Home page
My research is in algebraic K-theory – what I like
to call the Schrödinger’s cat of mathematics – when
you open the box you might see algebraic geometry, or algebraic topology.
I have worked on the K-theory of singularities, on motives and algebraic cycles, and in motivic homotopy theory. Most recently, I have become interested in t-structures on derived categories of schemes.
Add content here.
Preprints.
- Module structure of the K-theory of polynomial-like rings, with C. Weibel. arXiv
- On the topological period-index problem over 8-manifolds, with D. Crowley and X. Gu. arXiv
- The 0-th stable A^1-homotopy sheaf and quadratic zero cycles. arXiv
Publications.
- The K’ – theory of monoid sets, with C. Weibel. Proc. Amer. Math. Soc. 149 (2021), 2813–2824. arXiv
- The Norm residue Theorem in Motivic Cohomology. 299 + xiii pages, with C. Weibel. Annals of Mathematics Studies 200, Princeton University Press 2019.
- K-theory of line bundles and smooth varieties, with C. Weibel. Proc. Amer. Math. Soc. 146 (2018), 4139–4150. arXiv
- The K-theory of toric schemes over regular rings of mixed characteristic, with G. Cortiñas, M. E. Walker and C. Weibel. In: Singularities, algebraic geometry, commutative algebra, and related topics, 455–479. Springer, 2018. arXiv
- Toric varieties, monoid schemes, and cdh – descent, with G. Cortiñas, M. E. Walker and C. Weibel. Journal für die Reine und Angewandte Mathematik 698 (2015), 1–54. arXiv
- The K-theory of toric varieties in positive characteristic, with G. Cortiñas, M. E. Walker and C. Weibel. Journal of Topology 7 (2014), 247–286. arXiv
- K-theory of cones of smooth varieties, with G. Cortiñas, M. E. Walker and C. Weibel. Journal of Alg. Geom. 22 (2013), 13–34. arXiv
- Stable A^1 – homotopy and R-equivalence, with A. Asok. Journal of Pure and Applied Algebra 215 (2011), 2469–2472. arxiv
- A negative answer to a question of Bass, with G. Cortiñas, M. E. Walker and C. Weibel. Proc. Amer. Math. Soc. 139 (2011), 1187–1200. arXiv
- Lipschitz cocycles and Poincare duality, with E. M. Friedlander. In: The geometry of algebraic cycles. Clay mathematics Proceedings, AMS, 2010. Link.
- Bass’ NK groups and cdh-fibrant Hochschild homology, with G. Cortiñas, M. E. Walker and C. Weibel. Inventiones Math. 181 (2010), 421–448. arXiv
- Norm varieties and the Chain Lemma (after Markus Rost), with C. Weibel. In: Abel Symposium 4, Springer 2009. arXiv
- The K-theory of toric varieties, with G. Cortiñas, M. E. Walker and C. Weibel. Trans. Amer. Math. Soc. 361 (2009), 3325–3341. arXiv
- Infinitesimal cohomology and the Chern character to negative cyclic homology, with G. Cortiñas and C. Weibel. Math. Ann. 344 (2009), 891–922. arXiv
- K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst, with
G. Cortiñas and C. Weibel. Journal of the Amer. Math. Soc. 21 (2008), 547–561. arXiv - Cyclic homology, cdh-cohomology and negative K-theory, with G. Cortiñas,
M. Schlichting and C. Weibel. Annals of Math. (2) 167 (2008), 549–573. arXiv - Motives and étale motives with finite coefficients, with J. Hornbostel. K-Theory 34 (2005), 195–207.
- Descent properties of homotopy K-theory. Duke Math. J. 125 (2004), 589–619
- Techniques, computations and conjectures for semitopological K-theory, with E. M. Friedlander and M. E. Walker. Math. Ann. 330 (2004), 759–807.
Office 171
Peter Hall Building
School of Mathematics and Statistics
University of Melbourne
Parkville, Victoria 3010
Australia
phone: +61 3 834 49289
email: christian.haesemeyer@unimelb.edu.au
A page for displaying the latest posts