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Abstract

Free-surface flows of viscous liquid down an inclined plane and past cylinders of various cross-sections

are investigated theoretically and experimentally. The cylinders are oriented with their axis perpendicular to

the plane and are sufficiently tall that they are not overtopped. A lubrication model is applied to derive the

steady governing equation for the flow depth, which is integrated numerically and analyzed asymptotically

to calculate how the depth of a steady uniform flow is perturbed as it flows past the cylinder. Flows past

cylinders that are narrow relative to the depth of the oncoming flow are only slightly perturbed, but for

relatively wide cylinders, there forms a pond of nearly stationary fluid upstream of the cylinder and a dry

region in which there is no fluid downstream of the cylinder. The structure of the flow in the regime of a

relatively wide cylinder depends in detail upon the curvature of the cylinder at the upstream stagnation point.

For flows past cylinders with circular and square cross-sections, the maximum flow depth occurs at the

upstream stagnation point. Its numerical value may be predicted analytically on the basis of the asymptotic

expressions and exhibits different dependencies upon the variables that characterise the motion. In addition,

wedge-shaped obstructions are analyzed for which the flow depth increases along the wedge wall and the

maximum flow depth occurs away from the upstream stagnation point. The results from new laboratory

experiments of flows past circular cylinders are reported and these corroborate the theory, confirming the

occurrence of both pond and dry regions. The investigation has direct relevance to the deflection of lava

flows by barriers and buildings and the theory is employed to deduce simplified asymptotic expressions of

the force exerted on the cylinders.

I. INTRODUCTION

The interaction between a free-surface viscous flow and immobile obstructions on an inclined

plane occurs in many industrial and environmental contexts. It is often important to quantify the

stress that is exerted on an obstruction and determine how the free-surface is perturbed. These

flows are dominated by different forces depending on the lengthscale and shape of the obstruction,

and the properties of the fluid. A common feature in many applications is that the flow is thin

relative to the longitudinal lengthscale and so the lubrication approximation may be applied [1].

There has been extensive theoretical and numerical research on thin-film flows over adhered

obstacles, for which surface tension plays a key role [2–5]. These studies have important applica-

tions in manufacturing and printing owing to the ubiquity of coating flows in such industries. The
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role of surface tension in thin-film flows past cylinders has been investigated numerically [6, 7],

while capillary effects on viscously-dominated flows around isolated and periodic obstructions

have also been analyzed [8–12]. In addition to surface tension, inertia may be significant in some

interactions between thin films and obstructions [13, 14]. Significant progress has also been made

in the inverse problem; determining the underlying topography given a known free-surface, which

is important for determining the required bottom topography for a desired free-surface profile

[15, 16].

For viscous flow past large obstructions, the flow may not coat the obstruction and in this

case there are dry regions in which there is no liquid. Some studies have determined when an

obstruction will lead to a dry region rather than the obstruction being surmounted by the flow

[17, 18]. Dry regions may also arise owing to instabilities associated with surface tension effects,

particularly when the film is very thin [19–25]. Yatim et al. [26] showed that in the absence of any

capillary effects or obstructions to the flow, a dry region, which may develop for example owing

to isolated heating, has parabolic shape and migrates steadily downslope.

In the present study, we analyze the interaction of free-surface viscous flow with cylindrical

obstructions that are oriented with their axis perpendicular to the inclined plane and which are of

a sufficient height that the flow does not surmount them (see figure 1). The motivation of the work

is, in part, to inform the construction of barriers used to divert volcanic lava flows, which can cause

enormous damage to homes and infrastructure [27].

Lava is a complex liquid with a rheology that can change rapidly and it solidifies at its bound-

aries to form crust [28, 29]. Modelling lava as a Newtonian viscous liquid has nevertheless proved

useful and accurate in many contexts [30, 31] and we adopt this view in the present work. We

also neglect surface tension because it is insignificant at the relatively large scales of interest,

potentially apart from very close to the contact line.

The motion of a viscous Newtonian liquid down an inclined plane from either point or line

sources has been widely researched; in particular it has been shown that a steady flow arises from

a line source delivering a constant volume flux of liquid per unit width [32–34]. The interaction

of this steady flow with a topographical mound was the subject of a previous paper [18]. It was

shown, and analyzed quantitatively, that smaller mounds are surmounted by the flow whilst taller

mounds lead to dry regions in which there is no liquid and a build up of liquid in a pond upstream

of the mound [see also the investigation of the lava field at Marcath volcano, 35].

The present work, investigating the interaction of a downslope viscous flow with cylindrical

obstructions, pertains to lava barriers that are steeper and taller than those considered in [18]. Such
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barriers were proposed in Hawaii to protect a research observatory [36] and in part motivated by

this plan, laboratory experiments investigating the influence of perpendicular obstructions were

carried out by Dietterich et al. [37]. Interesting research results have been established for the

related problem of the deflection of rapid downslope granular flows by obstructions, which is

important for the construction of avalanche defenses [38–40]. For these inertially controlled flows,

there are now guidelines for the design of defense schemes [41]; we note there is no equivalent

guidance for viscously-controlled lava flows.

Additionally, the present work has important applications to the study of the interaction be-

tween lava and trees. As an example, observations of ‘lava-trees’ post-eruption may be used to

determine properties of the lava flow [42]. It has been shown that forests slow the advance of a

lava flow and lead to build up of lava upstream [43]. Our results demonstrate similar phenomena.

Free-surface flows are often modelled mathematically by strongly nonlinear partial differential

equations and many of the research results described above came through numerical computation,

coupled to experimental investigations [for a review, see 14]. In this study, we employ both of these

approaches. However, in addition, we derive asymptotic results that show good agreement with

our computational results and yield both a simplified quantification of the flow depth and insight

into the interplay of the dominant physical processes. Since part of the aim of the present paper

is to inform barrier construction, we quantify how the flow depth increases upstream of a cylinder

to determine how tall an obstruction must be to prevent overtopping; we also make estimates of

the force exerted on the obstruction. The results are calculated numerically and through explicit

analytical expressions that result from our asymptotic analysis.

The paper is structured as follows. In section II, we formulate the lubrication model for a

free-surface viscous flow past a cylindrical obstruction, following section 2 of Hinton et al. [18].

We identify a single parameter, F , which is a dimensionless proxy for the upstream flow depth

relative to the width of the cylinder. We then present a numerical scheme and results for the steady

flow depth. These demonstrate that for sufficiently wide cylinders (F � 1), the depth increases

significantly upstream of the cylinder and there are dry regions with no liquid downstream of the

cylinder. For relatively narrow cylinders (F � 1), the perturbation to the upstream flow depth is

small.

In section IV, we determine an asymptotic approximation for the case of flows past a relatively

narrow circular cylinder, corresponding to the regime F � 1. In section V, we consider the

other regime of a relatively wide cylinder (F � 1) and show that the depth increases by a factor

proportional to F−1/4 to leading order. Laboratory experiments are presented in section VI and
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FIG. 1: (a) Schematic for viscous flow down an inclined plane at an angle, β , to the horizontal,

past a cylinder from a line source. (b) Plan view of the setup. The cylinder has radius L, the X

axis is in the direction of steepest descent and the Y axis is in the cross-slope direction. (c) Side

view of the flow showing the flow thickness far upstream, H∞, and the perturbation owing to the

cylinder.

these corroborate our theory. Finally, in the last two sections, we study how the flow is perturbed

upstream of a relatively wide square cylinder (VII) and a relatively wide wedge (VIII). The three

shapes of cylinder analyzed in this study (sections V, VII and VIII) exhibit different behaviour

and dependencies of the upstream flow depth upon the properties of the flow (represented through

the dimensionless parameter F ). This is associated with the different curvatures at the stagnation

point; for a circle the curvature is finite, for a square it vanishes, whilst a wedge has infinite

curvature at the vertex.

This paper also includes three appendices (A, B and C), which include algebraic details of some

of the asymptotic analyses. They are important in order to establish completely the behaviour of

the dependent variables in the asymptotic regimes, but are presented in appendices so as to not

detract from the exposition of the main results.

II. FORMULATION

We analyze the free-surface flow of a liquid of dynamic viscosity µ down a rigid inclined plane

at an angle β to the horizontal (figure 1). We denote the downslope coordinate by X , the cross-

slope coordinate by Y and the normal distance above the inclined plane by Z. Throughout this

paper, we focus on the steady solution that develops long after the current first passes the obstruc-
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tion. The steady depth of the liquid is given by H(X ,Y ). We assume that the liquid is sufficiently

viscous that the effects of both inertia and surface tension can be neglected (i.e. the Reynolds

number is sufficiently small and the capillary number is sufficiently large). These assumptions are

explicitly quantified when we describe our experiments (§VI).

We further assume that the flow is ‘shallow’, meaning that its thickness, H, is much smaller

than its characteristic lengthscale, L, parallel to the inclined plane. Continuity imposes that the

component of velocity normal to the plane, W , is much smaller than the velocities in the X and Y

directions by a factor of H/L. This simplification, known as lubrication theory, applies to many

gravity-driven and pressure-driven viscous flows and flows in porous media [33, 44–46]. The flow

is assumed to be predominantly parallel to the inclined plane and the pressure within the liquid is

hydrostatic to leading order [1].

One limitation of lubrication theory is that a retreating contact line cannot occur, for example at

the upstream edge of a fixed volume of liquid flowing over inclined plane [33]. Instead, the theory

suggests that receding regions are very slowly draining thin films. For the problem considered

presently, this limitation is unimportant because dry regions can occur only in a region downstream

of the cylinder into which liquid never flows, thus the contact line is nowhere receding.

Following Lister [33], we derive the flow velocities in the X and Y directions and then from

local mass conservation obtain the steady nonlinear partial differential equation governing H (first

derived by Nusselt [47])

∂

∂X

[(
sinβ − ∂H

∂X
cosβ

)
H3

]
− ∂

∂Y

[
∂H
∂Y

H3 cosβ

]
= 0. (1)

We consider the motion arising from a line-source supplying a constant flux Q per unit width

far upstream (X →−∞; see figure 1a). The steady flow advances with constant depth, given by

[1, 33, 47]

H∞ =

(
3µQ

∆ρgsinβ

)1/3

, (2)

where g is the gravitational acceleration and ∆ρ is the density difference between the liquid and

air, essentially the liquid density. We consider the interaction between this flow and obstructions

with lengthscale, L, measured parallel to the inclined plane (for example, a circular cylinder of

radius L, see figure 1). We assume that the channel is much wider than the obstruction so that

it may be considered isolated and we reiterate that we have used the lubrication approximation,

which is equivalent to assuming H∞/L� 1.

We restrict our attention to cylindrical obstructions that are sufficiently high that they pierce
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the free-surface and there is no overtopping during the ensuing motion. The overtopping of topo-

graphical mounds was part of the consideration of [18]. We introduce the following dimensionless

variables

x = X/L, y = Y/L, h = H/H∞. (3)

Using equation (1), we find the following governing equation for the steady dimensionless depth,

h(x,y),
∂h3

∂x
= F

[
∂

∂x

(
h3 ∂h

∂x

)
+

∂

∂y

(
h3 ∂h

∂y

)]
, (4)

where the dimensionless parameter,

F =
H∞

L tanβ
=

[
3µQ

(∆ρgsinβ )L3 tan3 β

]1/3

(5)

is the ratio of downslope to lateral pressure gradients. It quantifies the importance of the diffusive

terms on the right-hand side of (4), associated with the gravity-driven slumping of the liquid,

relative to the downslope advective term on the left-hand side of (4), associated with the gravity-

driven flow down the plane. The dimensionless velocity is given by

u =
3
2

z(2h− z)

(
1−F ∂h

∂x
,−F ∂h

∂y

)
. (6)

This parabolic velocity profile is typical of flows governed by a simple balance between viscous

stresses and a uniform driving force (in this case gravity).

We begin the analysis by considering circular cylinders of radius L, centered on the origin. In

dimensionless polar coordinates, with x = r cosθ , y = r sinθ and the cylinder lies within r < 1, the

steady governing equation for the motion (r > 1) is given by

cosθ
∂h3

∂ r
− sinθ

r
∂h3

∂θ
= 1

4F∇2h4. (7)

In this coordinate system the components of the velocity in the radial and azimuthal directions are

ur =
3
2

z(2h− z)
[

cosθ −F ∂h
∂ r

]
, (8)

uθ =
3
2

z(2h− z)
[
− sinθ − F

r
∂h
∂θ

]
, (9)

respectively. We impose a no-flux boundary condition at the edge of the obstruction, u · n = 0,

where n is the outward pointing normal, which becomes

h3

(
F ∂h

∂ r
− cosθ

)
= 0 on r = 1. (10)
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We require that the flow depth returns to its unperturbed value far from the cylinder,

h→ 1 as r→ ∞. (11)

Finally, we allow free-slip on the obstruction in accordance with the leading order lubrication

model. Under our assumption of shallow flow (H∞/L� 1), the X and Y viscous stress terms,

µ∂ 2U/∂X2 and µ∂ 2U/∂Y 2 are neglected in the momentum equation. The order of the problem

is therefore reduced and the no-slip boundary condition on the cylinder cannot be imposed. There

is a region localised to the cylinder where the second order X and Y derivatives of the velocity

become important. Our model neglects this region, which has been shown to occupy R−L ∼ H∞

[for a detailed analysis of the inner region and the matching with the outer lubrication flow, see

48, 49]. In addition, if small inertial terms are reintroduced into the problem then the perpendicular

component of the velocity is non-zero in this region and there are secondary flows associated with

the no-slip boundary, which we also neglect [48–51]. We show that the region in which no-slip is

important is smaller than the ‘inner’ regions of the asymptotic analysis of our lubrication model in

both the regime F � 1 (§IV) and the regime F � 1 (§V). Henceforth we neglect the effects of

no-slip on the cylinder wall.

III. NUMERICAL METHOD

We used MATLAB’s Partial Differential Equation ToolboxTM to solve the steady governing

equation (7). A similar approach was used in Hinton et al. [18] for flow over a mound. The pro-

gram uses numerical finite elements to compute the solution. The steady state is found iteratively;

we take an initial guess to be h = 1 everywhere, corresponding to flow without an obstruction and

iterate until a converged solution is found. The toolbox performs adaptive two-dimensional mesh

generation and refinement to determine the influence of the cylinder.

We solve the governing equation on the domain 0 < y < c, a < x < b (where a < 0), with the

unit semicircle in y > 0, centered at the origin, removed (see figure 2a). Since the problem is

symmetric about the centerline y = 0 we solve the governing equation only in y ≥ 0 to reduce

computational effort.

The boundary conditions on the domain are as follows. The upstream line source supplies

constant flux; thus h(x = a) = 1. Symmetry requires that ∂h/∂y = 0 on the centreline y = 0. We

impose a no-flux condition into the cylinder boundary, which is given by equation (10). We impose

the far-field condition (11), h = 1, on the other boundaries (y = c and x = b). For each value of
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(a) F = 20 (diffusive terms dominate advective terms).
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(b) F = 1 (diffusive terms and advective terms are comparable and both are

important).
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(c) F = 0.025 (advective terms dominate the diffusive terms).

FIG. 2: Contour plot of the thickness of the steady flow past a cylinder with dimensionless radius

r = 1 for three values of the flow parameter, F .

F , we run our numerical technique on an initial domain and subsequently increase the domain

size until the results become independent of further increases to it. For example, with F = 0.1,

we used a =−4, b = 40 and c = 5. Typically, we use approximately 100,000 elements to provide

sufficient resolution. Contour plots of the thickness of the flow for three values of F are shown in

figure 2.

For large F , the diffusive terms in the governing equation (7) dominate and the perturbation to

the flow depth due to the cylinder is small, as illustrated in figure 2a. The minimum thickness of the

current (at x = 1, y = 0) decreases as F is decreased, corresponding to a relatively wider cylinder,

steeper slope or shallower current (or a combination of these). For F = 1, the minimum thickness
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is approximately half of the flow thickness found far upstream (figure 2b). For sufficiently small

F , dry zones in which the flow depth vanishes (h = 0) can occur (see figure 2c).

The original numerical scheme was not effective when there were dry regions because the

diffusive term is degenerate as h→ 0. We note that this is not a limitation of lubrication theory

because the dry region is never invaded by the liquid so it is not a draining film. To overcome

the degeneracy, we introduced a small source at the downstream edge of the cylinder, r = 1,

0 < θ < π/2, to provide a ‘virtual’ thin film over the dry region. It is analogous to radially

‘squirting’ a very small amount of liquid from the cylinder. The boundary condition on the cylinder

(10) is then adjusted to

h3

(
cosθ −F ∂h

∂ r

)
= ε on r = 1, 0 < θ < π/2. (12)

The magnitude of the source, ε , was minimized subject to the constraint that the thin film coats

the dry region (and consequently the thickness of the flow everywhere satisfies h > 0). At such

values of ε , the flow thickness becomes independent of ε away from the dry zone. Typically, we

use ε = 10−6. The edge of the dry region can be determined by analysing where the flow thickness

steeply increases from its approximately constant value in the thin film.

We computed the flow thickness for a wide range of values of the parameter, 0.025≤ F ≤ 40.

In the following sections, we use asymptotic analysis to interpret the results.

IV. FLOW PAST A NARROW CIRCULAR CYLINDER (F � 1)

We first comment that the regime F � 1 is consistent with the lubrication approximation,

H∞/L� 1, provided that

tanβ � H∞/L� 1. (13)

For F � 1, the flow remains attached to the cylinder, i.e. there are no dry regions downstream.

The increase in depth upstream of the cylinder is small relative to the far upstream depth (see

figure 2a). This motivates seeking an expansion for h in the case F � 1, about the far-field depth,

h = 1, of the form

h = 1+F−1h1 +F−2h2 + · · · (14)

At O(1), equation (7) is

∇
2h1 = 0, (15)
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subject to boundary conditions (10, 11)

∂h1

∂ r
= cosθ at r = 1, (16a)

h1→ 0 as r→ ∞. (16b)

We seek a separable solution in r and θ , which satisfies the boundary conditions and obtain

h1 =−r−1 cosθ . (17)

At O(F−1), equation (7) is

∇
2h2 = 3cosθ

∂h1

∂ r
−3

sinθ

r
∂h1

∂θ
− 3

2
∇

2h2
1. (18)

We substitute our expression (17) for h1, which yields

∇
2h2 = 3r−2 cos2θ −3r−4. (19)

The boundary conditions for h2 are

∂h2

∂ r
= 0 at r = 1, (20a)

h2→ 0 as r→ ∞. (20b)

The general solution to equation (19) is

h2 = A0 log(r)+B0 +
∞

∑
n=1

(
Anrn +Bnr−n)[Cn cosnθ +Dn sinnθ

]
− 3

4
cos2θ − 3

4
r−2, (21)

where An, Bn, Cn and Dn are constants to be determined. The last two terms represent the comple-

mentary function arising from the right-hand side of (19). We impose An = 0 (for n≥ 1) because

h2 cannot grow algebraically in the far-field if it is to match with h2→ 0 as r→ ∞. Applying the

boundary condition at r = 1 (equation 20a), we find A0 =−3/2 and Bn = 0 (for n≥ 1) and obtain

h2 =−
3
2

log(r)+B0−
3
4

cos2θ − 3
4

r−2. (22)

It is not possible to apply the boundary condition as r→ ∞ (equation 20b) because A0 6= 0 and

hence h2 ∼ logr.

Instead, in the regime F � 1, the solution forms two asymptotic regions close to and far from

the cylinder. When the radial distance is O(F), the advective terms, on the left-hand side of (7),

are comparable with the diffusive terms. The problem is therefore singular and its asymptotic

approximation comprises an ‘inner’ region close to the cylinder which is matched to an ‘outer’
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region far from it [for further details of this general idea, see chapter 5 of 52]. There is an analogy

here with the resolution of the Whitehead paradox for low Reynolds number flow past a sphere,

resolved by Proudman and Pearson [53], where an outer region is introduced to account for inertial

effects. The regular expansion for flow past a sphere is accurate to leading order but matching is

required at next order.

Next, we seek an asymptotic expansion for the depth in the outer region where the advective

and diffusive terms balance.

A. Outer region

The distinguished limit for the outer region of equation (7) occurs when we rescale r with F
by

r = F r̂, (23)

where r̂ is order 1, and we define x̂ = r̂ cosθ and ŷ = r̂ sinθ . The governing equation (7) in the

rescaled coordinates is
∂h3

∂ x̂
=

[
∂

∂ x̂

(
h3 ∂h

∂ x̂

)
+

∂

∂ ŷ

(
h3 ∂h

∂ ŷ

)]
. (24)

Since h→ 1 as r̂→ ∞, we seek an outer expansion of the form h = 1+δ (F)ĥ, where δ (F)� 1

is to be determined as part of the matching procedure. The leading order equation for ĥ is

3
∂ ĥ
∂ x̂

= ∇
2ĥ, (25)

which is linear. By letting ĥ = φ(r̂,θ)e3x̂/2, (25) is transformed into a more familiar equation for

φ(r̂,θ) [see chapter 5 of 52]

(∇2−9/4)φ = 0. (26)

Note that the boundary condition in the far field for φ is that it decays faster than e−3x̂/2 in order

that ĥ→ 0 as r̂→ ∞. Equation (26) has separable solutions of the form

φ =
[
am cos(mθ)+bm sin(mθ)

]
Φ(r̂), (27)

where am and bm are constants and Φ satisfies

r̂2
Φ
′′+ r̂Φ

′− (9/4)r̂2
Φ−m2

Φ = 0. (28)

The general solution for Φ is

Φ = cmIm

(
3r̂/2

)
+dmKm

(
3r̂/2

)
, (29)
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FIG. 3: The maximum (blue solid line) and minimum (red solid line) depths, calculated from our

numerical technique, for steady flow past a cylinder as functions of the parameter F . The deepest

point is always at the stagnation point on the upstream boundary at θ = π , whilst the shallowest

point is on the downstream boundary at θ = 0. The asymptotic predictions for the two extrema,

calculated from equation (33), are plotted as black dotted lines, which show good agreement for

F � 1.

where Im and Km are modified Bessel functions of the first and second kind, respectively [54] and

cm and dm are constants. The function Im grows as r̂→ ∞, which imposes cm = 0. We note that

for r̂� 1

Km

(
3r̂/2

)
∼
√

π

3r̂
e−3r̂/2, (30)

which implies that ĥ ∼ r̂−1/2 → 0 as r̂ → ∞, as required. Finally, since the flow is symmetric

about the x axis, the coefficients of the sin(mθ) terms in equation (27) vanish; bm = 0. Putting this

together, we obtain the following expression for the outer expansion

h = 1+δ (F)ĥ = 1+δ (F)
∞

∑
m=0

am cos(mθ)Km

(
3r̂/2

)
e3x̂/2. (31)

The remaining undetermined constants occurring in the inner and outer expansion are obtained

by matching, the details of which are given in Appendix A. We find that the outer expansion is

h = 1+(3/2)F−2

[
K0

(
3r̂/2

)
− cosθK1

(
3r̂/2

)]
e(3r̂ cosθ)/2 (32)

and the inner expansion is

h = 1− cos(θ)
Fr

− 3
4F 2

[
2log

(
3r
4F

)
+2γ +2cos2(θ)+ r−2

]
, (33)

where γ ≈ 0.577 is the Euler constant. We use (33) to evaluate the flow depth attained on the

cylinder (r = 1) at the upstream stagnation point (θ = π) and the downstream point (θ = 0), which
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give the maximum and minimum perturbations to the depth of the flow, respectively, in the regime

F � 1,

hmax = h(1,π) = 1+
1
F −

3
4F 2

[
2log

(
3

4F

)
+2γ +3

]
(34)

hmin = h(1,0) = 1− 1
F −

3
4F 2

[
2log

(
3

4F

)
+2γ +3

]
. (35)

In figure 3, we compare these predictions with the maximum and minimum flow thicknesses from

the numerical solution of the governing equation (7). There is excellent agreement in the regime

F � 1.

We have obtained the asymptotic approximations for the flow depth in the inner region in which

r is order 1 (equation 33) and the outer region in which r is order F (equation 32). By adding these

expressions and subtracting the common terms in the matching region, we can obtain the following

composite expansion

hcom = 1−3F−2/(4r2)+(3/2)F−2
{

K0
[
3r/(2F)

]
− cosθK1

[
3r/(2F)

]}
e(3r cosθ)/(2F), (36)

which is an excellent approximation for all r (see figure 4). The composite asymptotic solution

accurately captures the numerical results.

The approximations found in this section are effective (and show good agreement with the

numerical results) provided that F ' 5 (see figure 3).

Finally, we comment on the validity of the lubrication approximation. Close to the cylinder

lubrication theory breaks down. The region in which the neglected effects of the no-slip boundary

condition are important is given by r−1∼H∞/L� 1. The inner region of our asymptotic analysis

corresponds to r ∼ 1. Thus the region in which no-slip is important is much smaller than the inner

region.

B. Force exerted on the cylinder

In many practical applications, it is important to estimate the downslope component of force

exerted by the flow on the cylinder. We use our asymptotic approximations to calculate this force

in the regime F � 1. The force consists of a hydrostatic component arising from the pressure and

a dynamic component associated with gradients in the flow velocity. The dimensional force owing

to the pressure is ∫ 2π

0

∫ H(L,θ)

0
−PcosθLdθ dZ, (37)
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FIG. 4: Comparison between the composite expansion (36) and the numerical results for F = 15.

(a) The depth of liquid along the centerline of the steady flow past a cylinder as a function of the

downstream distance, x, for F = 15. The composite expansion (36) shows good agreement with

our numerical simulations. (b) Contours of the absolute difference between the numerical result

and the composite expansion for the flow thickness. The error does not exceed 1.1% of the

upstream flow depth.

where P is the dimensional hydrostatic pressure at the cylinder boundary, P= ∆ρgH∞ cosβ (h−z),

from which we obtain

∫ 2π

0

∫ H

0
−PcosθLdZ dθ = πF−1

∆ρgH2
∞Lcosβ = π∆ρgH∞L2 sinβ , (38)

to leading order, where we have used the inner expansion (33) for the flow depth. This force

corresponds to the component of the weight of the cylinder filled with fluid up to a height H∞ acting

along the slope. Calculation of the dynamic component of the force requires detailed knowledge

of the flow close to the cylinder where no-slip is important, which is beyond the scope of this

article.
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V. FLOW PAST A WIDE CIRCULAR CYLINDER (F � 1)

In this section, we analyse the regime F � 1, corresponding to a steep slope relative to the

ratio of the far upstream depth to the cylinder radius. Figure 2c, a contour plot of the numerical

results for F = 0.025, illustrates that in this wide cylinder regime, dry zones in which there is

no liquid occur downstream of the cylinder. Figure 2c also illustrates how the flow accumulates

in a small but deep region upstream of the cylinder, within which the flow depth is considerably

enhanced as a result of its deflection. For the case plotted in figure 2c, the maximum flow depth is

3.57 when F = 0.025. We apply asymptotic methods to interpret the structure of the flow in the

deep upstream region. We introduce an inner asymptotic region close to r = 1, writing

r = 1+F as and h = F bH. (39)

We balance the leading order terms in the governing equation (7); cosθ∂h3/∂ r ∼ F∂ 2h4/∂ r2,

which leads to the requirement that

b = a−1. (40)

The governing equation in the inner region can then be written in terms of s andH as

cosθ
∂H3

∂ s
− F

a sinθ

1+F as
∂H3

∂θ
=

1
4

[
∂ 2H4

∂ s2 +
F a

1+F as
∂H4

∂ s
+

F 2a

(1+F as)2
∂ 2H4

∂θ 2

]
. (41)

The boundary condition (10) at the edge of the cylinder (s = 0) is

cosθ − ∂H
∂ s

= 0 or H = 0. (42)

The form of equation (41) suggests the following expansion forH,

H =H0 +F aH1 + . . . (43)

To leading order, we obtain

cosθ
∂H3

0
∂ s

=
1
4

∂ 2H4
0

∂ s2 . (44)

Integrating twice and applying the boundary condition (42), we obtain the linear profile

H0 = scosθ +G(θ), (45)

where G(θ) is an arbitrary function, which is to be determined. Equation (45) implies that to lead-

ing order the flow depth is horizontal, forming a pond upstream of the cylinder. Such a feature has

previously been shown to develop upstream of a mound of sufficient amplitude [18] and upstream

of an injection source [see figure 3 of 33].
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The governing equation (41) at O(F a) is

cosθ
∂

∂ s

(
3H2

0H1
)
− sinθ

∂H3
0

∂θ
=

1
4

∂

∂ s

(
H4

0
)
+

∂ 2

∂ s2

(
H3

0H1
)
, (46)

with boundary condition ∂H1/∂ s = 0 at s = 0. The solution, in terms ofH0, is

H1 = k−2(θ)H−2
0 + k0(θ)+ k1(θ)H0 + k2(θ)H2

0, (47)

where k0(θ) is an arbitrary function arising from integration and

k−2(θ) =−
1

8cosθ

d
dθ

(
G4 tanθ

)
, k1(θ) =−

G tan2 θ +G′ tanθ

cosθ
, k2(θ) =

3tan2 θ −1
8cosθ

. (48)

WhenH0 vanishes, the series becomes non-asymptotic. We denote this location as

s = s∗(θ) =
−G(θ)

cosθ
. (49)

Also, the leading order behaviour for the depth (45) does not satisfy the boundary condition h→

1 as r → ∞. Hence, near s∗, we must introduce an interior region in order to match the inner

expansion to a far-field expansion in which h→ 1. To capture the behaviour in this region, we

write

s = s∗+F c
η , (50)

where c is another exponent to be determined. The behaviour of the leading order function near

the interior region isH0 = F cη cosθ and for |s− s∗| � 1,

H1 ∼ k−2(θ)H−2
0 =

k−2(θ)

F 2cη2 cos2 θ
. (51)

In the interior region, the first two terms in the expansion for the depth are

h = F bH0 +F b+aH1 = F b+c
η cosθ +F b+a−2ck−2(θ)/(η cosθ)2 + . . . (52)

and this must be the behaviour as η →−∞. Conversely as η → ∞, we must find that h→ 1. Thus

we can determine that b+c = 0 and b+a−2c = 0. By combining these conditions with equation

(40), we obtain the exponents,

a = 3/4, b =−1/4, c = 1/4. (53)

We match the inner solution to the upstream flow depth (h = 1) through the interior region to

obtain the function of integration (for details, see Appendix B),

G(θ) = (−4cosθ)1/4, (54)
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FIG. 5: Depth along the centerline for the steady flow past a cylinder as a function of distance, x,

with F = 0.025. The depth from our numerical simulations (solid blue line) is compared to the

‘inner’ approximation (black dashed line, equation 55), which varies linearly with x, and is very

close to the ‘interior’ approximation (red dot-dashed line), the solution to equation (B2), which is

plotted in figure 18.

FIG. 6: Flow thickness on the upstream cylinder boundary, h(1,θ), as a function of polar angle θ

for F = 0.025. The numerically calculated flow thickness (solid curve) is compared to the

asymptotic approximation, h(1,θ) = F−1/4G(θ), equation (58) (dashed curve).

for π/2 < θ < 3π/2. Note that G(π) =
√

2 and G(π/2) = 0. Upstream of the cylinder, near r = 1,

the depth to leading order varies linearly with radial distance, given by

h = F−1/4H0 = 21/2F−1/4(−cosθ)1/4 +F−1 cosθ(r−1), (55)

which we compare to the numerical results along the line of symmetry (the x < 0 axis along which

θ = π) in figure 5. We also plot the interior approximation, given by the solution to equation (B5),

as a red dot-dashed line. The asymptotic approximations accurately capture the behaviour.

To leading order, we determine from (55) that the free surface is horizontal in a region of

lengthscale F 3/4 upstream of the cylinder and there is a pond of nearly stationary liquid there.

Correspondingly, the radial velocity (8) is zero to leading order in this region, whilst the azimuthal
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velocity is (9)

uθ =
3
2

z(2h− z)
[
− r−1 sinθ +O(F 3/4)

]
. (56)

The leading order expression for the depth (55) may also be obtained by balancing volume

fluxes in the pond region. This method has previously been employed to calculate the flow depth

upstream of a squeegee moving horizontally over a layer of viscous fluid, which is governed by a

similar but not identical lubrication model (see Lister [55]).

The flow depth in the pond region upstream of the cylinder, which has a horizontal free-surface,

is given by hp = F−1 cosθ(r−1)+ Ĝ(θ), where Ĝ(θ) is to be determined (this is the equivalent

of (45)). The pond extends to r = 1−F Ĝ(θ0)/cosθ0, where the flow depth returns to order unity

(this is the equivalent of (49)). The flux into the pond from upstream between θ = π and θ = θ0

is sinθ0 as the upstream flow depth is unity. The flux out of the segment of the pond in 0 < θ < θ0

occurs across θ = θ0 and balancing the fluxes in and out of this region yields

sinθ0 =
∫ r=1−F Ĝ(θ0)/cosθ0

r=1
h3

p

(
sinθ0 +

F
r

∂hp

∂θ

)
dr. (57)

Upon substituting for hp and integrating, we obtain Ĝ(θ) = F−1/4(−4cosθ)1/4 to leading order,

which is identical to G(θ) derived using the more complete asymptotic techniques. The volume

flux method avoids the need for explicitly constructing the interior layer (50), instead establishing

the leading order behavior by matching conditions. It is more direct than the formal matched

asymptotic expansions, but does not easily extend to higher orders. Nevertheless, we use it to

analyse the flow around square and wedge-shaped cylinders (§§VII, VIII) in the regime F � 1,

noting that these results are identical to the leading results from matched asymptotic expansions.

On the boundary of the cylinder (r = 1) we find that the flow thickness is

h = F−1/4(−4cosθ)1/4, (58)

which is compared to the numerical results in figure 6. We note that there is very good agreement

between the numerical and asymptotic result close to the upstream stagnation point (θ = π), but

as the edge of the cylinder is approached (θ = π/2), the agreement declines, indicating that a

different asymptotic balance arises in that zone.

The maximum flow thickness is attained at the upstream stagnation point, (r,θ) = (1,π), and

is given by

hmax = F−1/421/2. (59)

This leading order prediction for the maximum flow thickness shows good agreement with the

numerical results when F � 1 (see figure 7).
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FIG. 7: The maximum depth, for steady flow past a cylinder as a function of F−1. The deepest

point is always at the stagnation point on the upstream boundary at θ = π . The results from our

numerical technique (solid black line) compare very closely to the leading order prediction of

equation (58) (red dot-dashed line) and there is particularly good agreement for F � 1. The

asymptotic expansion with the second term (61) is also plotted (blue dashed line).
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FIG. 8: The maximum thickness for steady flow past a cylinder as a function of F . The numerical

results are compared to our asymptotic predictions for the two regimes; F � 1 (equation 61) and

F � 1 (equation 34). We also include our empirical approximation (62) as a dotted red line.

To obtain the second order term in the maximum flow depth,

hmax = F−1/4H0(s = 0,θ = π)+F 1/2H1(s = 0,θ = π)+ . . . (60)

requires determining k0(π) (see equation 47). This is achieved by matching at higher order in

the interior region and we provide details in Appendix C. We obtain k0(π) = −17/40 and the

improved approximation for the maximum flow depth is

hmax = 21/2F−1/4 +(3/40)F 1/2 + . . . , (61)

which shows good agreement with the numerical results (blue dashed line in figure 7).
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In figure 8, we compare this improved approximation with the numerical results and include

the asymptotic predictions for the maximum flow depth from §IV (for F � 1). The empirical

expression

hmax =
(
1+4F−1)1/4

, (62)

agrees with the small F expansion (61) to leading order in the regime F � 1 and agrees with the

large F expansion (34) to order F−1 in the regime F � 1. Indeed, the simple expression (62)

quite accurately captures the behaviour of the maximum flow depth for all F (see figure 8). The

error between (62) and the numerical results for the maximum depth never exceeds 3.5%.

Finally, we comment on the validity of the lubrication approximation close to the cylinder. The

region in which the neglected effects of the no-slip boundary condition are important is given by

r− 1 ∼ H∞/L� 1. The pond region is r− 1 ∼ F 3/4. Therefore, the region in which no-slip is

important is much smaller than the pond region provided that tanβ � F−1/4, which holds in the

present regime, F � 1.

A. Force exerted on the cylinder

The dimensional force on the cylinder owing to the pressure is given by equation (37). In

the regime F � 1, the dominant contribution to this force arises from the upstream pond and so

we calculate the integral of the pressure only on the upstream boundary (π/2 < θ < 3π/2). By

considering symmetry about the centerline, we find the dimensional force exerted on the cylinder

due to pressure to be

2L
∫

π

π/2

∫ H

0
−Pcosθ dZ dθ =F−1/2

∆ρgH2
∞Lcosβ

∫
π

π/2
G(θ)2 cosθ dθ (63)

=1.865F−1/2
∆ρgH2

∞Lcosβ . (64)

VI. LABORATORY EXPERIMENTS

We carried out a series of laboratory experiments on an inclined slope of width 30cm and

length 120cm in the downslope direction (see figure 9a). Golden syrup was released from a lock

gate behind which a fixed depth of syrup was maintained by hand to provide a constant head.

The downslope flow from a constant-flux line source evolved into a steady current with constant

thickness, H∞.
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(a)

FIG. 9: (a) Schematic of the experimental setup. A constantly maintained head of syrup supplies

constant flux. (b) Photograph of the steady syrup flow past the cylinder, illustrating the increase

in flow depth upstream of the cylinder, the sharp decrease in flow depth around the cylinder and

the dry region downstream.

A cylinder was held fixed in the center of the slope and we measured the flow thickness, H∞,

far upstream of the cylinder. After a sufficient time, the flow past the cylinder became steady.

We observed that the far upstream, constant thickness flow is perturbed in a neighbourhood of

the cylinder. The flow deepened upstream and became shallower downstream of the cylinder (see

figure 9b).

The minimum and maximum thicknesses of the steady flow occur at the edge of the cylinder, at

the most downstream and most upstream points respectively. We performed a series of experiments

in which we varied the inclination of the plane, the radius of the cylinder and the source flux per

unit width. We measured the far upstream, minimum and maximum thicknesses using a laser line

following a technique that has previously been used for measuring the thickness of a free surface

[56, 57] and a deformed elastic sheet [58, 59]. A laser line was directed onto black paper laid on

the tank base and photographed. The image could then be compared to later images of the laser

shining onto syrup flowing down the tank to determine the flow thickness. The laser is directed

to illuminate the centerline of the tank. This technique required the syrup to be opaque, which

was achieved by adding a few drops of magnolia paint to the syrup. The mixture was tested in a

rheometer to confirm that it was still Newtonian, with viscosity 89.6 Pa s. We note that the results

presented below for the dimensionless flow depth, h = H/H∞, do not require knowledge of the

viscosity of the fluid. We require only the flow depth H(X ,Y ) and the far upstream flow depth
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Angle cylinder radius flow thickness parameter experimental max. experimental min.

(degrees) R (mm) H∞ (mm) F hmax (dimensionless) hmin (dimensionless)

5.0 24 15 7.14 1.2 0.85

3.5 48 13.2 4.50 1.72 0.61

5.0 24 7.9 3.76 1.28 0.77

3.5 48 9.8 3.34 1.22 0.57

10.0 24 7.4 1.75 1.38 0.53

14.6 24 8.5 1.36 1.63 0.43

13.0 24 5.5 0.99 1.7 0

14.6 24 6 0.96 1.71 0.38

15.0 24 6 0.93 1.56 0.32

10.0 40.5 6.5 0.91 1.61 0

20.0 24 7.9 0.90 1.64 0

20.0 40.5 11 0.75 1.68 0

23.1 40.5 12.1 0.70 1.64 0

23.1 40.5 8 0.47 1.76 0

TABLE I: Experimental results of the minimum and maximum flow thicknesses.

H∞ (which is dependent on the viscosity) to be measured, as well as the slope angle and cylinder

radius. Thus, although changes in the laboratory temperature from experiment to experiment can

have a strong effect on the viscosity of the syrup, they do not lead to errors in the experimental

data for the dimensionless flow depth.

A. Results

Our results are shown in table I. The minimum and maximum flow thicknesses are compared

to our numerical results in figure 10, which show very good agreement. The flow thickness of the

syrup along the centerline upstream of the cylinder determined using the laser line technique is

compared to our numerical results in figure 11 for three values of F .

In general the experiments showed a slightly larger increase in flow thickness upstream of the

cylinder compared to the theory. This may be because the theory neglects the no-slip condition

at the cylinder wall, which will slow the flow here and lead to an increased build-up of liquid
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FIG. 10: Comparison of the experimental and theoretical results (calculated numerically) for the

maximum and minimum flow thicknesses. Zero minimum flow thickness corresponds to a dry

zone downstream of the cylinder in which there is no syrup.

upstream.

The small discrepancy could also be caused by surface tension, which was neglected in the

model (see section II). At room temperature, the density of the syrup is 1400kgm−3 and we take

its surface tension coefficient to be σ = 0.08Nm−1 [60]. With these values, the capillary length

and Bond number are

lc =
√

σ

∆ρg
= 2.4mm, Bo =

∆ρgL2

σ
= 280, (65)

where we have used a streamwise lengthscale L = 40mm, which is the radius of the larger cylinder

used in the experiments. These values suggest that the influence of surface tension is negligible

upstream of the cylinder, except perhaps in a region very close to the cylinder and the contact line

if a dry region forms. The depth-averaged velocity of the fluid was typically

U =
∆ρgH2

∞ sinβ

3µ
≈ 1mms−1. (66)

The Reynolds number is then

Re =
ρUL

µ
= 6×10−4, (67)

which is very small, confirming that inertia is negligible in the experiments.

The numerical results predict that a dry region in which h= 0 occurs downstream of the cylinder

only when F < 0.47. However, the experimental results often have a dry region for values of F
larger than this (i.e. hmin = 0; see figure 10). This discrepancy is most likely due to contact

angle effects at the edge of the dry region. The associated force resists the spreading of the thin

syrup film and this is not accounted for in the model. The difference may also be due to the no-slip
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FIG. 11: Flow depth along the centerline as a function of dimensionless distance, x, upstream of

the cylinder for three values of the flow parameter, F . The experimental results (solid line)

obtained from the laser line technique show very good agreement with our theoretical predictions

(dashed lines), calculated using the numerical scheme described in section III.

condition being neglected, which resists syrup flowing around the downstream side of the cylinder.

Alternatively, it may be a result of very slow temporal convergence to the steady state downstream

of the cylinder and that the experimental runs had not fully attained their steady-state.

VII. FLOW PAST SQUARE CYLINDERS

In this section, we analyse steady free-surface viscous flow past a square cylinder, of side length

2L. The dimensionless governing equation is given by (4), while boundary conditions enforce

u ·n = 0 on the surface of the square and h→ 1 as |x| → ∞. The square is centered on the origin

and its upstream boundary is at x = −1 (see figure 12). We adapt our numerical technique for

this geometry and in the case that there are dry regions downstream of the square, we add a small

source on the downstream boundary at x = 1 (see section III). Contour plots of the numerical
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FIG. 12: Flow past a square with (a) F = 10 and (b) F = 0.25. The two panels have different

axes to capture the region of interest. Note that the flow remains attached to the square in both

cases and there is no dry region for these values of F .

results for F = 10 and F = 0.25 are shown in figure 12. In the regime F � 1, there is a small

perturbation to the flow depth (figure 12a) and the behaviour is broadly similar to that for flow

past a circular cylinder in the same regime. In particular the perturbation to the flow depth is

approximately antisymmetric in x = 0. The behaviour in the regime of a relatively wide square

cylinder (F � 1) is however significantly different from the wide circular cylinders analyzed in

§V. Henceforth in the present section, we restrict our attention to the regime F � 1.

In section V, we quantified the increase in flow depth upstream of a relatively wide circular

cylinder (F � 1) using asymptotic analysis. We found a ponded region in which the flow depth

is horizontal. In the present section, we determine the leading order expressions for the depth

and shape of the ponded region upstream of a square cylinder by balancing the volume flux in

the pond rather than repeating the asymptotic analysis of §V, although such an expansion with

‘inner’, ‘interior’ and ‘outer’ regions may be constructed and is necessary to extend the results

beyond their leading order form. Importantly, we find that the depth within the pond upstream of a

square cylinder has a different scaling in its dependence on F from the case of a circular cylinder.
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The no-flux condition at the upstream boundary is

1−F ∂h
∂x

= 0 at x =−1, provided h > 0. (68)

We also require that the flow depth returns to its unperturbed value far from the square,

h→ 1 as x→−∞. (69)

The liquid within the ponded region just upstream of the square has the following depth (cf. equa-

tion 45)

hp = F−1(1+ x)+Gs(y), (70)

where the prefactor, F−1 is chosen to satisfy the boundary condition at x = −1 (68) and Gs(y)

represents the flow depth on x =−1 and is to be determined. The edge of the pond, where the flow

depth returns to order unity, is given by the solution to hp = 0, which is

xu(y) =−1−FGs(y). (71)

The flux into the pond from upstream, between y = 0 and y = Y , is simply Y . The flux out of

this region of the pond is the integral of the cross-slope flux from x = xu(Y ) to x =−1 at y = Y

(since there is no flux across y = 0). In steady state, we balance these fluxes, which yields

Y =
∫ x=−1

x=xu(Y )
−Fh3

p
∂hp

∂y
dx. (72)

Then using G′s(0) = 0, owing to symmetry, we obtain

Gs(y) = 101/5F−2/5(a0− y2)1/5, (73)

where a0 is a constant of integration. Near the cross-stream edge of the square (at y = 1, x =−1),

the pond ends and the flow depth is no longer of order F−2/5. Thus we find a0 = 1. The flow

depth along the upstream wall at x =−1 is

h = F−2/5101/5(1− y2)1/5. (74)

Along the upstream wall, the numerically calculated flow thickness is compared to this asymptotic

prediction (74) in figure 13. The asymptotic scaling for the flow depth in the pond is h ∼ F−2/5

and the extent of the pond upstream is xu ∼ F 3/5. Notably these are different from the circular

cylinder (cf. 53).

The maximum depth occurs at y = 0, x =−1 and is

hmax = 101/5F−2/5, (75)
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FIG. 13: Flow depth as a function of position along the upstream boundary of the rectangle for

F = 0.025. The asymptotic prediction is h = F−2/5G(y) where the function G(y) is given by

equation (74).
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FIG. 14: Maximum thickness for flow past a square cylinder as a function of the dimensionless

flow parameter, F . The asymptotic prediction is hmax = 101/5F−2/5, equation (75) and is

accurate for F � 1. The empirical approximation is quite accurate for all F and is given by

equation (76).

which shows good agreement with numerical results for small F (see figure 14).

The increase in flow depth upstream of the square (75) has a different scaling to that for a cir-

cular cylinder (59). The flow depth increases more significantly for a square because the curvature

at the upstream boundary of the square is zero whereas the curvature of a circle is finite. In the

next section, we consider how the flow depth increases upstream of a wedge, which has infinite

curvature at its upstream vertex.

For a circular cylinder, we obtained an empirical approximation (62) for the maximum flow

depth, which was accurate for all F . For a square cylinder, the expression

hmax =
(
1+101/2F−1)2/5 (76)
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FIG. 15: Flow past a rhombus with F = 0.25. The angle between the upstream boundary and the

centerline is ψ = π/4. The rhombus sides have dimensionless length of unity. There is no dry

region for F = 0.25.

agrees to leading order with the small F approximation (75) in the regime F � 1. Although

we have not established the expansion for the depth in the regime F � 1, the expression (76)

provides an excellent approximation to the numerical results for all F as shown in figure 14. The

error between the approximation (76) and the numerical results never exceeds 3.5%.

The results in this section pertain to the flow depth upstream of a square but the analysis is

independent of the streamwise length of the square. Thus, the results apply more generally to

rectangular cylinders.

Finally, we calculate the force exerted on a square cylinder. We assume that the dominant

contribution is from the weight of the liquid in the pond (as was the case for a circular cylinder,

see section V A). The force exerted is

2
∫ L

0

∫ H

0
PdZ dY = 2.05F−4/5

∆ρgH2
∞Lcosβ , (77)

which is higher order with respect to F than the force exerted on a circular cylinder (63).

VIII. FLOW PAST A RELATIVELY WIDE WEDGE (F � 1)

In this section, we consider steady free-surface viscous flow past a cylinder with rhombus cross

section. Each side of the rhombus has length L. The dimensionless setup is shown in figure 15; the

rhombus is centered at the origin and the angle between the upstream boundary and the centerline

is denoted by ψ .

The dimensionless governing equation is as before (4). We adapt our numerical technique for

this geometry and in the case that there are dry regions, we add a small source on the downstream
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boundary of the rhombus (see section III). A contour plot of the numerical result for F = 0.25

is shown in figure 15. We note that when F � 1, the flow forms a relatively deep pond on the

upstream boundary of the rhombus. However, unlike the previous cases, the maximum depth is

not located at the furthest upstream position on the symmetric axis. Instead as shown in figure 15

and 16, the fluid depth increases with distance from the apex along the upstream boundary.

As in the previous section for flow past a square, we balance the flux in the pond region to

quantify the increase in flow depth upstream of a relatively wide obstruction, F � 1. We do

not consider the regime of flow past a relatively narrow rhombus (F � 1) as it leads to a small

perturbation in the flow depth and this was studied for a circular cylinder in section IV.

We begin by rotating the coordinates,

x′ = (x+ cosψ)cosψ + ysinψ,

y′ =−xsinψ + ycosψ.

In the new coordinates, the upstream wall lies along 0 < x′ < 1, y′ = cosψ sinψ and the governing

equation becomes

cosψ
∂h3

∂x′
− sinψ

∂h3

∂y′
= F

[
∂

∂x′

(
h3 ∂h

∂x′

)
+

∂

∂y′

(
h3 ∂h

∂y′

)]
. (78)

The no-flux condition on the upstream wall is

F ∂h
∂y′

+ sinψ = 0 at y′ = cosψ sinψ, provided h > 0. (79)

We also require that the flow depth returns to its unperturbed value far from the obstacle,

h→ 1 as y′→ ∞. (80)

There is a pond region near the upstream boundaries of the obstacle in which the depth is given by

(cf. equation 70)

hp =−F−1 sinψ(y′− cosψ sinψ)+Gw(x′), (81)

where the prefactor, F−1 is chosen to satisfy the boundary condition at y′= cosψ sinψ and Gw(x′)

represents the flow depth on the wall and is to be determined. The flux into the pond from up-

stream, between x′ = 0 and x′ = X , is simply X sinψ . The flux out of this region of the pond is

the integral of the flux in the x′ direction, which is h3
p cosψ to leading order, where the component

associated with the diffusive slumping is neglected as it is lower order. In steady state, we balance

these fluxes as in section VII to obtain the function

Gw(x′) = F−1/4

(
4x′ sin2

ψ

cosψ

)1/4

. (82)
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FIG. 16: Flow depth along the upstream wall for F = 0.025 and ψ = π/4. The agreement

between the numerical results and asymptotic prediction declines near x′ = 1 as discussed in the

text.
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FIG. 17: Maximum flow depth as a function of the flow parameter, F , for three wedge angles.

The asymptotic prediction is given in equation (83).

The extent of the pond is order F 3/4. Interestingly these scalings are identical to those found for

a circular cylinder (53), but differ from the square cylinder. The difference is discussed further in

the next section.

Along the wedge (y′ = cosψ sinψ) we compare the numerically calculated flow thickness to

the asymptotic result in figure 16 for ψ = π/4 and F = 0.025. The agreement is good away from

the edges of the wedge wall (x′ = 0 and x′ = 1). The asymptotic approximation is relatively poor

near x′ = 1 because it does not account for the diffusive slumping of liquid past this vertex. The

size of this error increases with the angle ψ because more liquid accumulates near x′ = 1.

From (81) and (82), the maximum depth is at the end of the wedge, x′ = 1, y′ = cosψ sinψ and

is given by

hmax =

(
4sin2

ψ

cosψ

)1/4

F−1/4. (83)
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This shows good agreement with numerical results for small F and small ψ (see figure 17). The

asymptotic approximation for the maximum thickness is not as good for blunter wedges (larger

ψ) because the maximum thickness occurs further from x′ = 1 owing to the importance of the

diffusive slumping and advective terms at x′ = 1 discussed earlier (see figure 16). Also, in the

limit ψ→ π/2, the upstream wall is perpendicular to the oncoming flow and the flow depth scaling

changes to h∼ F−2/5 (see section VII).

It is straightforward to repeat the calculation for the force exerted by the hydrostatic pressure on

the obstruction from the previous cases of flow past wide circular and square cylinders (equations

63 and 77). We obtain the force to be

(4/3)
sinψ

(cosψ)1/2F
−1/2

∆ρgH2
∞Lcosβ . (84)

IX. DISCUSSION AND CONCLUSION

We have studied the deflection of a steady free-surface viscous flow on an inclined plane by a

cylinder oriented perpendicular to the plane. The flow depth is typically increased upstream of a

circular or square cylinder with the maximum flow depth occurring on the cylinder boundary at the

upstream stagnation point, θ = π . There is a decrease in flow depth downstream of the cylinder

and the minimum flow depth occurs on the cylinder boundary at θ = 0.

The magnitude of the perturbation to the flow depth is dependent upon a single dimensionless

parameter, F = H∞/(L tanβ ), which is the upstream flow depth divided by the product of the

cylinder radius and the slope gradient (for non-circular cross-sections, L is a representative length-

scale). For F � 1, the perturbation is small. When F � 1, however, the flow depth increases

significantly upstream of the cylinder and dry regions in which there is no liquid occur downstream

of the cylinder. We have also identified that the relatively deep region upstream of the cylinder is

a pond of liquid with a horizontal free surface and the liquid is nearly stationary there. We have

presented a numerical method that accurately determines the steady flow thickness past cylinders

for a variety of cross-sections and a wide range of values of F . The results demonstrate that the

perturbation to the flow thickness is approximately antisymmetric about x = 0 in the case of a rela-

tively narrow cylinder (F � 1). For much wider cylinders (F � 1), the numerical method enables

the shape of the downstream dry region to be determined and illustrates the ponding upstream of

the cylinder.

In the case of a circular cylinder, we have employed asymptotic analysis to exposit the be-

haviour of the flow in the regimes of wide (F � 1) and narrow (F � 1) cylinders. For a nar-
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row cylinder, we have obtained a composite asymptotic approximation for the depth, which is

accurate everywhere. For wide cylinders, we have quantified the significant increase in depth up-

stream of the cylinder in the ponded region. We have also found a simple empirical expression,

hmax = (1+4F−1)1/4, which provides a good approximation for the maximum flow depth for any

value of F .

We have extended the wide obstruction analysis to cylinders with square and wedge-shaped

cross-section, which also have upstream ponds. The scaling for the flow depth upstream of a

square cylinder is larger than for wedge and circular cylinders. The difference between the scaling

for the flow depth is associated with the curvature of the upstream boundary of the obstruction. In

the case of positive curvature on the upstream boundary (e.g. a wedge or circle), the flux into the

pond is balanced by the component of gravity in the downslope direction. In the case of vanishing

curvature (e.g. a square), there is no downslope flow out of the pond and the flux into the pond

is balanced by the flux acting in the cross-slope direction associated with gradients of hydrostatic

pressure. This flux is much smaller, for a fixed value of the flow depth, than the downslope flux

in the regime of small F and so the pond has a greater depth. We have also shown that for a

wedge-shaped obstruction, the maximum flow depth occurs along the upstream wedge wall away

from the stagnation point, in contrast to the square and circular cylinders. In the case of negative

curvature (i.e. a concave obstruction), the scaling for the depth will be the same as the square

cylinder because the oncoming flux is balanced by the cross-slope flux in the pond.

We also report new laboratory experiments with circular cylinders for a variety of slope angles,

cylinder radii and oncoming flow thicknesses. The minimum and maximum thickness and the

thickness along the centerline of the steady flow were measured non-intrusively by projecting a

laser line onto the flowing surface. The results show very good agreement with our theoretical

predictions and confirm the existence of dry regions downstream of obstructions in the case of a

wide cylinder.

Our study was in part motivated by the need to inform the design of large-scale barriers that

divert lava flows. The regime of a wide cylinder pertains to this context. The dry regions that occur

downstream of obstructions provide safe zones for people, infrastructure and homes. However,

barriers must also be constructed high enough to prevent overtopping and our calculations reveal

the significant increase in flow heights that may be attained when F � 1. Additionally, the barrier

must be designed to withstand the force exerted on it by the flow and the calculation of which is

also possible from our theory.

We have applied our asymptotic analysis to obtain approximations of the maximum flow depth
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on obstructions and demonstrated how this depends on the oncoming flow depth and the shape of

the obstruction. We have also calculated the force exerted on an obstruction by the pond of liquid

upstream formed when F � 1. These results demonstrate that although a square obstruction may

have a much larger dry region (thus protecting a greater area) than a circular obstruction, the

square obstruction must be higher because it leads to a stronger increase in flow depth upstream.

Furthermore, the square obstruction must also be able to withstand a much greater force. The

results illustrate that the dependence of the extent and the shape of the dry region on the shape of

the downstream side of the barrier is an important problem, and results are reported in [61].
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Appendix A: Matching in the regime F � 1

In this Appendix, we match the inner solution (14) as r→ ∞ with the outer solution (31) as

r̂→ 0 to determine the correct form of the two expansions in section IV for the regime F � 1.

We recall that the inner expansion is

h = 1− cosθ

rF +F−2

[
B0−

3
2

log(r)− 3
4

cos2θ − 3
4

r−2

]
. (A1)

We match using an intermediate variable,

ρ = rF−α = r̂F 1−α (A2)

with ρ fixed as F → ∞ and α between 0 and 1. In terms of the intermediate variable, the inner

expansion is

h = 1−F−α−1
ρ
−1 cosθ +F−2[B0− (3/2) log(Fα

ρ)− (3/4)cos2θ − 3
4
F−2α

ρ
−2]+ . . . (A3)

The behaviour of the modified Bessel functions, Km, which occur in the outer expansion, as r̂→ 0,

are given by

K0

(
3r̂/2

)
∼− log(3r̂/4)− γ and Km

(
3r̂/2

)
∼ [(m−1)!/2]

(
3r̂/4

)−m

, (A4)
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FIG. 18: Flow depth in the interior region of our asymptotic analysis, according to equation (B2).

where γ ≈ 0.577 is the Euler constant. In terms of the intermediate variable, the behaviour is

Km ∼ ρ−mFm(1−α). The size of the terms in the sum in the outer expansion (31) increases with m

and these cannot all be matched to the inner expansion (A3). We hence determine that am = 0 for

m≥ 2. The outer expansion in the intermediate region is

h = 1+δ

[
−a0γ−a0 log

(
3Fα−1

ρ/4
)
+(2/3)F 1−αa1ρ

−1 cosθ

][
1+(3/2)Fα−1

ρ cosθ

]
.

(A5)

The leading order term of both inner and outer expansions is 1 and the next term in the inner

expansion (A3) is O
(
F−1−α

)
. The second order term in the outer expansion (A5) arises from K1

and is O
(

δF 1−α

)
. To match the two expansions we therefore choose

δ = F−2. (A6)

At O(F−1−α), matching implies that

a1 =−3/2. (A7)

At O(F−2), we find that

−a0 log(3
4)− γa0−a0 log(ρ)−a0(α−1) log(F)+ a1

2 = B0− 3
2α log(F)− 3

2 log(ρ). (A8)

Comparing logρ terms and constant terms, we obtain

a0 =
3
2
, B0 =−

3
2

log
(

3
4F

)
− 3γ

2
− 3

4
, (A9)

respectively. The inner and outer expansions are now fully determined up to order F−2.

Appendix B: Matching in the interior region to determine G(θ)

At the edge of the pond region (for the regime F � 1), there is a region in which the flow depth

returns to order 1. In the present section, we match through this interior region to obtain the form

of the undetermined function, G(θ). In section V, the scaling for this region was found to be

s = s∗(θ)+F 1/4
η . (B1)
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The leading order governing partial differential equation in the interior region is

cosθ
∂h3

∂η
=

1
4

∂ 2h4

∂η2 , (B2)

with boundary conditions arising from the depth upstream (η → ∞) and the depth in the pond

(η →−∞),

h→ 1 as η → ∞. (B3)

h→ η cosθ +
k−2(θ)

η2 cos2 θ
as η →−∞. (B4)

We integrate the interior governing equation (B2) to obtain

cosθ(h3−1) = h3 ∂h
∂η

, (B5)

where we have used the condition (B3). We calculated the solution to equation (B5), with bound-

ary condition (B4), numerically and it is shown in figure 18. As η →−∞, h→ η cosθ , which

leads to
∂h
∂η

= cosθ
(
1−h−3)∼ cosθ

[
1− (η cosθ)−3] (B6)

as η →−∞. We can compare this to (B4) to obtain

k−2(θ) = 1/2. (B7)

Then (48a) provides a differential equation for G(θ), which upon integrating becomes

G4 tanθ =−4sinθ +K. (B8)

The function G(θ) is bounded at θ = π; thus K = 0. The solution is

G(θ) = (−4cosθ)1/4. (B9)

Appendix C: Matching at higher order to determine k0(θ)

In section V, we found an asymptotic approximation for the flow thickness upstream of a

circular cylinder in the regime of a wide cylinder (F � 1). The maximum flow thickness occurs

at θ = π , r = 1 and we found that the second order contribution to this thickness included k0(π),

which was undetermined. In this Appendix, we match through the interior region at higher order

to obtain an ordinary differential equation for k0(θ), which we use to determine k0(π).
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In the inner region, in which r = 1+F 3/4s, we found in §V that the asymptotic approximation

for the depth takes the form

h = F−1/4H0 +F 1/2H1 +F 5/4H2 + · · · (C1)

and by substituting into the governing equation (41), we obtain

H0 =scosθ +G(θ), (C2)

H1 =k−2(θ)H−2
0 + k0(θ)+ k1(θ)H0 + k2(θ)H2

0, (C3)

H2 =l−5(θ)H−5
0 + l−3(θ)H−3

0 + l−2(θ)H−2
0 + · · · , (C4)

where k0(θ) is to be determined and the other ki(θ) are given in equations (48a-c). With G(θ)

known (B9), these functions may be simplified to

k−2(θ) =1/2, (C5)

k1(θ) =
−3sin2

θ

4cos3 θ
G(θ), (C6)

k2(θ) =
3tan2 θ −1

8cosθ
. (C7)

Finally, the functions inH2 are found to be

l−5(θ) =−3/10, (C8)

l−3(θ) =− k0(θ), (C9)

l−2(θ) =
[
−2cosθ

]−1
[(

k0G3 tanθ
)′
+(17/20)G+(51/16)G tan2

θ +(11/80)G tan4
θ

]
,

(C10)

where in the last line we have suppressed the argument in k0(θ) and G(θ) for brevity and ′ denotes

the derivative with respect to θ .

In §V, we found an interior layer near s = s∗ = −G(θ)/cosθ , in which the thickness is order

unity and we defined the coordinate

η = F−1/4 G(θ)

cosθ
+F−1(r−1). (C11)

Within this region, we transform from (r,θ) to (η ,θ) coordinates and the governing equation (41)

is recast as

cosθ
∂h3

∂η
−F 3/4(3/4) tan2

θG(θ)
∂h3

∂η
=

∂ 2h4/4
∂η2 +O(F). (C12)
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As η→−∞, the thickness h(η ,θ) is required to match with the approximation in which s =O(1)

(equation C1). We substitute for r in equation (C1) to obtain

h∼ η cosθ +(1/2)(η cosθ)−2− (3/10)(η cosθ)−5

+F 1/2k0(θ)
[
1− (η cosθ)−3]

+F 3/4[k1(θ)η cosθ + l−2(θ)(η cosθ)−2]. (C13)

Thus, the expansion for h in the interior layer takes the following form

h = h0 +F 1/2h1/2 +F 3/4h3/4 + · · · (C14)

Substituting this expression into equation (C12), we obtain at O(F 3/4),

cosθ
∂

∂η

(
3h2

0h3/4
)
− 3

4
tan2

θG(θ)
∂h3

0
∂η

=
∂ 2

∂η2

(
h3

0h3/4
)
. (C15)

Away from the cylinder, the depth returns to its unperturbed value and hence h0→ 1 and h3/4→ 0

as η → ∞. We integrate equation (C15) and apply this boundary condition to obtain

∂h3/4

∂η
=−3

4
tan2

θG(θ)
(
1−h−3

0
)
+

3h3/4

h0

(
cosθ − ∂h0

∂η

)
. (C16)

We apply our expressions for h0 and h3/4 as η→−∞ (equation C13) and compare the coefficients

of η−3 to obtain

−2cosθ l−2(θ) =−(3/4)G(θ) tan2
θ . (C17)

On substituting for l−2(θ) from (C10), this is a first-order ordinary differential equation for k0(θ)

and by analysing the behaviour near θ = π , we find that

k0(π) =−17/40. (C18)
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