, but

the resource availability also has some uncertainty. 
• In the actual process, there is a trade-off between resource util-

isation and cancellations. For example, we can get a very high

utilisation (say, ≥ 90%) by scheduling the same number of pa-

tients as the number of beds in a downstream facility each day.

However, we will be required to cancel many elective opera-

tions each day because of capacity shortage. Therefore, in the

real process, we need to maximise resource utilisation while

keeping the cancellations within an acceptable limit. 

We develop a MIP model to analyse and optimise the pa-

ient flow process that is capable of capturing all these unique

haracteristics. Uncertainty is incorporated by using various ran-

om LoS scenario realisations, and non-anticipation is imposed

y constraining the model to schedule patients in the same or-

er as their position in the queue. Moreover, a particularity of

ur model is that the scenario realisations are chronologically se-

uential and not parallel. The rest of the paper is structured as

ollows. In Section 2 , we present a review of the literature on

cheduling elective surgery. In Section 3 , we describe the problem

n detail. We discuss key concepts and our approach thoroughly in

ection 4 , and the MIP model is presented in Section 5 . Next, we

onduct some computational experiments and present our results

n Section 6 . We conclude the paper and present some directions

or further research in Section 7 . 

. Literature review 

Strategic operating room management involves long term deci-

ion making such as designing a master surgical schedule (MSS).

n MSS is usually a two or four-week timetable which repeats for

everal months in which surgeons from various surgical special-

ties are assigned to operating theatres. The first stage is a case

ix planning in which available operating theatres’ times are di-

ided into various time blocks, and the required numbers of time

locks are allocated to various surgical departments. Researchers

ave developed linear programming and mixed integer program-

ing models for case mix planning, (see Blake & Carter, 2002 ). 

The second stage involves creating an MSS in which each time

lock is allocated to a surgical team. In the third stage, patients are

ooked for surgery. Usually, surgical liaison nurses talk to patients

ho are waiting for elective surgery and schedule their operations

n suitable time slots. Surgical liaison nurses do this manually on a

aily basis. Building an MSS is an important step in strategic plan-

ing, and it is a widely studied problem in the literature on the

pplication of operations research in healthcare management. Var-

ous researchers have studied this problem from different aspects. 

Rafaliya (2013) suggested a MIP model with the objective of re-

ucing overutilisation and underutilisation of the recovery room.

owever, he assumed that the recovery time was deterministic.

in and Yih (2010) suggested a stochastic scheduling model with

he objective of minimising the sum of overtime in operating the-

tres and patients’ waiting time. Carter and Ketabi (2012) devel-

ped a MIP model with the objective of balancing daily bed de-

and in a ward. They fitted lognormal distributions to the LoS data

n each surgical department and generated random LoS scenarios

o use in their deterministic MIP model. They used a sampling av-

rage approximation (SAA) approach to obtain the final schedule.

dan, Bekkers, Dellaert, Vissers, and Yu (2009) developed a MIP

odel to minimise the deviation from a target resource utilisation

evel where the resources were available operating theatre hours,

CU bed hours, and ward bed hours. They computed the probabil-

ty of a patient staying in the hospital on each day after surgery

y using the empirical distribution of the LoS data. By using these
robabilities, they computed the expected number of occupied beds

n each day of the scheduling period and used this as a proxy for

tochastic resource demand. 

There is another strand of literature on developing an MSS with

he objective of balancing bed demand in a downstream facil-

ty. For example, Chow, Puterman, Salehirad, Huang, and Atkins

2011) developed a MIP model to balance the expected number

f ward beds used on a given day by minimising the maximum

f the expected number of beds used over the scheduling period.

eliën and Demeulemeester (2007) developed a MIP model with

he objective of minimising the shortage of expected ward bed util-

sation and the variance of ward bed utilisation at a downstream

acility. However, they made a simplifying assumption that the

oS followed a discrete distribution with a small range of possi-

le values. Cappanera, Visintin, and Banditori (2014) investigated

he effect of various scheduling strategies on the utilisation level

nd overbooking. They developed a MIP model in which they con-

idered three different objectives to obtain different scheduling

chemes. The objectives they considered were the minimisation

f the maximum daily utilisation of ward beds, the minimisation

f the difference between the maximum and the minimum daily

tilisations of ward beds, and the minimisation of the sum of the

uadratic overrun of operating theatres. They divided patients into

arious groups within a surgical department according to their LoS

nd their surgery duration, and they used the average value in

ach group as an input for their MIP model to obtain an optimal

chedule. 

The above-mentioned MIP models were either based on the

ssumption that the LoS is deterministic ( Carter & Ketabi, 2012;

in & Yih, 2010 ) or were developed to balance the expected

esource demand, or to minimise the expected shortage of re-

ources ( Adan et al., 2009; Beliën & Demeulemeester, 2007; Chow

t al., 2011 ). As we will discuss in Section 3 and demonstrate in

ection 6 , these approaches may not provide us with the desired

utcomes. We have developed a stochastic MIP model that bal-

nces the actual resource demand on each day and maximises the

hroughput while keeping the number of cancellations within lim-

ts. The novelty in our model is that it utilises the given LoS sce-

ario realisations chronologically in a sequential manner, and not

n a parallel manner. Moreover, we constrain our model to sched-

le patients in their queueing order and repeat the scheduling de-

ision over a long time-horizon. This helps us incorporate the vari-

bility in the LoS without making any assumptions regarding the

oS distribution. The model is presented in Section 5 . Next, we will

escribe the problem in detail. 

. Problem description 

The problem we discuss here is driven from a real life situation

aced by a hospital. Our partner in this research project is a ma-

or metropolitan public hospital located in Melbourne, Australia.

he hospital management is interested in improving patient flow

n the surgical suite (the surgical suite includes operating theatres,

ecovery rooms, the ICU, and surgical wards) so that they can de-

iver surgical services more efficiently. They have been frequently

ancelling elective operations on the day of surgery because of a

apacity shortage in the intensive care unit (ICU). Therefore, we

ere required to model and analyse the elective patient flow in

he surgical suite, and develop a scheduling scheme to optimise

he patient flow process. 

In a surgical suite, patients receive service at one care step

nd move to a subsequent care step. The LoS at each care step

s random and there is no provision for waiting. Patient flow is

ontrolled by the bottleneck facility, that is, the facility with the

inimum capacity in the surgical suite. However, because of the

tochastic nature of the process, the bottleneck may change from
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one care step to another according to the type of patients being

operated on. For example, if we operate on many day surgery pa-

tients (the patients whose post operative LoSs are generally a few

hours), then the operating theatres will act as a bottleneck facil-

ity because the demand for post-operative care services is reduced.

Whereas if we operate on many complex patients with longer post

operative recovery times, then the ICU or the ward will act as a

bottleneck facility. 

After interviewing hospital staff, we identified that the ICU is

currently the bottleneck facility. An ICU is a multidisciplinary care

facility where a wide range of critically ill patients are treated.

It receives inpatient flow from operating theatres, the emergency

department, critically ill patients in wards, and transfers from

other hospitals. The elective surgery patients’ arrivals are sched-

uled, whereas others, such as the emergency patients’ arrivals, are

random. Although elective patients’ arrivals are scheduled, elective

operations are cancelled frequently because of the unavailability of

an ICU bed. On many occasions, the ICU reaches capacity due to

the elective patient flow. In a flow network where one node acts

as a bottleneck, we can optimise the overall flow by maximising

the flow at that node. 

From the literature review, it is clear that the stochastic na-

ture of the LoS increases the complexity of the problem. In the

healthcare industry, resources are bundled together and they are

quantifiable. For example, a twenty bed ICU means the ICU is fully

equipped with all the required machines, and staff to accommo-

date twenty patients. The LoS is an important measure because

patient resource demand is approximated by their LoS. Some re-

searchers have used average LoS and others have modelled the

stochastic LoS by using its empirical distribution. A major problem

with this approach is that an empirical distribution function is just

an empirical measure of one sample. Our data indicated that there

was around two percent of very complex patients who stay much

longer than the others, and they can have a wide range of possible

LoS values. Since the percentage of these patients is small, even a

relatively large dataset cannot capture all the possible LoS values.

To capture the randomness in the process appropriately, we need a

distribution function which can generate various possible scenario

realisations. 

Moreover, balancing the expected resource demand in a down-

stream facility does not ensure optimal outcomes. When we bal-

ance the expected resource demand, we ignore the fact that the

actual resource demand may vary drastically from the expected re-

source demand because patient resource demand has a large vari-

ation. The sample average resource demand (average resource de-

mand across all ICU beds) may converge to the expected resource

demand if the law of large numbers is applicable. This means that

either we are averaging a very large number of patients’ resource

demands, or the variation in their resource demand is small, or

both. However, in reality, the number of patients whose resource

demand is being averaged is quite small, and the variation in pa-

tient resource demand is quite large. Because of this, the pooled

resource demand is still a random variable with a reasonably large

variance. Therefore, ensuring that the expectation of pooled re-

source demand on each day is less than or equal to the available

resources is not sufficient. 

Cappanera et al. (2014) used simulation to assess the quality

of schedules generated by a MIP model with the objective of bal-

ancing the expected resource demand. They found that using the

optimal schedule resulted in a large amount of overbooking. In a

real life scenario, it is not possible to accommodate the overbooked

patients by temporarily increasing resources. Instead, they are can-

celled. However, the model optimises the arrival process based on

the assumption that no patient is cancelled. As a result, the ac-

tual throughput decreases drastically when we take into account

cancellations. 
o  
Furthermore, targeting a very low utilisation level may ensure

ery few cancellations. However, this will result in a poor through-

ut and an inefficient system. In a real life scenario, cancellations

re unavoidable. It makes more sense to model the patient flow

rocess with cancellations and optimise that process. Therefore, in

ur model, we propose explicit decision variables to model cancel-

ations. In the next section, we will discuss key concepts and our

pproach to analyse and optimise the patient flow process. 

. Fundamental concepts and our approach 

To make our approach realistic and useful, we need to model

nd optimise the process with a similar level of uncertainty as that

f the actual process. We develop a strategy to keep a compara-

le level of uncertainty in the MIP model. Kumar and Anjomshoa

2018) found that classification and regression tree (CART) analysis

s useful for classifying patients into lower variability LoS groups.

e applied CART analysis on the ICU LoS data from the partner

ospital, and we classified patients into short-stay (SS), medium-

tay (MS), and long-stay (LS) groups. In regression tree analysis, the

ependent variable is recursively partitioned into groups according

o the independent variables in a way that the fitted tree is capable

f explaining the maximum variability in the dependent variable.

n our case, the dependent variable was the LoS and the indepen-

ent variables were patient attributes, such as primary procedure

ode, age, and gender that were known to us before surgery. Ac-

ording to the fitted regression tree, 40% of patients belong to the

S group, 51% belong to the MS group, and the remaining 9% be-

ong to the LS group. 

Next, we fitted Coxian discrete phase type (DPH) distributions

see Latouche & Ramaswami, 1999 ) to the data corresponding to

ach resource user group separately. We selected the model using

he Akaike information criterion (AIC) and the Bayesian informa-

ion criterion (BIC), and we validated the fit using the Chi-square

oodness of fit test (see Hogg, Tanis, and Dale, 2015 ). When the AIC

nd BIC proposed different models, we selected the model that sat-

sfied the goodness of fit test and had fewer parameters. The log-

ikelihood, the AIC and BIC values, and the Chi-square goodness of

t test’s p -values of the fitted distributions are given in Table 1 .

e used fitted distribution models to sample patients’ LoSs. 

The literature suggests that the optimal occupancy level for the

CU is around 70% to 75% (see Tierney, Hons, Conroy, & Hons,

014 ). In the hospital, seven ICU beds are being used for elective

urgery patients. In our model, we place the restriction that a max-

mum of twenty patients, whose average LoS is 2.4 days, can be

cheduled per week. This allows a utilisation of up to 97.9% of ICU

ed days available and we refer to this (bed days utilised × 100/

ed days available) as the occupancy level of the ICU. However,

he model decides the optimal throughput according to the desired

rade-off (implemented as a penalty factor) between the through-

ut and the number of cancellations. We also constrain our model

o maintain the proportion of the scheduled patients from each LoS

roup the same as the average proportion in the data. Furthermore,

e refer to a four week period as one scheduling period, or one

imeblock. A LoS scenario realisation is defined as an assignment of

atients’ positions in the queue and their LoS values in each group

or a selected number of timeblocks. For example, an m -block LoS

cenario realisation of n patients consists of a n × m matrix of LoS

alues, where n is the maximum number of patients that can be

cheduled in one scheduling period, and each entry of the matrix

s sampled from the fitted DPH distributions, independently of the

thers. An element, LoS t , p , of the matrix represents the LoS of the

 

th patient in timeblock t , ∀ p = 1 , . . . , n, and ∀ t = 1 , . . . , m . 

While developing an MSS, we need to decide how many pa-

ients from each LoS group we should operate on, on each day

f the scheduling period, to ensure smooth patient flow and
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Table 1 

The AIC and BIC, and the Chi -square test’s p -value of the fitted DPH distributions. 

Group #Phase Loglikelihood # Param. AIC val BIC val p -value 

SS 3 −975.29 5 1960.59 1983.89 0.1173 

MS 3 −1629.91 5 3269.82 3294.36 0.0917 

LS 3 −483.13 5 976.26 992.22 0.5519 

Fig. 1. Diagram representing the MSS being repeated over a three timeblock planning horizon and the interaction between timeblocks through cancellations and LoS rotation. 
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ptimal throughput. We should make these decisions based en-

irely on patient groups’ LoS distributions. Given an actual reali-

ation of one-block LoS scenario as input, the model would take

dvantage of known LoS values and schedule particular subsets

f patients from each group to balance resource requirements on

ach day. This is advantageous if we know the exact LoS values

ecause we can manage patient flow more efficiently. However, we

now only the LoS distributions. We developed a strategy to min-

mise the undesirable effect of providing LoS scenario realisation as

nput. 

First, we modelled and optimised the patient flow process over

everal timeblocks and constrained our model to make the same

cheduling decision for all the patients at position p in each time-

lock, irrespective of their LoSs. Doing so helped us in optimis-

ng scheduling decisions over several possible LoS values, and the

odel could not take full advantage of a specific timeblock’s re-

lised LoSs. However, we obtained a schedule in which fewer pa-

ients were scheduled. This happened because the model had to

nsure resource (ICU beds) availability for all the scheduled pa-

ients, irrespective of the variation in their resource requirements

n different timeblocks. As a result, the model had to keep re-

ources idle in some timeblocks. For example, consider a one bed

CU and a three-block time horizon. Assume that the patient at

osition one has a LoS of two, seven, and nineteen days in time-

lock one, two, and three, respectively. If the model schedules this

atient on the first day, it cannot schedule any patient until the

ineteenth day in any timeblock because the scheduling decisions

tay the same in each timeblock. Therefore, the bed-days utilised

n timeblock one and two will be much less than the bed-days

vailable, and our resource management will be inefficient. 

To eliminate the undesirable effect of this feature of the model,

e used a stochastic approach in which reverse decisions were

odelled as cancellation decisions using decision variables ( Y t , p , d )

hat could cancel some patients’ operations according to the
apacity shortage in each timeblock, independently. In operational

lanning, cancelled patients should be rescheduled in the next

vailable slots with some priority. Since we were developing a tac-

ical MSS, we only identified patient groups, not patients. As a re-

ult, the MSS would be unaffected if we rescheduled a cancelled

atient instead of a new patient in the next available slot for his

r her group because each patient’s LoS was randomly sampled

rom the fitted LoS distribution. In operational planning, we recom-

end that the cancelled patients are rescheduled early in the day

o avoid cancelling them again. Now, we were able to generate effi-

ient schedules. However, there was still some scope for the model

o schedule particular subsets of patients on each day to balance

esource requirements. As we increase the number of timeblocks,

llowing the model to select patients in the MSS loses importance.

owever, the model could take advantage of the known LoS values

hile making cancellation decisions. 

Next, we devised a strategy to prevent the model from taking

dvantage of this flexibility. We constrained our model to schedule

atients in the same order as their positions in the queue in each

roup. As a result, the model could only decide the number of pa-

ients to be scheduled on each day of the scheduling period. For

xample, if the model decides to schedule four patients on the first

eek’s Monday, then they have to be the first four patients, that is,

atients at positions from one to four. Since the patients were po-

itioned in the queue in random order, the model has to schedule a

andomly-gathered patient subset on each day. This prevented the

odel from selecting particular subsets of patients to balance re-

ource demand. We also constrained our model to cancel the ear-

iest scheduled patient first on each day in each group. This pre-

ented the model from identifying patients by taking advantage

f known LoS values while making cancellation decisions. By us-

ng these strategies, we developed a novel approach to optimise

atient flow by using a deterministic optimisation on different se-

uences of randomly generated LoS scenario realisations. 
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Table 2 

An optimal MSS generated by the model for a three-block LoS scenario realisation. 

Table 3 

The MSS obtained for ten 130-block scenario realisations. 

Day 1 2 3 4 5 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26 T C O 

SS 1 2 1 3 1 0 2 1 2 1 0 2 1 2 1 0 2 1 3 1 0 26 

MS 1 3 2 1 0 3 3 2 1 0 3 3 2 1 0 3 2 2 1 0 3 35 

LS 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 6 

S 1 5 3 4 2 4 5 3 3 2 3 5 3 3 2 4 4 3 4 2 3 67 6.5 76.2 

SS 2 4 0 1 1 0 4 0 1 1 0 4 0 2 1 0 4 0 1 1 0 25 

MS 2 1 3 0 1 3 1 3 0 1 3 1 3 0 1 3 1 3 1 1 3 33 

LS 2 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 6 

S 2 5 3 1 3 3 5 3 1 3 4 5 3 2 3 3 5 3 2 3 4 64 5.6 74.2 

SS 3 1 3 2 1 0 0 3 2 1 0 1 3 2 1 0 1 3 2 1 0 27 

MS 3 4 0 1 1 3 4 0 1 1 2 4 0 1 1 3 4 0 1 1 3 35 

LS 3 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 6 

S 3 5 3 3 3 3 4 3 3 3 3 5 3 3 3 3 5 3 3 3 4 68 6.4 77.1 

SS 4 1 3 1 3 0 1 3 1 2 0 1 3 1 2 0 1 3 1 2 0 29 

MS 4 4 0 2 0 3 4 0 2 1 3 4 0 2 1 3 4 0 2 1 3 39 

LS 4 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 6 

S 4 5 3 3 4 4 5 3 3 4 3 5 3 3 4 4 5 3 3 4 3 74 10.8 81 

SS 5 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 25 

MS 5 3 0 2 1 2 3 1 2 1 2 3 1 2 1 2 3 0 2 1 2 34 

LS 5 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 6 

S 5 5 2 3 3 4 4 3 3 2 4 4 3 3 3 4 4 2 3 2 4 65 7.4 77.9 

SS 6 3 2 2 0 0 3 2 2 0 0 3 2 2 0 0 3 2 1 0 0 27 

MS 6 2 1 2 1 2 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 35 

LS 6 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 6 

S 6 5 3 4 2 3 5 3 4 1 4 5 3 4 2 4 5 3 3 1 4 68 8.2 77.3 

SS 7 1 0 1 3 0 1 0 2 3 0 1 0 2 3 0 1 0 2 3 0 23 

MS 7 3 2 0 0 3 3 2 0 0 3 3 1 0 0 3 3 2 0 0 3 31 

LS 7 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 6 

S 7 4 2 1 4 4 5 2 2 3 3 4 1 2 4 4 5 2 2 3 3 60 5.5 71.9 

SS 8 4 2 0 0 0 4 2 0 0 0 4 2 0 0 0 4 2 1 0 0 25 

MS 8 1 0 2 3 2 1 0 2 4 2 1 0 2 3 2 1 0 2 3 2 33 

LS 8 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 6 

S 8 5 2 2 4 3 5 2 2 4 3 5 2 2 4 3 5 2 3 3 3 64 6.1 75.7 

SS 9 4 0 2 0 0 4 0 2 0 0 4 1 2 0 0 4 1 2 0 0 26 

MS 9 0 3 0 3 3 0 3 0 2 3 0 3 0 3 3 0 3 0 2 3 34 

LS 9 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 6 

S 9 4 3 2 4 3 4 3 3 3 3 4 4 2 4 3 4 4 3 3 3 66 5.9 75.8 

SS 10 4 0 1 0 0 4 0 2 0 0 4 0 1 0 0 4 0 2 0 0 22 

MS 10 0 3 1 2 2 0 3 1 2 2 0 3 1 2 3 0 3 1 2 2 33 

LS 10 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 6 

S 10 4 3 2 3 2 4 3 3 3 3 4 3 2 3 3 4 3 3 3 3 61 4 73.4 

SAA 4.7 2.7 2.5 3.2 3.3 4.6 2.8 2.7 2.8 3.3 4.6 2.8 2.6 3.2 3.5 4.6 2.8 2.9 2.7 3.4 65.7 

SAA R 5 3 3 3 3 5 3 3 3 3 5 3 3 3 4 5 3 3 3 3 66 
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Our stochastic model uses the LoS scenarios in a non-traditional

anner. In the traditional approach, the first stage variables rep-

esent the decisions we make before any uncertainty is revealed,

nd the second stage variables represent the decisions we make

ccording to each realised scenario. In our model, first stage vari-

bles are associated with the master plan that repeats over time

or the whole planning horizon, whereas the second stage vari-

bles are cancellation decisions that occur sequentially over time.

oreover, since we extend patients’ remaining LoS from one

cheduling period to the next scheduling period, each timeblock’s

esource states (the bed occupancy) interact with other timeblocks’

esource states over the whole planning horizon. Fig. 1 represents

ow we used LoS scenarios to model uncertainty in the patient

ow process in a novel way. 

Here, X p , d are binary decision variables, associated with the

aster plan that take the value one if patients at position p in

he queue are scheduled for surgery on day d of each timeblock;

ero otherwise, and Y t , p , d are cancellation decision variables that

ake the value one if the patients at position p in timeblock t is

ancelled on day d . The values of X p , d stay the same for all the

atients at position p in all timeblocks, whereas Y t , p , d can take

ifferent values as t varies. A typical schedule generated by using

he full model for an input of three-block LoS scenario realisation

s given in Table 2 . 

In this table, the p s’ subscripts represent patients’ positions

n the queue and the superscripts represent their LoSs. The table

hows which patients should be operated on, on each day, and the

truck out patients are the ones whose operations are cancelled

ecause of a lack of resources. Patients at a particular position in

he queue are scheduled at the same time in each timeblock ir-

espective of their LoSs. For example, patients at position 31 are

perated on, on the third week’s Wednesday in each timeblock

hereas their LoSs are ten, nineteen, and nine. However, some pa-

ients’ operations may get cancelled according to resource unavail-

bility. For example, in the first timeblock, patients at position 27

nd 29 are cancelled. 

. The model 

In this section, we will first define all the notation and then

resent the MIP model. The parameter g represents the number of

atient groups and n represents the maximum number of patients

llowed to be scheduled in each timeblock. We use m to denote

he number of timeblocks considered in the planning horizon. The

arameter beds refers to the number of beds (resources) available

n the ICU. Since all the patients in a group are the same from a

cheduling perspective, we refer to them by their positions in the

ueue in each timeblock. The set Pat ient s = { 1 , 2 , . . . , n } , denotes

he set of all patients in each timeblock and the set timeblocks =
 1 , 2 , . . . , m } , contains all the scheduling periods in the planning

orizon. Similarly, the set Group k refers to the set of patients in

roup k , ∀ k = 1 , . . . , g. Finally, the set of all days, working days,

nd weekends in each scheduling period are denoted by days ,

eekdays, and weekends, respectively. A detailed table of all the

otation used is given in the appendix. 

.1. Objective function 

Our objective is to maximise a weighted throughput while

aintaining a balance between resource utilisation and cancella-

ions. We measure resource utilisation and cancellations by sum-

ing the LoSs of patients in the MSS and the LoSs of cancelled

atients, respectively. A multiplier f is used to enforce a desirable

alance between these two conflicting objectives. The objective of
he optimisation is to maximise 

ob j = 

∑ 

t ∈ t imeblocks 

∑ 

p∈ Pat ient s 

Lo S t,p ×
∑ 

d ∈ d ays 

(X p,d − f × Y t,p,d ) . (1)

.2. Set of constraints 

As we discussed in the Introduction, there are some unique fea-

ures of the elective patient flow process, and we captured these

eatures in our model by using several constraints as follows. 

.2.1. Resource availability constraints 

In hospitals, elective patients are operated on every weekday

nd they stay in the ICU or a surgical ward until they recover. The

ong-stay patients or the patients who are operated on at the end

f a scheduling period may continue their stay in the ICU or a sur-

ical ward in the next scheduling period. As a result of this, at the

eginning of each scheduling period, some resources are occupied

y the patients from earlier scheduling periods. This means, that

ot all the resources are available for allocation on the first day of

 scheduling period. We modelled this feature by making use of a

otation schedule such as those used in crop rotation planning (see

antos, Munari, Costa, & Santos, 2015 ). For example, if we solve

 model for thirteen scheduling periods, then a patient who was

perated on in the last scheduling period will stay in the facility

uring that period. However, if that patient’s LoS is more than the

emaining days in the period, then we rotated that patient’s stay

nto the first scheduling period. While ensuring resource availabil-

ty for patients in each timeblock, we take into account patients

rom the current timeblock and the previous two timeblocks, and

he timeblocks are numbered in cyclic order. For example, 

∑ 

p∈ Pat ient s 

{ LoS 1 ,p −1 ∑ 

j=0 

(X p,d− j − Y 1 ,p,d− j ) 

+ 

LoS m,p −1 ∑ 

j=0 

(X p, 28+ d− j − Y m,p, 28+ d− j ) 

+ 

LoS m −1 ,p −1 ∑ 

j=0 

(X p, 56+ d− j − Y m −1 ,p, 56+ d− j ) 

}
≤ beds, ∀ d ∈ days, 

(2) 

re the required constraints for scheduling period one. They state

hat the number of patients who were scheduled in periods 1, m ,

nd m − 1 , and were staying in the ICU on day d of scheduling

eriod one, must be less than or equal to the number of beds (re-

ources) in the ICU. The required constraint for scheduling period

wo is 

∑ 

p∈ Pat ient s 

{ LoS 2 ,p −1 ∑ 

j=0 

X p,d− j − Y 2 ,p,d− j 

+ 

LoS 1 ,p −1 ∑ 

j=0 

X p, 28+ d− j − Y 1 ,p, 28+ d− j 

+ 

LoS m,p −1 ∑ 

j=0 

X p, 56+ d− j − Y m,p, 56+ d− j ≤ beds 

}
≤ beds, ∀ d ∈ days. 

(3) 

Similarly, the patients who were operated on in scheduling pe-

iods t − 1 and t − 2 might stay in the ICU during period t , ∀ t =
 , ..., m, and the required constraints to make sure that the num-

er of patients on each day d of timeblock t is less than or equal

o the number of beds are 

∑ 

p∈ Pat ient s 

{ LoS t,p −1 ∑ 

j=0 

X p,d− j − Y t,p,d− j 
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LoS t−1 ,p −1 ∑ 

j=0 

X p, 28+ d− j − Y t−1 ,p, 28+ d− j 

+ 

LoS t−2 ,p −1 ∑ 

j=0 

X p, 56+ d− j − Y t−2 ,p, 56+ d− j ≤ beds 

}

≤ beds, ∀ d ∈ days. (4)

Note that, we considered the two previous periods in these

constraints. This is because the LoS data we used allows pa-

tients to stay in the ICU for up to three timeblocks. This could

be easily modified to take into account longer or shorter LoSs.

Rotational scheduling is helpful in modelling the actual process

in which not all the resources are available at the beginning of

the scheduling period. Furthermore, rotation scheduling also helps

us avoid some infeasible and impractical schedules. For example,

when we group patients according to their predicted LoS and max-

imise the weighted throughput without considering rotation, the

model tends to schedule all long stay patients towards the end

of the scheduling period. By doing so, the model can ignore pa-

tients’ remaining LoS. Rotation scheduling removes this unrealistic

incentive. 

5.2.2. Constraints to avoid multiple scheduled arrivals of the same 

patient 

Each patient can be scheduled for an operation at most once.

The required constraints are ∑ 

d ∈ weekd ays 

X p,d < = 1 , ∀ p ∈ P at ient s. (5)

5.2.3. Constraints to avoid scheduling patients’ operations over 

weekends 

The constraints, ∑ 

d ∈ weekend s 

X p,d < = 0 , ∀ p ∈ P at ient s, (6)

make sure that no patient is scheduled over weekends. 

5.2.4. Constraints to make sure that only scheduled patients can get 

cancelled 

We cannot cancel a patient’s operation unless it is scheduled.

The constraints to avoid cancelling unscheduled patients are 

 t,p,d ≤ X p,d , ∀ t ∈ timeblocks, ∀ p ∈ P at ient s, ∀ d ∈ days. (7)

5.2.5. Constraints to impose first come first served policy 

As we discussed in Section 4 , we need to constrain our model

to schedule patients in the same order as their position in the

queue in each group, and we refer to these constraints as ordering

constraints. However, the model is free to schedule patients from

different groups optimally, irrespective of their positions. For ex-

ample, a long-stay patient at position eight can be scheduled be-

fore a short-stay patient at position two. As we will discuss further

in Section 6 , by using these constraints we were also able to ob-

tain a faster convergence to optimality, and a better estimation of

the number of cancellations and occupancy levels. The required in-

equalities for the ordering constraints are 

X p,d ≤
d ∑ 

t=1 

X p−1 ,t , ∀{ p, p − 1 } ∈ Group s , ∀ d ∈ days, ∀ s = 1 ..g, 

(8)

and 

p × X p,d ≤ k s + 

∑ 

i ∈ Group s 

d−1 ∑ 

t=1 

X i,t , ∀ p ∈ Group s , ∀ d ∈ days, ∀ s = 1 ..g
(9)

ere, the constraints in (9) are redundant. However, they are valid

nequalities and proved effective in reducing convergence times. 

.2.6. Constraints to impose first come first cancel policy 

As we discussed in Section 4 , to prevent the model from ex-

loiting the knowledge of known LoS values while making can-

ellation decisions, we need to enforce a consistent cancellation

rder. Therefore, we constrained our model to cancel the earliest

cheduled patient first on each day in each group. The required

onstraints for patient group s are 

 t,p,d + 1 ≥ X p,d + Y t,p+1 ,d , ∀ s = 1 ..g, ∀ p ∈ Group s , 

∀ d ∈ weekdays, ∀ t ∈ timeblocks. (10)

Furthermore, we may add a few more constraints if we need

o ensure that a minimum number of patients from each group is

cheduled each week or the maximum allowable cancellations over

he planning horizon is less than some percentage of the number

f scheduled patients. Similarly, we may add some constraints to

ake sure that patients from each group are scheduled for opera-

ions in accordance with surgeons’ availability. Adding these extra

onstraints can change our tactical decision model to a more oper-

tional tool where other decisions such as surgeons’ rosters need

o be considered. 

. Computational experiments and results 

In this section, we describe various experiments to evaluate the

eatures of our model. First, we used all the three LoS groups, that

s, the short-stay (SS) group, the medium-stay (MS) group, and the

ong-stay (LS) group, and we developed a robust MSS for the hos-

ital. We defined the robust MSS as the schedule that performed

etter than the other schedules when all the schedules generated

y using various LoS scenario realisations were evaluated on an in-

ependent very-long LoS scenario realisation. The last four exper-

ments are designed to help us understand various features of the

odel. 

.1. A robust MSS to optimise the surgical patient flow in the ICU 

In the first experiment, we optimised the patient flow for ten

30-block LoS scenario realisations of all the three LoS groups, and

e obtained ten different MSSs. As discussed in Section 4 , we sam-

led the LoS scenario realisations from the fitted DPH distribution

f each LoS group, and we used the full model with the objective

iven in Eq. (1) and constraints (2) to (10) to develop schedules for

en 130-block LoS scenario realisations. We also added some con-

traints to limit the variation in the number patients scheduled on

ach weekday of the scheduling period. For example, the difference

etween the number of the SS patients scheduled on the first and

he second Monday of the scheduling period cannot be more than

ne. These constraints helped us reduce the search space, and ob-

ain a feasible solution quickly. We set the solver time limit to 72

ours, and the obtained schedules had optimality gaps less than

en percent. 

The obtained schedules are given in Table 3 . In the table, each

ox of four rows represents a schedule for a LoS scenario realisa-

ion. There are twenty working days in a scheduling period. The

opmost row represents the day number. The leftmost column dis-

lays the schedule name according to the patient group. The first

hree rows of each schedule tell us how many patients from each

roup are scheduled, and the last row indicates the total num-

er of patients being scheduled, on each day of a timeblock. Col-

mn T shows the total number of patients being scheduled per

imeblock in each LoS group. Average number of cancellations per
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Table 4 

The performance of obtained schedules when we evaluated them using simulation. 

Schedule S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 

Canc e v al 7 5.3 6.9 10.5 5.8 7.4 4.3 5.1 5.6 3.7 

Occu e v al 75.7 73.6 76.6 79.5 74.8 76.1 70.5 73.7 75 72.4 

Canc 6.5 5.6 6.4 10.8 7.4 8.2 5.5 6.1 5.9 4.0 

Occu 76.2 74.2 77.1 81.0 77.9 77.3 71.9 75.7 75.8 73.4 
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Table 5 

Optimal MSS s generated by the full model for thirteen-block scenario realisations. 

Schedule identity Mon Tues Wed Thurs Friday Sum Freq 

MSS 1 4 1 3 1 3 12 11 

MSS 2 4 1 2 2 3 12 3 

MSS 3 4 1 3 2 3 13 0 

MSS 4 4 1 2 1 3 11 5 

MSS 5 4 2 2 1 3 12 3 

MSS 6 4 1 2 2 2 11 2 

MSS 7 4 2 2 2 3 13 2 

MSS 8 4 1 3 1 4 13 1 

MSS 9 4 1 2 1 4 12 1 

MSS 10 3 3 1 2 3 12 1 

MSS 11 3 2 2 1 3 11 1 

MSS 12 4 2 1 2 3 12 0 

SAA 3.93 1.27 2.37 1.27 3.00 11.84 NA 

Mode 4 1 2 1 3 11 NA 

MSS R 4 1 3 1 3 12 NA 

MSS R f=4 
4 1 2 1 3 11 NA 
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imeblock and the occupancy levels are given in columns C and O ,

espectively. 

Table 3 shows that all the obtained schedules are different, and

he model finds the best fitted schedule for each LoS scenario re-

lisation. Although all the schedules are different, they are qual-

tatively consistent. For example, the highest number of patients

four or five patients) are scheduled on each week’s Monday in al-

ost all the schedules. In most of the schedules, SS patients are

cheduled early in the week whereas MS patients are scheduled in

he middle and the end of the week. Moreover, the rounded sam-

ling average approximation (SAA) of the total number of patients

cheduled on each day given in the second last row is almost pe-

iodic with a period of one week. 

Next, we evaluated the performance of all the schedules on

n independent 1300-block LoS scenario realisation by using a

imulation model. The average occupancy level and the average

umber of cancellations per timeblock computed by the simula-

ion model are given in Table 4 . For an easy comparison, we also

ist the average occupancy level and the average number of cancel-

ations computed by the MIP model, in the last two rows. 

The average number of cancellations and the occupancy level

ndicate that all the schedules performed well when tested on an

ndependent LoS scenario realisation, and there is a trade-off be-

ween the average number of cancellations and the number of

atients scheduled. For example, S 4 has a very high number of

cheduled operations (74 per timeblock) and cancellations (10.5

er timeblock). On the other hand, S 7 and S 10 have less sched-

led operations and fewer cancellations. The remaining sched-

les are somewhere in between. Although all the schedules per-

ormed well, some of them performed better than the others. For

xample, S 9 dominates S 1 , S 2 , S 3 , S 5 , S 6 , and S 8 , because either

 9 has more scheduled operations in comparison to the others

or a similar number of cancellations, or it has less cancellations

or a similar throughput. Similarly, S 10 dominates S 7 . From this

nalysis, we conclude that S 9 is the robust schedule among S 1 ,

 2 , S 3 , S 5 , S 6 , S 8 , and S 9 , and the others are not comparable be-

ause of completely different numbers of scheduled operations and

ancellations. 

Most of the schedules we obtained were slightly different from

ach other because of three main reasons. First, a majority of pa-

ients stayed in the ICU for only one day. Therefore, shifting a pa-

ient’s operation to the next day or the previous day according to

he LoS scenario realisation generated a new schedule without sig-

ificant changes in the objective function’s value. Second, SS and

S patient groups did not differ much in terms of the average

oS. Although the model was able to exploit this difference to ob-

ain slightly better performing schedules, the various possible rear-

angements of these groups increased the combinatorial aspect of

he problem and the number of alternative efficient schedules. Fi-

ally, the four-week scheduling period also increased the number

f equally efficient alternative schedules. 

In the next four experiments, we evaluate various features of

he model. In order to demonstrate the usefulness of various fea-

ures of the model distinctly, we used a new patient group ob-

ained by merging SS and MS patients, and we increased each pa-

ient’s LoS by one day. From here onward, we refer to the new

atient group with the modified LoS as the SS group and the LS
roup remains the same. In order to simplify the experiments, we

sed only the SS group in the next three experiments, and we al-

owed a maximum of 52 patients could be scheduled in each time-

lock. There were only three out of 30 LoS scenario realisations for

hich this maximum was attained. 

.2. Experiment to enhance the robustness of the MSS 

Since we obtained very competitive schedules for various LoS

cenario realisations in the previous experiment, we performed an

xperiment to distinctly recognise the robust schedule. We reduced

he number of independent decisions made in the master plan by

mposing weekly periodicity. Periodicity is a desirable feature and

t makes the MSS more practical for elective surgery planning in

ospitals. We constrained our model to schedule the same number

f patients on the same weekday. The resultant optimal schedules

or 30 thirteen-block LoS scenario realisations are given in Table 5 .

ach row indicates an optimal MSS obtained for one or more LoS

cenario realisations, and the value in the rightmost column is the

umber of instances for which that schedule is the optimal sched-

le. There are also two MSSs ( MSS 3 and MSS 12 ) which were not

he optimal schedule for any LoS scenario realisation in this exper-

ment. However, they were the optimal MSSs in other experiments.

e use the same notation to refer to these MSSs in all experiments

s given in Table 5 . 

Table 5 shows that MSS 1 is the most frequent optimal sched-

le. Still maintaining our periodicity constraint, we also obtained

ptimal schedules for five 104-block (eight years) LoS scenario

ealisations to compare it with the others. Four out of five LoS

cenario realisations generated MSS 1 and one generated MSS 2 , con-

rming our hypothesis that the MSS becomes more robust with

espect to LoS scenario realisations as we increase the planning

orizon. This happened because of the fact that increasing the

lanning horizon resulted in our scheduling decisions being opti-

ised over a larger number of LoS scenario realisations. Moreover,

SS 1 also performed very well for the 104-block LoS scenario real-

sation that generated MSS 2 as the optimal schedule. For example,

here were only two more cancellations and 40 less bed-days used
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Table 6 

Optimal MSS s generated by the relaxed model for thirteen-block scenario realisa- 

tions. 

Schedule identity Mon Tues Wed Thurs Friday Sum Freq 

MSS 1 4 1 3 1 3 12 10 

MSS 2 4 1 2 2 3 12 5 

MSS 3 4 1 3 2 3 13 10 

MSS 8 4 1 3 1 4 13 5 

SAA 4 1 2.8 1.5 3.2 12.5 NA 

Table 7 

Frequency of MSSs generated by the full model for longer planning horizons. 

Timeblocks 26-blocks (30 realisations) 104-blocks (five realisations) 

Schedule Id Frequency Proportion Frequency Proportion 

MSS 1 14 0.47 4 0.80 

MSS 2 6 0.20 1 0.20 

MSS 3 2 0.07 0 0.00 

MSS 4 3 0.10 0 0.00 

MSS 6 1 0.03 0 0.00 

MSS 7 3 0.10 0 0.00 

MSS 12 1 0.03 0 0.00 

Table 8 

The robust MSS for generated by the model using a 104-block LoS scenario realisa- 

tion which includes both: long stay and short stay patients. 

Number of patients to be operated on each week of the schedule 

Day of the week Monday Tuesday Wednesday Thursday Friday 

Short stay patients 4 1 2 0 3 

Long stay patients 0 0 0 1 0 

Total patients 4 1 2 1 3 
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in eight years when we imposed MSS 1 on that LoS scenario realisa-

tion. We will refer to MSS 1 as MSS R (robust MSS). We can see from

Table 5 that the SAA is not exactly the same as MSS R . In fact, MSS R 
is the same as the most frequent optimal schedule for thirteen-

block LoS scenario realisations. We concluded from the experiment

that as we increase the planning horizon, the MSS becomes more

robust. 

6.3. Experiment to assess the effectiveness of the ordering constraints 

Next, we repeated the same experiment after removing the or-

dering constraints in Sections 5.2.5 and 5.2.6 . The purpose of this

experiment was to understand the effect of these constraints. The

MSSs obtained for the same 30 thirteen-block LoS scenario realisa-

tions are given in Table 6 . We obtained four possible MSSs in this

case and there were two most frequent optimal schedules ( MSS 1 
and MSS 3 ) each with a frequency of ten. We refer to the model

with the ordering constraints as the full model and the model

without the ordering constraints as the relaxed model. 

The relaxed model scheduled 52 patients per timeblock for half

of the LoS scenario realisations, whereas the full model did so for

only three (out of 30) LoS scenario realisations. If we allowed the

model to schedule more than 52 patients each timeblock, it could

do so only for some rare LoS scenario realisations. This is because

weekly periodicity required the model to increase the number of

patients in each timeblock by at least four and the hard constraint

on the number of resources available did not permit scheduling 56

patients each timeblock. Since the relaxed model had the flexibility

to schedule particular subsets of patients, it was able to schedule

52 patients per timeblock by gathering similar resource users into

patient subsets and then scheduling these subsets in such a way

that it can achieve maximum utilisation of available resources. We

discuss this behaviour thoroughly in the next two paragraphs. 
Furthermore, we obtained a smaller number of optimal sched-

les by using the relaxed model as compared to the number of

ptimal schedules obtained by using the full model. This was a

eemingly counter-intuitive result because by fixing the order of

he selected patients in the MSS we would first expect that the

odel would not be able to take advantage of known LoS val-

es and therefore the MSS should converge faster to the most fre-

uent optimal schedule. We analysed detailed solutions generated

y both models for one of the LoS scenario realisations. The full

odel generated MSS 2 and the relaxed model generated MSS 1 as

he optimal schedule. 

As described in Section 4 , our thirteen-block LoS scenario re-

lisation was a 13 × 52 matrix where the column numbers repre-

ented the patients’ positions and the row numbers represented

heir timeblock. Although the LoS scenarios were sampled ran-

omly from the fitted DPH distributions, there was a reasonably

arge sampling variability (the variation in sample means and sam-

le variances) among columns of the matrix because of a small

ample size (only thirteen). Since the relaxed model had the flex-

bility to schedule columns in any order, it exploited the knowl-

dge of the columns’ sampling variances while developing an

ptimal schedule. We observed that the model tended to sched-

le columns with small sample variances on Monday, Tuesday,

nd Friday, whereas the columns with large sample variances

ere scheduled on Wednesday and Thursday. One intuitive ex-

lanation for this behaviour is that as our data was positively

kewed, columns with large sample variance included relatively

onger LoS patients. Because of the formulation of the objective

unction, the model tended to favour longer LoS patients and it

voided cancelling them. Longer LoS patients also improved re-

ource utilisation over weekends. The model scheduled them in

he middle of the week so that it could cancel shorter LoS stay

atients at the end of the week if the need arose. Similarly,

t scheduled columns with small variability at the beginning of

he week to ensure resource availability for longer stay patients

ater on. 

The full model had to schedule columns in order, and it re-

ied on adjusting the number of patients being scheduled on each

eekday and the position of the patients who could be cancelled

o obtain a better schedule for each LoS scenario realisation. For

xample, the detailed solution we analysed had MSS 2 as the op-

imal schedule and the patients at position 32 were cancelled in

ve out of thirteen timeblocks. Cancelling patients at position 32

ithout cancelling patients at positions 29 and 30 was not possi-

le in MSS 1 because they were not the earliest scheduled patients.

herefore, the full model generated MSS 2 instead of MSS 1 as the

ptimal schedule. Although by allowing the order to be broken, the

odel seemed to be less affected by a particular sample path, it

as an incorrect inference. The model should not have differenti-

ted among columns of the LoS scenario realisations because they

elong to the same patient group, and the ordering constraints

elped us achieve that objective. 

Furthermore, the larger variation observed in the schedules

enerated by the full model vanished when we increased the

ength of the sample path or the planning horizon. The claim is

vident from the fact that the number of MSSs obtained reduces

rom eleven in Table 5 to seven in Table 7 with MSS 1 appearing

7% of the time when we increase the time horizon from thirteen-

locks to 26-blocks. Our claim is also supported by the results in

ection 6.2 where we obtained only two MSSs with MSS 1 appear-

ng 80% of the time when we increased the time horizon to 104-

locks. 

We also developed a simulation model to calculate the actual

umber of cancellations and the true occupancy level achieved by

mplementing MSS R and MSS 3 ( MSS R was the most frequent opti-

al schedule in Sections 6.2 and 6.3 and MSS 3 was another equally
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Table 9 

Comparison of the results (occupancy rates and average cancellations per timeblock) generated by the two models. 

Relaxed model (without the ordering constraints) Full model (with the ordering constraints) 

Scenario Average Total Cancellation Occupancy level Average Total Cancellation Occupancy level 

realisation cancellations Scheduled (%) (%) cancellations Scheduled (%) (%) 

LoS1 3.2 52 6.21 86.97 4.8 48 9.17 76.84 

LoS2 3.6 52 6.95 89.05 4.8 48 9.17 78.96 

LoS3 3.0 52 5.77 89.72 4.5 48 8.73 80.02 

LoS4 1.6 48 3.11 86.81 7.8 52 14.94 83.59 

LoS5 2.2 52 4.29 87.68 3.5 48 6.80 78.18 

LoS6 2.2 48 4.14 88.97 3.2 44 6.21 78.14 

LoS7 3.4 52 6.51 89.17 4.6 48 8.88 79.98 

LoS8 1.0 48 1.92 86.66 4.9 48 9.47 79.95 

LoS9 2.0 52 3.85 87.95 3.5 48 6.80 77.94 

LoS10 3.4 52 6.51 89.36 4.5 48 8.73 80.14 

LoS11 1.2 48 2.37 88.27 5.8 48 11.09 82.54 

LoS12 1.8 48 3.40 87.13 2.8 44 5.47 76.77 

LoS13 1.9 52 3.70 88.03 3.9 48 7.54 78.53 

LoS14 2.7 52 5.18 88.70 3.8 48 7.25 78.41 

LoS15 3.6 52 6.95 89.87 4.5 48 8.73 80.81 

LoS16 3.5 52 6.66 89.05 4.8 48 9.32 80.38 

LoS17 0.7 48 1.33 86.50 2.0 44 3.85 76.77 

LoS18 1.7 48 3.25 88.93 2.7 44 5.18 78.73 

LoS19 3.2 52 6.07 88.97 6.3 52 12.13 82.61 

LoS20 1.2 48 2.22 86.07 5.1 48 9.76 79.79 

LoS21 1.2 48 2.22 86.07 5.4 48 10.36 79.36 

LoS22 2.3 48 4.44 89.52 3.6 44 6.95 77.59 

LoS23 2.8 52 5.33 88.03 6.5 52 12.43 82.14 

LoS24 1.8 52 3.55 87.24 3.8 48 7.25 77.04 

LoS25 1.1 48 2.07 86.46 4.8 48 9.32 79.63 

Simulation results when we implemented MSS R 4.31 48 8.98 78.47 

MSS 3 6.96 52 13.38 80.66 

Table 10 

Comparison of occupancy rates and average cancellations per timeblock for two penalty factors. 

f = 2 f = 4 

Scenario Average Total Cancellation Occupancy level Average Total Cancellation Occupancy level 

realisation cancellations Scheduled (%) (%) cancellations Scheduled (%) (%) 

LoS1 5.1 48 10.58 77.00 1.0 40 2.08 68.17 

LoS2 2.4 44 4.97 76.33 2.4 44 4.97 76.33 

LoS3 4.7 48 9.78 80.57 1.6 44 3.37 75.94 

LoS4 2.2 44 4.49 76.22 0.8 40 1.60 71.47 

LoS5 3.5 48 7.21 78.65 0.8 40 1.76 69.15 

LoS6 3.0 44 6.25 78.77 3.1 44 6.41 78.77 

LoS7 5.0 48 10.42 80.30 1.3 40 2.72 71.31 

LoS8 3.9 48 8.17 80.57 1.1 40 2.24 71.08 

LoS9 3.9 48 8.17 78.61 2.1 44 4.33 73.94 

LoS10 4.0 48 8.33 79.63 1.2 40 2.40 69.62 

LoS11 5.2 48 10.90 81.95 2.2 44 4.65 77.51 

LoS12 4.8 48 10.10 80.65 1.5 40 3.04 71.74 

LoS13 4.0 48 8.33 78.53 1.4 44 2.88 74.22 

LoS14 4.2 48 8.65 78.65 2.4 44 4.97 73.98 

LoS15 4.8 48 9.94 80.65 1.3 40 2.72 69.70 

LoS16 4.8 48 9.94 79.83 2.3 44 4.81 76.14 

LoS17 1.8 44 3.85 76.18 1.8 44 3.85 76.18 

LoS18 4.5 48 9.46 81.79 1.0 40 2.08 70.33 

LoS19 4.5 48 9.46 78.73 1.1 40 2.24 69.86 

LoS20 5.2 48 10.90 79.16 1.5 40 3.21 70.60 

LoS21 5.1 48 10.58 79.40 1.2 40 2.56 69.82 

LoS22 2.8 44 5.93 77.12 0.6 36 1.28 67.97 

LoS23 4.2 48 8.81 79.40 2.1 44 4.33 75.67 

LoS24 4.0 48 8.33 78.10 1.3 40 2.72 69.19 

LoS25 4.2 48 8.81 81.20 0.5 40 0.96 70.92 
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requent optimal schedule as MSS R in Section 6.3 ). We found that

he results from the relaxed model understated the number of

ancellations and overstated the occupancy level in comparison to

he results from the simulation model. A detailed comparison of

he results is given in Table 9 in the appendix. As evident from

able 9 , the results generated by the full model are quite close to

he results generated by the simulation model. We can also see

hat MSS performs slightly better than MSS in terms of occu-
3 R 
ancy level, whereas MSS 3 ’s performance is much worse than that

f MSS R in terms of the number of cancellations. Keeping the num-

er of cancellations within limits is an important goal of the hos-

ital management. Misleading results from the relaxed model may

ntice us to implement MSS 3 and underachieve that goal. 

Furthermore, the full model converged to optimality much

aster than the relaxed model because of a drastic reduction in

he search space. On average, a thirteen-block LoS scenario reali-
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Fig. 2. Boxplot of the number of patients in the ICU on each weekday with MSS 1 . 
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sation reached a 1% optimality gap in 120 minutes by using the

relaxed model, whereas the same instance was solved to optimal-

ity within twenty minutes by the full model. From the analysis, we

concluded that the ordering constraints helped us in limiting the

model’s ability to take advantage of known LoS values and gave us

accurate estimation of occupancy level and cancellations, and they

made the computation faster. We also concluded that classifying

patients into lower variability LoS groups was useful to manage pa-

tient flow more efficiently. Moreover, we analysed the results from

the simulation model and we provide the box-plots of the number

of occupants in the ICU on each day of the week obtained by im-

plementing MSS R and MSS 3 in Figs. 2 and 3 , respectively, in the

appendix. Although there is variation in the number of patients

scheduled on each weekday, it is evident from the box-plots that

the variation in the ICU bed demand on each weekday is reason-

ably small. 

6.4. Experiment to evaluate the usefulness of the cancellation 

trade-off parameter 

Another important feature of our model was that we could

decrease cancellations at the cost of a lower occupancy level,

or improve the occupancy level which would increase cancella-

tions. Therefore, in one of our experiments, we changed the con-

trol parameter, f , from two to four. A detailed comparison of

occupancy level and cancellations at the two penalty levels is

given in Table 10 in the appendix. The most frequently obtained

schedule was the schedule MSS R f=4 
in Table 5 . This experiment in-

dicated that our model is a flexible tool for decision makers to help

them in making optimal decisions. 
.5. Analysing an MSS developed by using a reduced variability LoS 

istribution 

Finally, we performed an experiment to understand the effect

f reducing the variation in the LoS data, and we used both the

S and the LS patient groups in this experiment. When we use

verage LoS or make some simplifying assumptions regarding the

oS distributions, we change the variability in the LoS. In our case,

ince the average LoS for each patient group was not an integer, we

odelled the LoS with a discrete random variable with only two

ossible values {3, 4} while keeping the average LoS the same. In

rder to compare the results, we also generated the optimal MSS

or the ICU with random LoS scenario realisations, and the most

requently optimal schedule is given in Table 8 . 

We found that the MSS obtained was drastically different from

he MSS in Table 8 . For example, five short stay patients were

cheduled on each Monday, zero on Tuesday and Wednesday, and

hree short stay patients were scheduled on each Thursday and Fri-

ay. Similarly, one long stay patient was scheduled for surgery on

ach Tuesday. Moreover, we were able to achieve a 91% occupancy

evel with only 3.8% cancellations. The results clearly show that a

ery good scheduling model may lose relevance if it cannot opti-

ise the process for realistic variability in LoS values. 

. Conclusions and future work 

In this paper, we have developed a sequential mixed integer

rogramming model to optimise the MSS. It is very difficult to

odel a real-life process with all of its complexities. However,

aking unrealistic simplifying assumptions makes a model less

seful. In this work, we have made an attempt to model the pa-
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Fig. 3. Boxplot of the number of patients in the ICU on each weekday with MSS 3 . 
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ient flow process without making many assumptions. Our mathe-

atical contribution is a novel approach used in our stochastic MIP

odel for optimising the MSS in which we used deterministic op-

imisation on different sequences of randomly-generated LoS sce-

arios. By conducting various experiments, we demonstrated that

ur approach is useful for developing a robust MSS without opti-

ising the process over a very large number of LoS scenario re-

lisations. Moreover, we proved that the results (the number of

ancellations and the occupancy level) we obtained from the op-

imisation model were the same as the results obtained by using

he simulation model. We also proved that the most frequently op-

imal MSS was the robust MSS, and not the rounded SAA. 

Our model is useful for optimising the MSS of all elective

urgery patients. We only presented here the optimal MSS for the

atients who need an ICU bed after surgery. However, it can also

e used for optimising patient flow in each surgical ward, inde-

endently. It can be argued that the optimal solution obtained by

ptimising each ward independently may not be a feasible solution

or a given surgical suite. However, it can provide us with a very

ood understanding of the process. Moreover, the model can also

e extended to optimise the whole surgical suite by increasing the

umber of patient groups and modelling constraints for each group

ndependently. 

The model we have presented in this article is useful for strate-

ic or tactical patient flow management which includes long term

ecisions. In real life, we also need to make many decisions to

anage daily patient flow. For example, we need to cancel over-

ooked patients’ operations according to resource unavailability.

e can make these decisions on the day of surgery but that is

nconvenient for patients. In future, we are willing to develop a

n

odel for operational (day to day) management of patient flow.

his model will help us make cancellation decisions before the day

f surgery in accordance with the current resource status. 
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ppendix A 

1. Parameters used 

g = The number of patient groups. 

n = The maximum number of patients allowed to be scheduled

n each scheduling period. 

m = The number of scheduling periods. 

n 1 , n 2 , . . . , n g = The number of patients in each patient group. 

k 1 , k 2 , . . . , k g = The maximum number of patients in each group

hat can be operated on a given day. 

beds = The number of beds available in the downstream facility.

Patients : The set of all patients = { 1 , 2 , . . . , n } . 
Group k : The set of patients in LoS group k = { (n 1 + · · · +

 k −1 ) , . . . , (n 1 + .. + n k ) } . 

https://doi.org/10.13039/501100000923
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timeblocks : The set of scheduling periods = { 1 , 2 , . . . , m } . 
days : The set of days in a scheduling period = { 1 , 2 , . . . , 27 , 28 } .
weekdays : The set of weekdays in a scheduling period = 

{1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25,

26}. 

weekends : The set of weekends or holidays in a scheduling pe-

riod = {6, 7, 13, 14, 20, 21, 27, 28}. 

A v ail abl e bed d ays : Total number of beddays available = 28 ×
m × beds. 

LoS t,p = Patient p ’s LoS in timeblock t . 

f : The penalty factor for cancelling a scheduled operations. 

P lannedSur ger ies = Total number of planned operations. 

Cancel l edSur ger ies = Total number of cancelled operations. 

Used bed d ays = Total number of bed days used by patients. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.ejor.2018.04.007 . 
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