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We examine the injection of fluid of one viscosity and density into a horizontal permeable
aquifer initially saturated with a second fluid of different viscosity and density. The novel
feature of the analysis is that we allow the permeability to vary vertically across the
aquifer. This leads to recognition that the interface may evolve either as a rarefaction wave
which spreads at a rate proportional to t, a shock-like front of fixed length, or a mixture
of shock-like regions and rarefaction wave type regions. The classical solutions in which
there is no viscosity ratio between the fluids and in which the formation has constant
permeability lead to an interface which spreads laterally at a rate proportional to t1/2.
However, these solutions are unstable to cross-layer variations in the permeability owing
to the vertical shear which develops in the flow, causing the structure of the interface to
evolve to the rarefaction wave or shock-like structure. In the case that the viscosities of
the two fluids are different, it is possible that the solution involves a mixture of shock-like
and rarefaction type structures as a function of the distance above the lower boundary.
Using the theory of characteristics we develop a regime diagram to delineate the different
situations. We consider the implications of such heterogeneity for the prediction of front
locations during CO2 sequestration. If we neglect the permeability fluctuations the model
always predicts rarefaction type solutions, while even modest changes in the permeability
across a layer can introduce shocks. This difference may be very significant since it leads
to the CO2 plume occupying a greater fraction of the pore space between the injector
and the leading edge of the CO2 front in a layer of the same mean permeability. This
has important implications for estimates of the fraction of the pore space which the CO2

may access.
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1. Introduction

Buoyancy driven flow in permeable rock has been the focus of a considerable research
effort given the importance of such effects for many environmental and energy related
processes, including enhanced oil recovery and carbon sequestration (Lake 1989; Hup-
pert & Woods 1995; Riaz et al. 2006; Huppert & Neufeld 2014; Woods 2014). Analyses
have been carried out for relatively thin and hence confined aquifers and much deeper
unconfined reservoirs, and the adjustment from an effectively unconfined flow at short
times, to a confined flow at long times was explored by Zheng et al. (2015). The effects of
a non-uniform viscosity ratio leads to the development of rarefaction waves and shocks
(Lajeunesse et al. 1999; Juanes et al. 2010; Gunn & Woods 2011) while the effects of
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the gradual dissolution of the CO2 and capillary trapping of the CO2 have been shown
to cause the currents to gradually wane (Pruess et al. 2004; Hesse et al. 2006). The role
of capillary pressures impeding the advance of CO2 through seal rock has also been ex-
plored (Woods & Farcas 2009) as well as the case in which fluid leaks off the current
(Pritchard et al. 2001). Models have also been developed to account for two phase flow
effects (Golding et al. 2011).

The majority of these models have assumed that the formation is of uniform per-
meability. This leads to the simplifying result that the speed of the current is uniform
with depth. However, in real geological strata, there are often multiple layers of different
permeability. Reservoirs are typically made up of sedimentary rock which is very inho-
mogeneous and the contrasts in permeability can totally dominate fluid flow (Bjorlykke
1993). Also within single geological flow units, such as are produced from massive tur-
bidites flows on the sea-floor, the grain size is expected to gradually change with depth
in the deposit as the parent turbulent flow either waxes or wanes.

While some of the effects of layering which can lead to the dispersion of buoyant plumes
and gravity currents in a geological strata have been examined (Fayers et al. 1992; Hesse
& Woods 2010; Guo et al. 2016a; Farcas & Woods 2016), there is much less analysis of
the effects of permeability gradients across an individual flow unit.

The purpose of this paper is to explore how a linear increase or decrease of permeability
with height in a permeable layer influences the buoyancy driven flow through that layer.
The critical physical effect which this introduces is the variation of flow speed with
vertical position in the layer, and we show that this can lead to some fundamentally
different controls on the flow compared to a homogeneous reservoir.

In section 2, we introduce a model for a gravity driven flow in a confined permeable
rock in which the permeability varies with height. We then present some numerical so-
lutions of the resulting non-linear advection-diffusion equation for the evolution of the
interface between the injected fluid and the original fluid in the system. This identi-
fies that, under different conditions, there are rarefaction wave type solutions, travelling
wave type solutions, and mixtures of these solutions at different depths in the layer.
We then compare long-time asymptotic rarefaction wave and travelling wave solutions
of the governing equation with the full numerical solutions. We discuss the implications
of these results, in comparison with the very different current structure that develops in
a homogeneous porous layer, when each fluid has the same viscosity, in which the front
of the flow spreads at a rate propotional to t1/2. In section 4 we develop a short time
asymptotic analysis of the governing equation, following the approach of Zheng et al.
(2015). We analyse how a permeability gradient and viscosity ratio affect the early time
behaviour which asymptotes to that of an unconfined gravity current.

We conclude with a discussion focussing on the challenges of predicting the storage
capacity of an aquifer by illustrating how the fraction of the pore space which may
be flooded with CO2 varies if we account for cross-layer variations in permeabilty and
illustrating that with more complex vertical structure for the permeability, it is possible
to have multiple shock regions separated by rarefaction wave regions.

2. Model

We assume liquid of density ρ and visocity µi is injected into a horizontal, laterally
extensive aquifer initially filled with liquid of density ρ + ∆ρ and viscosity µa (figure
1). The aquifer has depth H0, porosity φ and fluid is injected at X = 0, Y = 0 with
a flow rate q0 . The vertically varying permeability k0 (Y ), is independent of horizontal
position. In the region where the aquifer is fully flooded by the injected fluid, the flow
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Figure 1: Schematic diagram showing the model problem for constant injection into a
vertically heterogeneous aquifer.

will be pressure driven, whilst in the slumping region between the two contact points,
flow will be driven by a mixture of buoyancy and the background pressure gradient. We
assume the fluids are incompressible, the motion is governed by Darcy’s law and that
there is a sharp interface between the immiscible fluids. Once the invading fluid has
spread beyond a distance L � H0 from the well, the pressure becomes approximately
hydrostatic (Bear 1971; Huppert & Woods 1995) and is given by

P(X ,Y ,T ) =

{
P0 + ρgY 0 < Y < H

P0 + (ρ+ ∆ρ)gY −∆ρgH H < Y < H0
(2.1)

where P0 = P (X, 0, T ) is the unknown pressure at the top of the aquifer. Using Darcy’s
law for the horizontal component of the flow,

ui = −k0(Y )

µi

∂P0

∂X
, ua = −k0(Y )

µa

(
∂P0

∂X
−∆ρg

∂H

∂X

)
(2.2)

where ui, ua are the transport velocities of the injectate and ambient fluid, respectively.
Local mass conservation for the injected and ambient fluids may be expressed in the
form,

φ
∂H

∂T
= − ∂

∂X

(∫ H

0

uidY

)
, φ

∂(H0 −H)

∂T
= − ∂

∂X

(∫ H0

H

uadY

)
. (2.3)

Adding these two equations together provides an equation for the conservation of mass
of the current, ∫ H

0

uidY +

∫ H0

H

uadY = q0. (2.4)

This can be recast as a constraint for the global mass conservation of the injected fluid,

φ

∫ X0(t)

0

H(X,T )dX = q0T, (2.5)

where X0(T ) is the contact point along the top of the aquifer (see figure 1), and we have
assumed injection begins at T = 0. We use the aquifer height H0 and the vertically-
averaged permeability,

k̄ =
1

H0

∫ H0

0

k0(Y )dY (2.6)
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to introduce the dimensionless quantity,

K0(H) =
1

H0k̄

∫ H

0

k0(Y )dY. (2.7)

Note that K0(0) = 0, K0(H0) = 1, and in a uniform aquifer, K0(H) = H/H0. The
unknown pressure, P0 can be eliminated by substituting the expressions for the Darcy
velocities (2.2) into equation (2.4). Local mass conservation for the injectate (2.3a) then
leads to the advection-diffusion type equation for the depth of the current,

φ
∂H

∂T
+ q0

∂

∂X

(
K0(H)

K0(H) +M(1−K0(H))

)
= UH0

∂

∂X

(
MK0(H)(1−K0(H))

K0(H) +M(1−K0(H))

∂H

∂X

)
,

(2.8)
where

U =
∆ρgk̄

µi
, M =

µi

µa
(2.9)

are the velocity associated with the buoyant slumping of the injectate, and the viscosity
ratio, respectively. To complete the mathematical description, we require initial and
boundary conditions. Injection begins at T = 0 so

H(X, 0) = 0. (2.10)

At the contact point along the top of the aquifer, X = X0(T ), the boundary condition is

H(X0(T ), T ) = 0. (2.11)

Differentiating the equation for mass conservation (2.5) with respect to time and applying
the boundary condition (2.11) gives

φ

∫ X0(t)

0

∂H

∂T
dX = q0. (2.12)

By integrating (2.8) between X = 0 and X = X0(T ), and applying (2.11) and (2.12) we
obtain the boundary condition at X = 0;[

q0
K0(H)

K0(H) +M(1−K0(H))
− UH0

MK0(H)(1−K0(H))

K0(H) +M(1−K0(H))

∂H

∂X

]∣∣∣∣∣
X=0

= q0. (2.13)

Note that the governing equation (2.8) and the boundary conditions (2.11), (2.13) do
not change when the aquifer becomes fully flooded by the injectate.

2.1. Non-dimensionalization

Balancing the contributions from the net flow and the buoyant slumping in the nose
region of the current, leads to the scalings

h =
H

H0
, y =

Y

H0
, x =

q0

UH2
0

X, t =
q2
0

φUH3
0

T. (2.14)

Using these scalings and the functions

k(y) =
k0(Y )

k̄
, K(y) = K0(Y ), (2.15)

we can re-express equation (2.8) in dimensionless form,

∂h

∂t
+

∂

∂x

(
K(h)

K(h) +M(1−K(h))

)
=

∂

∂x

(
MK(h)(1−K(h))

K(h) +M(1−K(h))

∂h

∂x

)
. (2.16)
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Figure 2: Numerical simulations of the injection of buoyant fluid into a stratified porous
medium from early to late times. The interface is shown at t = 0.1, 0.5, 2.5 and 62.5
in similarity coordinates for four different sets of parameter values (a-d). The late-time
asymptotic solutions found in section 5 are shown as red dots and they agree well with
the t = 62.5 numerical solution. (a) shows a rarefaction wave, asymptotic shape given
by equation (5.7), (b) is a compound interface with shock and rarefaction regions, the
shape of the shock is given by equation (5.19), (c) is a full shock, shape given by equation
(5.11), and (d) is the case of uniform permeability and equal viscosities which leads to a
front that grows in proportion to t1/2, the shape was found by Huppert & Woods (1995).
These four panels characterise the four possible late time regimes, shown in parameter
space in figure 4.

Our choice of scalings (2.14) has removed the buoyancy parameter,

B =
q0

UH0
, (2.17)

from the governing equation so that, in dimensionless terms, buoyancy dominates in
t � 1 and the net flow driven by pressure in t � 1. The initial condtion is h(x, 0) = 0.
The boundary condition at the leading contact point, x = x0(t), is h(x0(t), t) = 0. The
dimensionless form of the X = 0 boundary condition (2.13) is,[

K(h)

K(h) +M(1−K(h))
− MK(h)(1−K(h))

K(h) +M(1−K(h))

∂h

∂x

]∣∣∣∣∣
x=0

= 1. (2.18)

At early times, when the aquifer has not been fully flooded by the injectate and h(0, t) <
1, the boundary condition (2.18) can be rearranged. First, we multiply by K(h) +M(1−
K(h)), the K(h) terms then cancel, and dividing by M(1−K(h)) gives,

1 =

[
−K(h)

∂h

∂x

]∣∣∣∣∣
x=0

. (2.19)
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At later times h(0, t) = 1 and such a rearrangement is not possible because the last step
was dividing by M(1 −K(h)). Instead, we observe that h = 1 satisfies equation (2.18)
for any value of ∂h/∂x. The flooding of the aquifer implies a second contact point at the
base of the aquifer with h(x1(t), t) = 1, where x1(t) < x0(t) (see figure 1).

3. Numerical simulation

We conducted direct numerical simulations of the nonlinear advection-diffusion equa-
tion (2.16) with appropriate boundary conditions following the approach of Zheng et al.
(2015) using the finite difference scheme of Kurganov & Tadmor (2000). Whilst the model
in section 2 applies for any k(y), we first choose to use a linear stratification,

k(y) = 1 + ∆k

(
y − 1

2

)
. (3.1)

Here ∆k = k(1)− k(0), is the dimensionless permeability difference between the top and
the base of the aquifer, and has values in the range −2 < ∆k < 2.

Figure 2 shows the numerical results at early and late times, illustrating how the
interface transitions to the late time solution (red dots). The long time solutions are
independent of the vertical location of the injection well at x = 0 because the injectate
has flooded the aquifer. However, at early times the injection height is critical. For our
model, we have assumed the injection well is located at x = 0, y = 0. In the early
time period, when the current is thin and the interface has not made contact with the
lower boundary, we expect that the governing equation (2.16) can be simplified and
that the flow resembles that in an unconfined aquifer. This is studied in section 4 in
which we develop early time asymptotic solutions and compare these with our numerical
simulations (see figure 3). If the fluid was injected at y = 1 the initial flow would form a
buoyant plume, leading to a different adjustment towards the gravity-driven flow (see Lyu
& Woods 2016). The plume head would develop irregular fingers as it advances towards
the top boundary of the aquifer. The injectate subsequently fills the depth of the aquifer
in the region near the source and the evolution transitions to the fully-flooded late time
regimes described in section 5.

The panels in figure 2 illlustrate the four late time regimes for the interface. (a) is a
growing rarefaction wave across the whole aquifer which may be identified since the hori-
zontal coordinate is x/t. (b) shows a compound interface consisting of a vertical interface
in the upper region which travels at a constant speed V and a growing rarefaction wave
in the lower region. In (c), the shock extends across the entire aquifer and travels with
unit velocity. (d) is the special case of uniform permeability and unit viscosity ratio for
which the interface grows proportional to t1/2 as found by Pegler et al. (2014) and Zheng
et al. (2015). These numerical results motivate the late time asymptotic analysis of the
four regimes in section 5 which suggests parameter values for which each regime occurs
(see figure 4).

4. Early time asymptotic solutions

In this section, we show that the early time evolution is controlled primarily by the
permeability at the top of the aquifer and the viscosity ratio. The early regime is valid
until t = O(0.1), which corresponds to the first few weeks of injection in a typical CO2

storage project (see section 7).
At early times, with the injection well located at the origin, the fluid-fluid interface

does not touch the lower boundary of the aquifer and h is small everywhere. The injectate
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Figure 3: Early evolution of the interface at five times: t = 10−5 to t = 10−1 . The
similarity solution found in section 4 is shown in red dots. (a) and (b) are the results
for ∆k = 1 and M = 10 and 0.1 demonstrating how the early time period is controlled
by M . (c) and (d) are the results for ∆k = 1.8 and M = 10 and 0.1, showing similar
divergence rates because when M > k(0), the early time period is independent of M .

forms a thin layer at the top of the aquifer and the flow initially resembles an unconfined
gravity driven flow (cf. Huppert & Woods 1995). The ratio of the buoyancy force to the
pressure associated with the net flow is large at early times and hence the advection
term can be neglected. Linearising in K(h), the full governing equation (2.16) may be
approximated by the equation:

∂h

∂t
= k(0)

∂

∂x

(
h
∂h

∂x

)
. (4.1)

The early time solution is independent of the viscosity ratio since in this limit, the
displacement of the original fluid in the aquifer is not rate limiting. The only parameter
in equation (4.1) is k(0). We anticipate that the value of the permeability at only y = 0
is sufficient to describe the early-time regime.

The diffusion equation (4.1) has been well studied by Barenblatt (1952), Hesse et al.
(2007) and MacMinn et al. (2012). For injection with a constant flux, it admits a similarity
solution with similarity coordinate η = x/(

√
3k(0)t2/3). The leading contact point at the

top of the aquifer propagates as x0 = η0

√
3k(0)t2/3 where η0 is to be determined. If we

rescale the system, then s = x/x0 = η/η0 so that the contact point is at s = 1 and the
depth of the current can be written as

h = η2
0t

1/3ψ(s). (4.2)

Here ψ is the shape function which satisfies:

ψ − 2s
dψ

ds
=

d

ds

(
ψ

dψ

ds

)
ψ(1) = 0.

(4.3)
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Global mass conservation identifies that the contact point is given by

η0 =

(√
3k(0)

∫ 1

0

ψ(s)ds

)−1/3

. (4.4)

To solve the ODE (4.3) numerically, a second boundary condition is required. Letting
s→ 1− gives ψ(s) ≈ 2(1− s), providing the boundary conditions used in the numerical
procedure: ψ′(1 − ε) ≈ 2, ψ(1 − ε) ≈ 2ε where ε � 1. Solving for ψ gives h(0, t) =
1.298(t/k(0))1/3. The numerical solutions to (4.3) are shown in figure 3.

The solutions are valid provided both h � 1 and M ∂h
∂x � 1 (so that buoyancy domi-

nates). The first condition is equivalent to t� k(0), whilst the second requires t� M3

k(0)2 .

If M = O(k(0)) then these times are similar. For M � k(0), the early time period is
controlled by the first condition and for M � k(0), it is controlled by the second (see
figure 3). When the aquifer has a much higher permeability at the top than the bottom
(i.e. k(0) larger), the early time solution is valid for longer because the injectate can eas-
ily migrate along the top of the aquifer driven by the buoyancy and the influence of the
pressure gradient associated with the net flow is less significant in this high permeability
region (figure 3a and 3b). Conversely, for a channel with low permeability at the top, the
buoyancy forces are less effective at shearing out the flow, and the pressure gradient asso-
ciated with the net flow becomes important earlier. As a result, the approximation h� 1
breaks down earlier (see figure 3c and 3d). Previous studies have shown that the length
of the early time period increases strongly with M up to M ∼ 1 in a uniform aquifer
(MacMinn & Juanes 2009), and our contribution demonstrates that this relationship is
valid until M ∼ k(0) for aquifers with a linear permeability gradient.

After the initial transient in which equation (4.2) is valid, there is an adjustment regime
as the depth of the current increases until it fully floods the aquifer, and the long-time
asymptotics apply as explored in section 5.

5. Late time asymptotic solutions

At long times, the permeability profile across the aquifer has a significant influence
on the interface evolution, in contrast to the early time evolution. We anticipate that
the lateral extent of the current is very large compared to the depth of the layer. This
implies that the ratio of the buoyancy force to the pressure associated with the net flow
is small. In dimensional terms, this is equivalent to

MH0

L
� 1, (5.1)

where L is the length of the interface. The diffusive term on the right hand side of (2.16)
can then be neglected. We therefore seek solutions to the equation,

∂h

∂t
+

∂

∂x

(
K(h)

K(h) +M(1−K(h))

)
= 0, (5.2)

with boundary conditions h(x0(t), t) = 0 and h(0, t) = 1 since the aquifer is fully flooded.
This is a scalar first-order linear equation with flux function (see Section 4 of Juanes et al.
2010),

F (h) =
K(h)

K(h) +M(1−K(h))
. (5.3)
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Figure 4: Parameter space for late time solution for linear k(y). For parameter values in
region I, given by equation (5.6), the interface tends to a rarefaction wave (figure 2a). In
region III, given by equation (5.9), the interface develops a shock across the entire aquifer
(figure 2c). For regions II and II’, there is a mixed solution (figure 2b). The blue dashed
line along ∆k = 0 is the region of parameter space previously studied by Pegler et al.
(2014) and Zheng et al. (2015); the solution at ∆k = 0, M = 1 (see figure 2d) where the
interface grows proportional to t1/2 is shown to be singular by this figure. Moreover, by
including heterogeneous permeability, we have found new compound solutions in II and
II’ which do not occur along the blue dashed line. The labelled red crosses correspond to
the parameter values for the interface shapes in the panels (a-d) in figure 2.

The characteristics are

dx

dt
= F ′(h0(s)) =

Mk(h0(s))

[K(h0(s)) +M(1−K(h0(s)))]2
(5.4)

where h = h0(s) is the general initial condition on the line x = s, t = 0 in the (x,t) plane
and h0(s) is a decreasing function. The initial conditions either develop into a shock or
a rarefaction wave.

5.1. Rarefaction interface

If F ′(h) is monotonically decreasing in (0, 1) then the Jacobian is nowhere zero and the
method of characteristics can be applied to solve equation (5.2). For the linear k(y) given
by equation (3.1), we wish to find values of the parameters, ∆k and M for which this
solution method is possible and the interface is a rarefaction. The condition that F ′(h)
is monotonically decreasing across the channel is equivalent to requiring

F ′′(h) ≡ M∆k[K(h) +M(1−K(h))]− 2M(1−M)k(h)2

[K(h) +M(1−K(h))]3
(5.5)

to be negative in all of (0, 1). The denominator is always positive across the channel and
the numerator is a quadratic in h since k(h) is linear. The condition for the rarefaction
solution can now be found in terms of the parameters,

M 6
(∆k − 2)2

∆k2 − 2∆k + 4
. (5.6)
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Figure 5: Shocks in travelling wave coordinates. The solid lines are the numerical results
and the red dots show the shape predicted by the steady travelling wave solutions found
in section 5.2 and 5.3. (a) is the full shock from figure 2c shown at t = 10, it has excellent
agreement with the asymptotic shape. (b) is the partial shock from figure 2b shown at
t = 10 and t = 100 in coordinates moving at the speed of the shock, given by equation
(5.18). Convergence to the asymptotic shape is much slower for the partial shock.

Equation (5.2) then has self-similar solutions h(x, t) = h(ξ), in terms of the similarity
variable ξ = x/t. The solution is implicitly given by

ξ =
x

t
= F ′(h), (5.7)

and the contact points satisfy,

x0(t) =

(
1− ∆k

2

)
t

M
, x1(t) = M

(
1 +

∆k

2

)
t, (5.8)

at h = 0 and h = 1 respectively. Provided the inequality (5.6) is satisfied, h is a decreasing
function of x and the extent of the interface grows in proportion to time implying that
the diffusive term in the governing equation (2.16) is O(t−2) whilst the advection term
is O(t−1). The interface gradient is O(t−1) and the assumptions made in arriving at
equation (5.2) are self-consistent. This analysis is confirmed by comparing the asymptotic
solution (5.7), with numerical simulations of the full governing equation in figure 2a.

Figure 4 shows the region (I) in parameter space given by (5.6). If the injectate is
sufficiently mobile compared to the ambient fluid (M � 1) then the current will run
along a thin layer at the top, even if the permeability is much lower there (i.e. ∆k ≈ 2).
Conversely, when ∆k is close to −2 the resistance to flow is so much higher at the bottom
of the aquifer that even an injectate which is slightly more viscous than the ambient fluid
will spread out along the top as a rarefaction wave. For values of ∆k between these two
limits, there is a balance between the resistance associated with the low permeability
and the resistance associated with the high viscosity. Indeed, the boundary given by the
inequality (5.6) has M as a decreasing function of ∆k.

5.2. Full shock interface

When the parameter values do not satisfy the inequality (5.6), a shock needs to be
introduced to solve equation (5.2). If F ′(h) is monotonically increasing in (0, 1) then
all the characteristics of the advection equation (5.2), given by (5.4), cross and a weak
solution (with a discontinuity) can be sought; the solution develops a shock that extends
across the whole aquifer from h = 0 to h = 1. The shock requires F ′′(h) (equation 5.5) to
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be positive in (0, 1). For the linear variation of permeability (equation 3.1), the condition
for the full shock in terms of the parameters is,

M >
1

1 + ∆k/2
. (5.9)

In the absence of gravity, this shock would not occur, instead the buoyant injectate would
be driven along the base of the aquifer by the combination of higher permeability and
the low viscosity of the ambient fluid. Buoyancy forces balance this effect and so the light
injectate rises to the top of the aquifer and the interface travels with constant shape and
velocity. Mass conservation implies the shock travels with unit velocity (see figure 2c).

The numerical results in travelling coordinates, shown in figure 5a, can be used to
inspect the approximately vertical interface in figure 2b. The shock is not in fact a zero-
width vertical line; it is smoothed by the buoyancy force. We seek to find the shape of
this non-vertical shock.

For parameter values such that the full shock condition given by (5.9) is satisfied,
the interface moves with unit velocity and this motivates our seeking a travelling wave
solution to the full equation (2.16), with h(x, t) = h(η) where η = x − t. Dropping the
time derivative and integrating, we find that the shape satisfies,

h = 1 η 6 η1 (5.10)

dh

dη
=
K(h)−Mh+ (M − 1)hK(h)

MK(h)(1−K(h))
η1 < η < η0 (5.11)

h = 0 η > η0. (5.12)

The constant of integration is set to zero because the gradient is finite as h → 0. The
contact points are constants, η0 = x0(t) − t, and, η1 = x1(t) − t, at the top and base
of the aquifer respectively. Note that η1 < 0 and η0 > 0. The separation of the contact
points can be found by numerically integrating equation (5.11) across the aquifer,

η0 − η1 =

∫ h=0

h=1

(
dh

dη

)−1

dh. (5.13)

The shape of the travelling wave interface is independent of the position of the contact
points because the right-hand side of equation (5.11) is independent of η. Therefore, we
can find the shape by making a arbitrary choice of η1. We must then translate this shape
in the η direction, corresponding to a correct choice of the contact points. We use mass
conservation which is,

η1 +A = 0, (5.14)

where A is the area under the interface shape in the partially flooded region. We can
now find η1 and η0.

The red dots in figure 5a show the travelling wave solution we have just calculated.
There is good agreement with the numerical solution to the full governing equation (2.16)
at t = 10 which is plotted as a solid black line.

Our model in section 2 used the hydrostatic pressure assumption and for this constant
wave solution to be consistent, we require that the shape has a shallow gradient so that:

B =
q0

UH
� 1. (5.15)

This is equivalent to requiring that the injection flux is small compared to the natural
buoyancy velocity. In contrast to the case of a shock, this condition can be relaxed
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II II'

Figure 6: The two different flow structures in a compound rarefaction-shock interface.
For parameters in region II (∆k > 0), the shock is at the base of the shear whilst in
region II’ (∆k < 0), the shock is at the top of the shear. The dashed line shows how fluid
enters and then exits the nose region in each regime.

when the interface spreads as a rarefaction wave since the gradient becomes progressively
shallower at late times.

5.3. Compound rarefaction-shock interface

There are regions of (∆k,M)-parameter space outside that given by the inequalities (5.6)
and (5.9) in which F (h) is neither concave nor convex. For a linearly varying permeability
(equation 3.1), F ′(h) has a single maximum, in (0, 1), for those values of M and ∆k. The
velocity of the interface is then faster in the middle of the aquifer than at the top and
the bottom; the buoyant injectate in the middle would then lie underneath the heavy
ambient fluid at the top of the aquifer. We assume the vertical adjustment owing to
buoyancy and Rayleigh-Taylor fingering is much faster than the along-channel advection
of fluid driven by injection (see Huppert et al. 2013). In this limit, we expect a compound
solution; a rarefaction wave in hs < h < 1 and a vertical shock across 0 < h < hs where
hs is the height of the shock (see figure 2b).

The partial shock travels with a velocity of at least 1 owing to mass conservation. In
the region of parameter space outside the full shock region, the velocity of the trailing
contact point M(1 + ∆k

2 ), is less than 1 (see equation 5.9) and hence travels slower than
the partial shock. This confirms that when F ′(h) has a single maximum in (0, 1), the
shock does not occupy the entire depth of the aquifer.

Assuming the partial shock is approximately vertical at late times, mass conservation
implies the speed of the shock V , satisfies

V hs =
K(hs)

M + (1−M)K(hs)
(5.16)

which is equivalent to a Rankine-Hugoniot condition. The physical requirement that
the interface must be continuous at the contact point between the wave and the shock
imposes

V = F ′(hs). (5.17)

For a linear k(y), equations (5.16) and (5.17) can be solved for V and hs to give,

hs = 1− 2

∆k
±

√
2M

(1−M)∆k
, V =

1(
1−M

)(
1− 2

∆k ± 2
√

2M
(1−M)∆k

) (5.18)
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where the positive square root is taken in M < 1,∆k > 0 (II in figure 4) and the negative
in M > 1,∆k < 0 (II’ in figure 4). There are no solutions in the other two quadrants as a
compound solution is not possible there. Although II and II’ both give rise to compound
interface shapes, the flows are physically different, as shown in figure 6. In II, the buoyant
injectate migrates along the high permeability region at the base of the aquifer and then
rises in the growing nose into the low permeability region, but the interface advances
more rapidly in this upper region of the system. In II’, ∆k < 0 and the fluid at the top
of the aquifer catches the front and is deflected down into the low permeability region.

As with the full shock, we expect the shape of the partial shock not to be a zero-width
vertical line because buoyancy smoothes the interface. We adopt a similar approach to
that of section 5.2 to find the structure of the partial shock. The shock moves with
speed V and to capture its dynamics we seek a travelling wave solution in the shock
region (h < hs). In the rarefaction region (h > hs), the interface has gradient of order
t−1. Assuming we are at long times, we impose the boundary condition dh/dη → 0 as
h→ hs, on the shape of the shock. We transform the full governing equation (2.16) using
the travelling coordinate η = x− V t. We drop the time derivative and integrate to find,

dh

dη
=
K(h)− V h

(
K(h) +M(1−K(h))

)
MK(h)(1−K(h))

in h < hs, (5.19)

where the constant of integration is set to zero to satisfy the condition of zero gradient
at h = hs. The matching with the rarefaction region leads to the shape having an infinite
horizontal extent in the η coordinates and the position of the leading contact point cannot
be determined using mass conservation.

Instead, we solve equation (5.19) numerically with initial condition h(0) = 0 and then
translate the solution to fit the full numerical solution at some late time. Figure 5b shows
the t = 100 interface as a black line, and the shape given by (5.19) as red dots. In figure
5a, the asymptotic shape is compared to the t = 10 interface. We include the t = 10
interface in figure 5b to illustrate that convergence to the full shock shape is much faster
than convergence to the partial shock shape. Unlike the full shock shape, the partial
shock shape equation (5.19) is only valid in the limit as t → ∞. This is because we
imposed that the gradient at h = hs must be zero but the gradient of the rarefaction is
O(t−1) at h = hs.

5.4. Singular solution for ∆k = 0, M = 1

We have found three different late time regimes and the values of the viscosity ratio
and permeability difference for which they occur (see figure 4). The four regions I, II,
II’ and III touch at the point ∆k = 0, M = 1. The late time solutions for this special
case of injection of an equal viscosity fluid into a uniform aquifer were found by Huppert
& Woods (1995). The distance between the injection well and the fluid-fluid interface is
proportional to t and the extent of the front grows proportional to t1/2 (see figure 2d),
an altogether different result to those found for regions I, II, II’ and III. This is a singular
solution, since if the aquifer is not uniform or the viscosity ratio is not exactly 1, it is
invalid. In that case the late time regime will move to one of the cases described above.

6. Multiple shock solutions

Thus far in this paper we have restricted our attention to aquifers where the perme-
ability increases or decreases linearly from top to bottom. Reservoir rock is typically
more complicated than this. Permeabilities can vary significantly over small vertical dis-
tances and we expect that there may be more complex late-time regimes as well as the
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Figure 7: Interface shape for a double-shock (solid black line) at t = 100. The governing
equation has been solved numerically for k(y) given by equation (6.1). The blue dashed
line illustrates how the permeability varies with height and gives the characteristic speeds
F ′(h) = k(h) for the advection equation.

three described earlier for the relatively simple linear vertical variations in permeability.
It is possible to have two or more separate shocks across the aquifer moving at different
speeds. In the analagous problem of viscous channel flow, a double shock has been ob-
served (see Taghavi et al. 2009) but not in a porous medium. This can have significant
implications for reservoir sweep which is important in both enhanced oil recovery and ge-
ologic CO2 sequestration. In this section, to demonstrate the phenomenon, we consider
a more complex cross-layer permeability in which there is a local minimum and local
maximum of the permeability within the layer,

k(y) = 1 + 15
(
y − 1

)(
y − 1

2

)
y. (6.1)

For simplicity, we take M = 1 so that the advection speeds of constant h are given by

dx

dt
= F ′(h) = k(h). (6.2)

Since there is a local minimum h− and a local maximum h+ in the permeability with
h− > h+, two shock-like regions develop (see figure 7).

7. Implications for CO2 sequestration

When using geologic formations as a means of storing CO2 it is important to have
accurate estimates of the fraction of the pore space into which CO2 can be stored. In
particular, the critical volume fraction of interest corresponds to the fraction of pore
space accessed by the CO2 between the injection well and the leading contact point of
the CO2 plume (Celia et al. 2015). This is because once the leading edge of the plume
reaches a particular distance from the injection well, the injection may need to cease,
either for reasons of security of storage if there are faults or fractures downstream of
the injection well, or in a commercial setting, if different organisations have rights to
CO2 sequestration in adjacent regions of land. The fraction of the pore-space accessed
by the CO2 plume during the injection phase will represent the maximum fraction of the
pore-space into which the CO2 can be sequestered, since the subsequent motion of the
CO2 is controlled by buoyancy, and hence the plume will subsequently tend to thin and
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Figure 8: (a), (b), and (c): Shape of the interface in x/t coordinates for M = 0.1 and
three different permeability gradients which are shown in the right-hand column. (d)
shows the position of the leading contact point as a function of ∆k for M = 0.1. (e) is
the fraction of pore space occupied as a function of the permeability gradient for three
values of the viscosity ratio typical in carbon sequestration. The red crosses correspond
to the interfaces in (a), (b), (c) showing how a steeper interface leads to a greater fraction
of pore space invaded.

spread. The impact of the plume structure and shape is therefore key for estimating the
efficiency of the sequestration (Bachu 2015).

In this paper we have shown that the presence of a vertical permeability gradient across
an aquifer plays a key role in the dynamics of the interface. Here we apply our results to
illustrate how such a permeability gradient influences the fraction of pore space accessed
by the CO2.

We define the available pore space as the product of the position of the leading contact
point and the depth of the aquifer. The position of the leading contact point in the ξ = x/t
coordinates predicted by the long time asymptotic solutions is a constant, ξ0 = x0(t)/t.
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Layer depth (H0) 20m

Porosity (φ) 0.15
Density of CO2 (ρi) 750kg m−3

Viscosity of CO2 (µi) 4× 10−4Pa s
Viscosity of brine (µa) 4× 10−3Pa s

Table 1: Parameter values for a typical aquifer

The area invaded equals the amount of fluid injected which, in dimensionless variables,
is t. The fraction of pore space invaded is the ratio of these two quantities,

t

x0(t)
=

1

ξ0
. (7.1)

This implies that the fraction of the pore space invaded is independent of time, as found
by Guo et al. (2016b) for a radial, vertically homogeneous aquifer. Unlike the radial case
however, the fraction invaded is independent of the buoyancy parameter (2.17) because
at late times the role of buoyancy can be neglected.

Supercritical carbon dioxide is typically much less viscous than the ambient brine in
storage sites and we take the values M = 0.1, 0.05, and 0.02 in our examples since M
varies with the depth of the aquifer. In the classical model with ∆k = 0, these choices
of M lead to the interface following the shape of a rarefaction wave with the injectate
migrating fastest at the top of the aquifer. For ∆k < 0, the CO2 migrates even faster
at the top of the aquifer owing to the relatively high permeability there, causing the
rarefaction to be elongated and the fraction of pore space invaded is reduced. Conversely
for ∆k > 0, the interface is steeper and the pore space occupied is greater. The interfaces
for these three cases are shown in figure 8 for M = 0.1 and ∆k = 0,±1.5. The right-hand
column of figure 8 shows the associated permeability profiles. For sufficiently large ∆k,
the parameters move from region I into region II in figure 4 and there is a shock at the
top of the aquifer which alters the fraction stored (see figure 8c). The fraction occupied
for each of our parameter choices is labelled (a), (b), and (c) in figure 8e which illustrates
how the fraction of pore space occupied depends on ∆k for our three choices of M .

It is clear that the fraction of pore space invaded is highly dependent on the perme-
ability profile; for example, when M = 0.1, in an aquifer with ∆k = 1.5 the CO2 invades
approximately four times the pore space invaded in a uniform aquifer of the same mean
permeability. For reference, ∆k = 1.5 represents an aquifer in which the permeability
varies by a factor of 7. Using the Kozeny-Carman relation that suggests the permeabil-
ity is proportional to the grain size squared, ∆k = 1.5 only requires the grain size to
vary by a factor of 2.65 accross the aquifer which is within measured values for many
aquifers (Carman 1939). Therefore, in making storage estimates there is an important
uncertainty associated with vertical heterogeneities. Our results could be applied to find
the probability distribution of the fraction of pore space occupied given a large data set
of permeability variations in aquifers.

7.1. CO2 storage in a real aquifer with lenses of high and low permeability

In this subsection, we extend the analysis above to the case of a nonlinear permeability
profile and we calculate how the permeability structure influences the volume of CO2

stored in a typical project. We compare permeability profiles, each with the same mean
permeability, in which there are lenses of high and low permeability. These profiles are
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Figure 9: Interface shapes and volume of CO2 stored for nonlinear permeability profiles
including lenses of high and low permeability. The first column shows the interface shape
in x/t coordinates, and the corresponding permeability profile is shown in the second
column. We calculate the volume of CO2 stored for each permeability profile in an aquifer
which is 20m deep and 1000m wide, assuming injection must stop when the leading edge
of the plume has travelled 5000m from the injection well. The paramter values are given
in table 1. The location of the high and low permeability lenses has a significant influence
on the volume stored.

shown in figure 9, and the left-hand column shows the interface shape. We assume the
aquifer and the injection well are one kilometre wide (in the direction out of the plane
in figure 9). We can calculate the mass of CO2 stored using the parameter values in
table 1. We assume injection is required to stop when the plume reaches a point five
kilometres from the injection well. These volumes are shown in figure 9 and demonstrate
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that the volume of CO2 stored is heavily dependent on the location of the low and high
permeability lenses.

8. Conclusion

In this contribution we have analysed the injection of buoyant fluid into an aquifer
where the permeability varies vertically. With a permeability that varies linearly with
height, we have found four late time regimes including a compound rarefaction-shock
interface which does not occur in a uniform porous medium. Our parameter space shows
that the classic solution for equally viscous fluids in a uniform aquifer is singular and
unstable to small changes in the permeability profile. Applying our results to the prob-
lem of carbon storage, we have shown that cross-aquifer permeability differences can
significantly influence the volume of CO2 that can be stored in an aquifer. When the as-
sumption of permeability that varies only linearly with height is relaxed, we have found
that it is possible to have two separate shocks that travel at different speeds in a porous
medium. Our study has shown that the early time period is dependent not only on the
viscosity ratio but also on the permeability at the top of the aquifer.
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