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Key Points:7

• We analyse a model of the interaction between free-surface flows and inclusions8

of different permeability in an inclined aquifer.9

• Simple descriptions are developed for the flow depth and streamlines in the regimes10

of relatively wide and relatively narrow inclusions.11

• Wider inclusions of very different permeability to the background rock may di-12

vert the flow at the inclusion boundary, leading to deep ponded regions.13
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Abstract14

The interaction of sub-surface, gravity-driven flows with inclusions of different perme-15

abilities are investigated theoretically using a model that exploits the relative shallow-16

ness of the motion. Numerically computed solutions for steady motion around cylindri-17

cal inclusions reveal a range of behaviours dependent on the ratio of the interior to ex-18

terior permeability and a dimensionless flow parameter that measures the far-field thick-19

ness to the product of the gradient of the slope down which the fluid flows and the width20

of the inclusion. When the inclusion is relatively narrow, the depth of the flow is little21

changed from its far-field value and the fluid is focussed into inclusions of higher per-22

meability and deflected around those of lower permeability. However, if the inclusion is23

relatively wide then three qualitatively different regimes emerge, dependent on the ra-24

tio of permeabilities. When the interior and exterior permeabilities are similar, then neg-25

ligible deviation of the flow occurs apart from within thin transition layers at the bound-26

ary of the inclusion. When the permeabilities differ significantly, the flow forms deep ponds27

at either the upstream or downstream boundary of the inclusion for relatively low or high28

permeability inclusion, respectively, which arise due to deflection or focussing. In each29

case, asymptotic relationships are derived between the depth of the flow and the param-30

eters. Inclusions of differing cross-section are also analysed numerically and analytically31

to draw out the interplay between adjustment, deflection and focussing.32

1 Introduction33

Gravity-driven flows in porous media occur in a wide range of industrial and en-34

vironmental contexts including hydrology, carbon dioxide storage, geothermal power gen-35

eration and contaminant leaks (Bear, 1971; MacFarlane et al., 1983; Guo et al., 2016).36

These sub-surface flows are difficult to monitor directly and therefore it is common to37

drill wells to sample the flow, for example in CO2 storage projects to monitor break-through38

times (Mathieson et al., 2011; Hannis et al., 2015). Wells are also used for extracting fresh39

water from aquifers and for monitoring salt water intrusion (Dagan & Zeitoun, 1998; Mas-40

terson et al., 1998; Barlow & Reichard, 2010). Accurately determining the flow veloc-41

ity from a single borehole presents difficulties, however, because its presence may signif-42

icantly alter the flow field even in the case that no fluid is extracted because it alters the43

structure and permeability of the constituent porous media (Sekhar & Sano, 2001). It44

is vital to understand this effect in order to interpret the data acquired correctly.45

It is well-established that pressure-driven flows are focused by inclusions that are46

of higher permeability than the surroundings whilst lower permeability inclusions divert47

the flow, and the volume flux of fluid that passes through the inclusion has been calcu-48

lated in each case (Hinch & Bhatt, 1990; Phillips, 1991). However, in many contexts, the49

flow forms a free-surface and is primarily driven by buoyancy. We develop a physical model50

to explore the interaction of free-surface flows driven by gravity (rather than by imposed51

pressure gradients) on an inclined plane with a cylindrical inclusion of different perme-52

ability (figure 1). We investigate how the flow thickness and velocity field depend on the53

permeability ratio and the width of the cylinder relative to the oncoming flow thickness54

and slope inclination. In the case of a relatively narrow cylinder, we show that the be-55

haviour is analogous to the interaction of two-dimensional pressure-driven flows with in-56

clusions. The interaction with relatively wide cylinders is substantially different, how-57

ever. For example, we will show that upstream of a relatively wide impermeable inclu-58

sion, deep ponds of fluid will form. Similar behaviour occurs on the downstream side of59

the interior of a high permeability inclusion. We are particularly interested in the flux60

of fluid into the cylinder from upstream and determining controls on whether the par-61

ticle paths are predominantly diverted around, focused into or not significantly influenced62

by the cylindrical inclusion. Another aim is to determine the occurrence, depth and lo-63

cation of ponded regions in which the free-surface is approximately horizontal, the fluid64

is nearly stationary and the flow depth is much greater than its upstream value.65
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The present analysis has important applications for geologic CO2 sequestration.66

The flow of the stored CO2 is driven by buoyancy away from the injection well. The CO267

is likely to contact abandoned wells, which may act as high or low permeability inclu-68

sions and Celia et al. (2005) showed that they could significantly influence the motion69

of the plume and present a key leakage risk (see also Nordbotten et al., 2004). In addi-70

tion, the CO2 may encounter natural heterogeneous inclusions owing to fractures in the71

rock, through which CO2 may also leak (Pritchard, 2007; Woods & Norris, 2010). The72

CO2 preferentially migrates through high permeability regions, which may increase the73

distance travelled and reduce the storage efficiency (Di Donato & Blunt, 2004).74

Tracers are sometimes added to subsurface flows to monitor breakthrough times75

and constrain aquifer properties (Stalker et al., 2015) and rock heterogeneity is known76

to have a strong effect on the migration of tracers in a porous medium (Dagan, 1984;77

Werth et al., 2006). Indeed, it has been shown that inclusions of different permeability78

can totally dominate dispersion in a pressure-driven flow owing to the different speeds79

of particles that pass through the inclusion (Eames & Bush, 1999). In the context of free-80

surface flows, Hinton and Woods (2019) showed that vertical variations in permeabil-81

ity can lead to complex interactions between dispersing tracer and the interface. In this82

study, we use our results to calculate the paths taken as particles pass through and around83

the cylinder for the different flow regimes that occur depending on the relative perme-84

ability and width of the inclusion.85

We begin our analysis in §2, where we formulate a shallow model for the flow us-86

ing Darcy’s law and we identify that the problem has two dimensionless parameters: the87

ratio of the permeabilities inside and outside a circular cylinder and the flow parame-88

ter, which is the ratio of the oncoming flow thickness to the product of the cylinder ra-89

dius and the slope gradient. In §3, we consider the regime of a relatively narrow cylin-90

der, which slightly perturbs the flow depth. Asymptotic predictions for the flow thick-91

ness inside and outside the cylinder are calculated. This identifies that if the cylinder92

has lower permeability than the surrounding medium then the flow is diverted around93

the cylinder and the maximum thickness occurs on the upstream boundary of the cylin-94

der and the converse occurs for a cylinder of higher permeability.95

We consider relatively wide obstructions in §4. In contrast to the ‘narrow’ regime,96

the interaction with a wide obstruction is qualitatively sensitive to the permeability ra-97

tio. When this ratio is of order unity, the particle paths are parallel to the downslope98

direction passing straight through the cylinder. The velocity changes as particles enter99

the cylinder and mass conservation requires that the depth is constant outside the cylin-100

der but a different constant inside the cylinder. However, if the cylinder is sufficiently101

impermeable (§5) then fluid ponds upstream of the cylinder. The oncoming flow is pre-102

dominantly diverted around the cylinder. This behaviour is similar to the interaction of103

buoyant plumes with low permeability layers, which leads to lateral spreading before the104

fluid drains through the layer (Sahu & Flynn, 2017; Hewitt et al., 2020). In the case that105

the cylinder is of sufficiently high permeability relative to the exterior, the flow within106

the cylinder is focused towards a pond at the most downstream point (§6). The flow out107

of the cylinder occurs predominantly through this pond. In §7, we generalise the results108

to some cylinders with non-circular cross-sections to draw out some of the features that109

determine the location and magnitude of the ponds. We consider the implications of our110

results for some subsurface flows in §8. Concluding remarks are made in §9.111

2 Formulation112

We analyse the gravitationally-driven steady flow of a fluid of dynamic viscosity113

µ in a saturated, deep porous medium, which is bounded below by an impermeable plane114

at an angle β to the horizontal (figure 1). The coordinates axes are orthogonal with X115

aligned to steepest descent along the sloping boundary and Z perpendicular to the bound-116
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Figure 1: (a) Side view of the flow showing the far upstream thickness, H∞. (b) Bird’s
eye view of the setup. (c) The maximum flow depth, hmax = Hmax/H∞ as a function of
the flow parameter, F for an impermeable circular cylinder.

ary. The steady flow thickness is given by Z = H(X,Y ). We assume throughout that117

the flow is ‘shallow’; the velocity in the Z direction is negligible relative to the velocity118

in the X and Y directions. Under this ‘lubrication’ approximation, the excess pressure119

within the fluid is hydrostatic (Bear, 1971; Huppert & Woods, 1995),120

P = ∆ρg
[
H(X,Y )− Z

]
cosβ, (1)

where ∆ρ is the density difference between the intruding fluid and the ambient. The Darcy121

velocity is given by (Bear, 1971; Vella & Huppert, 2006)122

U = −K(R)∆ρg

µ

(
− sinβ + cosβ

∂H

∂X
, cosβ

∂H

∂Y

)
, (2)

where R = |X| and the permeability of the medium, K(R), may take different constant123

values inside and outside the cylinder, which is of radius L,124

K (R) =

{
Ki, R < L,
Ko, R > L.

(3)

We analyse the injection of fluid at a constant flux per unit width, Q, from a line source125

far upstream. Away from the cylinder, the steady flow depth is a constant, given by (Huppert126

& Woods, 1995)127

H∞ =
µφQ

∆ρgKo sinβ
, (4)

where φ is the porosity, assumed to be constant. In the case that the input fluid is the128

non-wetting phase (such as in CO2 sequestration) there may be a significant ‘capillary129

entry pressure’ that must be exceeded for the input fluid to invade regions of low per-130

meability or porosity (Bear & Ryzhik, 1998; Bachu, 2015). This entry pressure is asso-131

ciated with the effects of interfacial tension between the fluids restricting flow through132

the pore throats and is approximately given by (Purcell, 1949)133

Pc =
2σ cosα

D
, (5)
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where D is the maximum pore throat radius, α is the contact angle and σ represents in-134

terfacial tension. The hydrostatic pressure at the edge of the cylinder must exceed Pc,135

which corresponds to the following condition on the flow depth (Woods & Farcas, 2009),136

H > Hc =
Pc

∆ρg cosβ
. (6)

Typical values of the capillary entry pressure for low permeability shales in the context137

of CO2 sequestration are Pc = 0.5−5MPa (Chiquet et al., 2007; Kuila & Prasad, 2013;138

Rezaeyan et al., 2015), which with a density difference of 300kg m−3 implies that the flow139

depth must exceed approximately Hc = 300 metres. In figure 1c, the maximum flow140

depth at the boundary of an impermeable cylinder relative to the upstream depth, Hmax/H∞141

is plotted as a function of the flow parameter, F (defined below in (9)). Typical flows142

in subsurface aquifers have thicknesses of up to tens of metres and thus we anticipate143

that even given an increase in depth near the cylinder, inclusions of such low permeabil-144

ity are never invaded. In the calculations that follow, we examine the flow fields and thick-145

nesses for inclusions that are of greater and smaller permeabilities than the surround-146

ings, noting that if Hmax < Hc then the inclusion may be modelled as impermeable.147

We use the following scalings to non-dimensionalise the problem,148

h = H/H∞, x = X/L, y = Y/L and r = R/L. (7)

The dimensionless flux is simply the product of the in-plane velocities with the flow thick-149

ness, q =
∫ h

0
(u, v) dz = (uh, vh), since u and v are independent of z. The flux may150

be expressed as151

q = k(r)h

(
1−F ∂h

∂x
,−F ∂h

∂y

)
, (8)

where k(r) = 1 in r > 1 and k(r) = λ = Ki/Ko in r < 1. The dimensionless problem152

is governed by two parameters: the permeability ratio and the flow parameter;153

λ =
Ki

Ko
, F =

H∞
L tanβ

, (9)

both of which may feasibly vary over a wide range of values. The flow parameter, F , mea-154

sures the thickness of the oncoming flow relative to the lengthscale of the cylindrical in-155

clusion and the inclination of the underlying boundary. In this way it is the ratio of the156

flow driven by gradients of the hydrostatic pressure (∆ρgK cosβH/[µL]) to the flow driven157

by gravity downslope (∆ρgK sinβ/µ).158

Since the flow is steady, mass conservation is given by requiring that the divergence159

of the flux (8) vanishes, which yields the following governing equation for the steady di-160

mensionless flow depth, h(x, y),161

∂h

∂x
= F∇2h2/2, (10)

in both r > 1 and r < 1. On the cylinder boundary, the pressure and volume flux are162

continuous (provided that h is non-vanishing), which corresponds to163

h+ = h−, and cos θ −F ∂h
∂r

+

= λ

(
cos θ −F ∂h

∂r

−)
, (11)

where θ is the polar angle and A± denotes the value of A at r = 1±. In the far-field,164

the flow depth returns to its uniform value (h→ 1 as r →∞).165

In this study we integrate the system numerically and analyse it asymptotically to166

draw out the important behaviours. To solve the steady governing system numerically,167

we first reformulate it into a weak form. We multiply the equation for mass conserva-168

tion, ∇ · q = 0, by a test function v and integrate over the domain, Ω, to obtain169 ∫ ∫
Ω

k(r)h

(
1−F ∂h

∂x
,−F ∂h

∂y

)
· ∇v dxdy =

∫
x=L2

k(r)hv dS. (12)
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Figure 2: (a) Color plot of the thickness of the steady flow past a cylinder of relatively
greater permeability, λ = 3, with F = 10. (b) Flow thickness along the centreline, y = 0.
(c) Particle paths through the cylinder from upstream. The dashed path just touches the
cylinder. (d, e, f) Equivalent panels for λ = 0.3, with F = 10.

We have used a rectangular domain, Ω = [−L1, L2] × [0, L3], where Li > 0 and we170

have exploited the symmetry about y = 0 to reduce computational effort. We have also171

deployed the following boundary conditions: ∂h/∂y = 0 on y = 0, L3, ∂h/∂x = 0 on172

x = L2 and h = 1 on x = L1. This variational problem is solved in FEniCS, which173

uses numerical finite elements to compute the solution (Petter Langtangen & Logg, 2017).174

The steady state is found iteratively; we take an initial guess to be h = 1 everywhere,175

corresponding to the case λ = 1 and iterate until a converged solution is found. The176

domain size is increased until the solution becomes independent of further increases to177

it. Typical values are L1 = 10, L2 = 30 and L3 = 10. In the following sections, we178

analyse the dynamics of the flow in different regimes for the relative magnitude of F and179

λ.180
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Figure 3: Maximum and minimum flow thickness for the steady flow through a cylin-
der of different permeability, with λ = 3. The asymptotic prediction (19) is plotted as
a dashed line and the first order prediction, h = 1±F−1|1− λ|/(1 + λ) is plotted as a
dot-dashed line.

3 Relatively narrow cylinders (F � 1)181

To illustrate the solution for F � 1 we plot the flow thickness for F = 10 and182

two values of λ in figures 2a and 2d. In the case that the cylinder is less permeable than183

the exterior, the flow is deeper upstream and shallower downstream whilst the converse184

occurs in the case that the cylinder is more permeable than the exterior. Figure 2 also185

suggests that the flow thickness within the cylinder is approximately independent of the186

cross-slope coordinate y. We explore these observations more formally using asymptotic187

analysis.188

For a relatively deep oncoming flow, we expect the cylindrical inclusion of a dif-189

ferent permeability to perturb the flow depth only weakly because the induced pressure190

gradients associated with any height anomalies lead to flows which reduce them and this191

effect dominates the motion down the inclined impermeable surface (see figure 2). This192

motivates the expansion193

h = 1 + F−1h1 + F−2h2 + · · · (13)

On substituting (13) into (10) and equating at O(F−1), we find that the equation gov-194

erning h1 is given by195

∇2h1 = 0 (14)

with boundary conditions h1 → 0 as r →∞ and196

h+
1 = h−1 , and

∂h1

∂r

+

− λ∂h1

∂r

−
= (1− λ) cos θ, on r = 1, (15)

where the superscripts + and − denote evaluation at r = 1+ and 1−, respectively. The197

solution is given by198

h1 =
λ− 1

λ+ 1

{
r cos θ r < 1
r−1 cos θ r > 1.

(16)

The solution is anti-symmetric about the y axis, which can be observed in the plots of199

the numerical results in figure 2. The flow depth predicted by the first-order expansion,200

h = 1 +F−1h1, is compared with the numerical results along the centreline in figures201

2b and 2e. A less permeable cylinder (λ < 1) leads to an increase in the flow thickness202

upstream of the cylinder because flow is diverted around it. Conversely, a more perme-203

able cylinder (λ > 1) leads to a decrease in flow thickness upstream of the cylinder be-204

cause the flow is focused into the cylinder.205

To determine the next term in the expansion (13), h2, the solution in the region206

r > 1 requires matched asymptotic expansions to handle far-field divergences. The de-207
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tails are provided in the supplementary material, which adapts the method of Hinton208

et al. (2020). The inner solution, which is valid in r < 1, is given by209

h2 =
λ− 1

4(λ+ 1)

{
2γ + 2 log[1/(4F)] +

r2

λ+ 1
(2 + cos 2θ)

}
(17)

and in r > 1,210

h2 =
λ− 1

4(λ+ 1)

{
2γ + 2 log[r/(4F)] +

λ(1− r−2)(1 + cos 2θ) + 1 + cos 2θ + r−2

λ+ 1

}
, (18)

where γ = 0.577 . . . is Euler’s constant. The flow thickness predicted by our asymp-211

totic expansions compares very favourably with the numerical results along the centre-212

line with F = 10 in figure 2b for λ = 3 and figure 2e for λ = 0.3.213

If the cylindrical inclusion is less permeable than the surroundings (λ < 1) then214

the flow attains its maximum depth at r = 1 and θ = π and its minimum value at r =215

1 and θ = 0. The locations of the maxima and minima are interchanged for λ > 1. It216

is therefore possible to express the maxima and minima in compact form as217

h± = 1±F−1 |1− λ|
1 + λ

+ F−2 λ− 1

2(λ+ 1)

[
γ +

3

2(λ+ 1)
− log(4F)

]
. (19)

This expression compares very favourably with our numerical results for the minimum218

and maximum flow thickness (figure 3, λ = 3). We note that the expansion (19) is valid219

for all λ even λ � 1 provided that F � 1 because the magnitude of the expression220

|1− λ|/(1 + λ), which occurs in the second and third terms of (19), is at most 1.221

3.1 Particle paths and flux into the cylinder222

We use the results above to obtain the leading order velocity outside the cylinder223

(r > 1) for F � 1,224

u =

(
1 +

λ− 1

λ+ 1

cos 2θ

r2
,
λ− 1

λ+ 1

sin 2θ

r2

)
+O

(
F−1

)
, (20)

whilst inside the cylinder,225

u =

(
2

λ+ 1
, 0

)
+O

(
F−1

)
. (21)

Hence the total dimensionless flux into (and out of) the cylinder is226

4λ

λ+ 1
+O

(
F−1

)
(22)

This flux vanishes for an impermeable cylinder (λ = 0), is equal to 2 for an equal per-227

meability cylinder (λ = 1) and is at most 4 for a very permeable cylinder (λ→∞).228

The particle paths to leading order for F � 1 are shown in figure 2c and 2f for229

λ = 3 and λ = 0.3. By considering the flux (22), we can determine that fluid in the230

interval |y| < 2λ/(λ+1) from far upstream enters the cylinder (this region is denoted231

by a dashed line in figure 2c and figure 2f). The upstream region that is focused is at232

most |y| < 2 and hence particles outside this zone never pass through even the most233

permeable of cylinders.234

Finally, we note that the leading order variation to the uniform depth, h1, deter-235

mines the perturbation to the hydrostatic pressure. Its governing equation is identical236

to the pressure field when the flow is driven in two-dimensions past a cylindrical inclu-237

sion by an imposed pressure difference (Bear, 1971).238
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Figure 4: Thickness of the steady flow past a relatively wide cylindrical inclusion
(F � 1). The panels demonstrate the behaviour in the three regimes analysed in §§4,
5 and 6. Note the different colourscale in each plot.
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4 Flow through a relatively wide cylinder [F � 1, λ = O(1)]239

In the case of a relatively wide cylinder (F � 1), qualitatively different behaviour240

occurs depending on the relative permeability of the cylindrical inclusion. We find that241

there are three possible regimes, which correspond to λ � 1, λ = O(1) and λ � 1242

(see the panels in figure 4). In this section we analyse the middle case of similar perme-243

abilities (λ = O(1)). The flow is not significantly diverted by the cylinder and the ve-244

locity is equal to (1, 0) to leading order outside the cylinder and (λ, 0) inside the cylin-245

der. The particle paths are nearly parallel to the x axis. Almost all the fluid emanat-246

ing from |y| < 1 upstream flows into the cylinder. There is an abrupt change in the flow247

depth at r = 1 and this transition region is analysed in §4.1. Then, in §4.2 we show that248

diversion at the cylinder boundary becomes important when the inclusion is of very low249

or very high permeability and these cases are analysed in §5 and §6, respectively.250

4.1 Asymptotic analysis for flow through the cylinder (λ ∼ 1)251

When a steady flow encounters a relatively wide cylindrical inclusion of similar per-252

meability to the surrounding medium, mass conservation implies that the flow thickness253

inside the cylinder is 1/λ to leading order, while outside it is unity (see figure 4a). A nar-254

row zone occurs around the edge of the cylinder in which the thickness transitions from255

one value to another. To examine the depth here we introduce a rescaled radial coor-256

dinate, ξ = (r−1)/F and write the flow depth interior and exterior to the cylinder as257

hint = hi0 +O(F), hext = he0 +O(F). (23)

The leading order terms in the governing equation are then given by258

cos θ
∂ĥ

∂ξ
=

∂

∂ξ

(
ĥ
∂ĥ

∂ξ

)
, (24)

where ĥ denotes either hi0 or he0. Outside of the transition zone, the flow depth, ĥ, matches259

to a far field value, namely hi0 → 1/λ as ξ → −∞ and he0 → 1 as ξ → ∞. Condi-260

tions at the edge of the cylinder require that261

hi0 = he0 and cos θ − ∂he0
∂ξ

= λ

(
cos θ − ∂hi0

∂ξ

)
at ξ = 0. (25)

We integrate (24) and apply the far-field conditions to find262

cos θ(he0 − 1) = he0
∂he0
∂ξ

, and cos θ(hi0 − 1/λ) = hi0
∂hi0
∂ξ

. (26)

If cos θ > 0 (26a) requires that he0 = 1 and then integrating (26b) and applying bound-263

ary conditions leads to264

ξ cos θ = hi0 − 1 + λ−1 log

∣∣∣∣∣hi0 − λ−1

1− λ−1

∣∣∣∣∣. (27)

Conversely if cos θ < 0 then we deduce that hi0 = λ−1 and integrating (26a) yields265

ξ cos θ = he0 − λ−1 + log

∣∣∣∣∣ he0 − 1

λ−1 − 1

∣∣∣∣∣. (28)

The leading order expansions obtained here for the flow depth are favourably com-266

pared to the numerical results along the centreline in figure 5. A region in which the flow267

depth is deeper than predicted occurs at the downstream boundary in the case that λ >268

1 (figure 5a). For large enough permeability contrasts, this deep region invalidates the269

asymptotic analysis as discussed in the next subsection. A similar breakdown occurs at270

the upstream boundary in the case that the inclusion is of much lower permeability than271

the exterior.272
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Figure 5: The steady flow thickness along the centreline for a relatively wide cylinder
(F � 1) with permeability of the same order of magnitude as the surrounding medium
(λ ∼ 1). The asymptotic predictions from §4.1 (red dashed lines upstream and blue
dashed lines downstream) are compared to the numerical results (black lines). (a) λ = 2.
(b) λ = 0.75.

4.2 Breakdown of the asymptotic analysis for cylinders of relatively low273

and high permeability274

If the cylinder is of much lower permeability than the surrounding medium (λ�275

1) then the gradient in the flow depth near r = 1, described above, is large (figure 4b).276

There is a deep region upstream of but close to the cylinder in which the flow around277

the boundary of the cylinder becomes important. For sufficiently small λ, the flow into278

this deep region is balanced predominantly by flow around the cylinder rather than flow279

into the cylinder (see figure 6a and figure 6b). In this case, the cylinder acts as an al-280

most impermeable medium, an effect that might be accentuated by the inclusion of an281

entry pressure, and the asymptotic analysis in the preceding section is not valid. In the282

present subsection, we investigate how impermeable the cylinder needs to be, for a par-283

ticular oncoming flow depth and cylinder width, for the flow to be predominantly diverted284

around the cylinder. Note that this diversion is also associated with increased flow thick-285

ness cross-stream of the cylinder in 1 < y < 1.5 and decreased flow thickness down-286

stream in 0 < y < 1 (see figure 4b).287

To obtain this relationship between F and λ at which the transition between fig-288

ure 6a and figure 6b occurs, we consider the flux around the cylinder predicted by the289

expansion for negligible diversion (28). Just upstream of but near to the cylinder (ξ �290

1), the leading order flow depth can be obtained by linearising (28),291

he0 = λ−1 + (1− λ)ξ cos θ, (29)

which vanishes at ξ = ξ(θ) = −1/[(1−λ)λ cos θ]. The tangential flux around the cylin-292

der in the region close to the cylinder (ξ � 1) to leading order is293

F
∫ ξ=ξ(θ)

ξ=0

−he0uθ dξ =
−λ−2F tan θ

2
, (30)
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Figure 6: Schematics of the regimes for relatively shallow flow (F � 1) past a circular
cylindrical inclusion (left column) and corresponding plots of the flux vector, q, ob-
tained numerically (right column). (a) Inclusion permeability similar to the exterior
(F1/2 � λ� F−1). The flow is predominantly parallel to the downslope direction. The
case λ = 2, F = 0.2 is shown on the right. (b) Inclusion of low permeability (λ� F1/2);
the flow is predominantly diverted around the cylinder (λ = 0.15, F = 0.05 is shown).
(c) Inclusion of high permeability (λ� F−1); the flow is diverted at the downstream
boundary towards the centreline where a deep pond of fluid develops (λ = 50, F = 0.2 is
shown).
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since the leading order term in the tangential velocity is uθ = − sin θ and we have as-294

sumed that λ � 1. For the ‘negligible’ diversion regime to be self-consistent, the flux295

(30) must be much less than the flux into the cylinder, which is order 1, requiring F1/2 �296

λ. Hence a transition occurs when λ ∼ F1/2. The flow structure in the case of a rel-297

atively impermeable cylinder (λ� F1/2) is described in section 5 (see also figure 6b).298

In the case that the cylinder is much more permeable than the surrounding medium,299

the analysis of the preceding section breaks down inside the cylinder near the downstream300

boundary. This is because the exterior is much less permeable and so the fluid within301

the cylinder is focused towards x = 1, y = 0 rather than flowing out of the cylinder302

along streamlines that are parallel to the downslope direction (see figure 6c). The focus-303

ing is associated with a reduced flow depth downstream of the cylinder along y ≈ 1 and304

an increased flow depth downstream of the cylinder along the centreline towards which305

the flow is diverted (see figure 4c). To obtain the relationship between F and λ at which306

the transition to this high permeability regime occurs, we apply a similar flux argument307

to that described above.308

According to the λ ∼ 1 asymptotic analysis, the flow depth in the transition re-309

gion inside the cylinder near the downstream boundary is given by equation (27). For310

large λ, we linearise the depth in this region to obtain311

hi0 = 1 + ξ cos θ. (31)

This vanishes at ξ = −1/ cos θ. The flux tangential to the boundary, just inside the cylin-312

der is given by313

F
∫ ξ=0

ξ=−1/ cos θ

λhi0uθd ξ. (32)

The leading order term in the velocity is uθ = − sin θ and we calculate that the tan-314

gential flux is315

−λF tan θ

2
. (33)

The asymptotic analysis in the previous subsection, where there is no diversion of the316

flow, is valid provided that this tangential flux is much smaller than the flux in the downs-317

lope direction, which is unity. In other words, there is no diversion provided that λF �318

1 but if λ� F−1 then the exterior behaves as almost impermeable relative to the in-319

clusion and a different asymptotic expansion is needed at the downstream boundary (see320

§6). We conclude the present section by noting that the ‘negligible’ diversion behaviour,321

as described above, occurs provided that F1/2 � λ � F−1, which corresponds to a322

sufficiently shallow oncoming flow (or sufficiently wide cylinder) and permeabilities that323

are sufficiently similar.324

5 A relatively low permeability cylinder (λ� F1/2 � 1)325

We analyse the diversion of flow around a relatively wide cylindrical inclusion (F �326

1) that is of sufficiently low permeability relative to the exterior that the flux into the327

cylinder is negligible (λ� F1/2). We obtain the depth in r > 1 by assuming that the328

cylinder is impermeable to leading order. The flow outside the cylinder in the case of small329

but non-zero λ is similar to the flow for an impermeable cylinder (λ = 0), as demon-330

strated in figure 7b.331

Upstream of an impermeable cylinder, there is a ‘pond’ of fluid in which the ra-332

dial velocity is zero owing to the no-flux condition (see Hinton et al., 2019, 2020),333

ur = cos θ −F ∂h
∂r

= 0. (34)

Upon integrating we obtain the ‘pond’ depth,334

hp = F−1(r − 1) cos θ + g(θ), (35)
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Figure 7: (a) Schematic illustrating the balance of flux in the pond. (b) Flow depth along
the centreline for three values of λ with F = 0.05. For λ = 0, the numerical solution was
calculated using a no flux boundary condition at r = 1. The upstream asymptotic approx-
imation (35) is shown in red dots. (c) Maximum flow thickness for the steady flow past
an impermeable cylinder (λ = 0). The asymptotic approximation (39) is compared to the
numerical results.

where g(θ) is a function of integration, which we determine by balancing the flux into335

and out of the pond (see figure 7a). The pond vanishes (hp = 0) at r = r0(θ) = 1 −336

Fg(θ)/ cos θ > 1. The flow depth returns to h ∼ 1 here. The flux into the pond be-337

tween θ = π and θ = θb from upstream is sin θb because the upstream flux is aligned338

with the x-axis and is unity, per unit width. The flux out of this region of the pond is339

provided by the tangential flux around the boundary at θ = θb,340 ∫ r0(θb)

1

−huθ dr =

∫ r0(θb)

1

hp sin θb dr, (36)

where we have ignored the term (F/r)∂h/∂θ in the velocity because it is negligible for341

F � 1, which can be confirmed a posteriori. Balancing the fluxes and substituting in342

(35) yields343

sin θb =

∫ r0(θb)

1

[
F−1(r − 1) cos θb + g(θb)

]
sin θb dr. (37)

After some manipulation, we find that344

g(θ) = F−1/2(−2 cos θ)1/2. (38)

The asymptotic prediction for the maximum flow depth, which occurs at r = 1, θ =345

π, is given by346

hmax = 21/2F−1/2, (39)

for F � 1. We compare this expression (39) with the numerical results for the max-347

imum flow thickness in figure 7c. For λ = 0, a good empirical approximation for the348

maximum depth for all F is hmax = (1+2/F)1/2 as shown in figure 1c (c.f. Hinton et349

al., 2020).350
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The leading order expression for the flow depth along the centreline upstream of351

the cylinder (x < 1) is given by (35), which accurately reproduces the numerical results352

for F = 0.05 in figure 7b.353

Finally, we comment on the validity of the lubrication model given that the flow354

has become relatively deep. Indeed the pond region has a large gradient in the free-surface355

but provided that tanβ � 1, the flow may still be approximated as shallow, for a full356

discussion see Lister (1992).357

6 A very permeable cylinder (λ� F−1 � 1)358

In the regime λ � F−1 � 1, the flow is focused towards the downstream trail-359

ing edge of the cylinder (x = 1, y = 0), where a deep pond of fluid forms (see figure360

4c and figure 8a). The analysis of §4.1 is valid upstream in x < 0 (see figure 8a). The361

regime transition occurs for large λ because the exterior acts as impermeable and a pond362

develops similar to the transition for small λ when the interior behaves as impermeable363

and a pond develops upstream in r > 1 (see figure 6b and figure 6c).364

We find that for λ � F−1, there is additionally a relatively ‘shallow’ pond just365

upstream of the cylinder boundary and away from the centreline in which the bound-366

ary with the exterior appears impermeable. This corresponds to the spatial region 0 <367

1 − r � 1 and θ = O(1) < π/2. We obtain the depth of this pond by balancing the368

flux from upstream with the flux tangential to the cylinder boundary. This shallow pond369

diverts fluid towards x = 1, y = 0, where there is a deeper pond, which we analyse370

by balancing the flux in from the shallow pond with the flux out of the cylinder.371

We first analyse the flow thickness in the shallow pond. The exterior of the cylin-372

der is approximately impermeable, which suggests that a ponded region forms in which373

the free surface is horizontal and given by374

hs = F−1(r − 1) cos θ +m(θ), (40)

where m(θ) is a function that is to be determined. The region occupies375

1 > r > r∗(θ) = 1−Fm(θ)/ cos θ. (41)

We consider the flux balance in [θ, π/2]. The flux from upstream within the cylinder into376

this region is 1−sin θ. There is no flux out of the cylinder and balancing this upstream377

flux with the flux tangential to the cylinder boundary out of the region yields378

1− sin θ = λ

∫ 1

r∗
hs sin θ dr (42)

where we have ignored the lower order contribution to the tangential velocity, −(F/r)∂h/∂θ,379

as it is negligible for F � 1. Upon integrating and substituting for hs, we obtain380

m(θ) = (λF)−1/221/2
[
(1− sin θ) cot θ

]1/2
. (43)

Note that in the corresponding expression in −π/2 < θ < 0, the 1 is replaced by −1.381

The flow thickness in this pond is h ∼ (λF)−1/2 � 1. We note that the flux out of382

the cylinder in this region is h cos θ to leading order owing to continuity at r = 1. Thus383

the flux leaving the inclusion is proportional to (λF)−1/2, which is much smaller than384

unity and consistent with the modelling assumption for this ponded region.385

The pond prediction is compared to the numerical result for F = 0.1 and λ =386

100 along the ray θ = π/4 in figure 8b; the numerical result for λ = 50 is also included.387

The pond thickness is compared to the numerical result on the cylinder boundary (r =388

1) in figure 8c, which identifies that the present approximation is not accurate for θ �389
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Figure 8: (a) Flow depth along the centreline with F = 0.1. The asymptotic predictions
are shown for λ = 100. (b) Flow depth along θ = π/4. (c) Flow depth around the down-
stream boundary of the cylinder, r = 1, 0 < θ < π/2. (d) The maximum flow depth on
rescaled axes. Numerical results for F = 0.05, 0.1, 0.15, 0.2 are compared to the asymp-
totic prediction plotted as a dotted line (48).

1. Indeed, m(θ) is singular as θ → 0. A second deeper pond approximation is needed390

here, which also accounts for the drainage of fluid out of the cylinder.391

To quantify the size and depth of the deeper pond region localised to x = 1, y =392

0 inside the cylinder, we again balance fluxes. The flow out of the cylinder occurs pre-393

dominantly through this deeper pond region and the flux into the cylinder in y ≥ 0 is394

unity. Thus the flux out of the deeper pond is also unity. The flow thickness in the pond395

is given by396

hd = F−1(x− x0), (44)

which corresponds to a horizontal free surface. The constant, x0, is to be determined397

and we write x0 = cos θ0, where θ0 � 1 is the angular boundary of the pond region.398

The flux out of the pond is given by the radial flux just outside the cylinder at r = 1+,399

which in the regime F � 1 is given by400 ∫ θ0

0

hd cos θ dθ (45)

at leading order, where we have used continuity of the thickness, h, at r = 1. Then bal-401

ancing fluxes and integrating, we obtain402

1 = F−1

[
θ0

2
− sin(2θ0)

4

]
. (46)
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Given that F � 1, we expand to obtain θ0 = 31/3F1/3 + O(F). The extent of the403

pond is given by404

x0 = cos θ0 = 1− (32/3/2)F2/3 +O(F4/3). (47)

The maximum depth occurs at x = 1, y = 0 and is given by405

hmax =
32/3

2
F−1/3 +O(F1/3). (48)

The prediction of the pond depth (44) shows good agreement with the numerical results406

along the centreline, y = 0, and along the cylinder boundary, r = 1, in figure 8a and407

figure 8c with λ = 100 and F = 0.1. We compare our prediction for the maximum408

depth (48) to the numerical results in figure 8d. Each continuous line corresponds to a409

fixed value of F , whilst λ is varied. The maximum flow depth becomes approximately410

independent of λ for λF � 1, in accord with our asymptotic theory. The error in F1/3hmax411

between asymptotic theory and the numerical results is a small fixed constant, propor-412

tional to F2/3, as λ→∞.413

7 Cylinders with non-circular cross-sections414

Hitherto, we have restricted our attention to circular cylinders. It is interesting to415

extend this analysis to other cross-sections to understand how the shape affects the depth416

of the steady flow. We focus on the case of a relatively wide cylinder (F � 1). The cal-417

culation in the case of a relatively narrow cylinder (F � 1) reduces to the problem of418

two-dimensional potential flow in order to determine the perturbation to the upstream419

flow depth, h = 1 + F−1h1 (see §3).420

7.1 Kite cross-section cylinders421

We analyse the interaction of the flow with a cylinder with a kite cross-section, sym-422

metric about the centreline. The vertices are at (0,±1) and (± cotψ, 0) and the kite edges423

make an angle ψ with the centreline. The general behaviour is similar to the interaction424

with a circular cylinder and in what follows we highlight the key differences. For the regime425

in which there is little diversion of fluid (λ ∼ 1), there are steep regions near the kite426

boundary within which the flow transitions from one depth to another, analogous to the427

behaviour for a circular cylinder. We show below that the relative size of λ and F at the428

transitions between the three flow regimes are identical to the circular case by analysing429

the high and low permeability regimes.430

7.1.1 Relatively low permeability cylinder (λ� F1/2)431

We follow the argument for the low permeability circular cylinder and treat the in-432

terior as impermeable. A pond develops upstream of the upstream boundaries and we433

obtain its depth by balancing fluxes. We rotate coordinates with434

x′ = (x+ cotψ) cosψ + y sinψ, y′ = −x sinψ + y cosψ (49)

In these coordinates, the upstream boundary lies along 0 < x′ < 1/ sinψ, y′ = cosψ.435

The pond depth upstream of the kite can be written as436

hp = −F−1(y′ − cosψ) sinψ +GR(x′;ψ). (50)

The flux balance in the pond is437

x′ sinψ =

∫ cosψ+FGR/ sinψ

cosψ

hp cosψ dy′ (51)
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and we obtain438

GR = F−1/2

(
2x′ sin2 ψ

cosψ

)1/2

. (52)

The flow depth increases with distance downstream along the wall, x′, which contrasts439

with the case of a circular cylinder for which the maximum depth occurs at the upstream440

stagnation point. The scaling for the depth along the wall is h ∼ F−1/2, which is iden-441

tical to that for a circular cylinder. In fact, this scaling is obtained for any cylinder with442

non-zero curvature at the upstream point because the pond depth arises from the bal-443

ance of the advective flux in with the advective flux out. The case of a perpendicular up-444

stream boundary is analysed in §7.2.445

The maximum flow depth for the low permeability kite occurs near the cross-stream446

edge (x′ = 1/ sinψ) and is given by447

hmax =
(
2 tanψ

)1/2F−1/2. (53)

The flux into the inclusion in this regime is proportional to λF−1/2 so the analysis is con-448

sistent provided that λ� F1/2. Also, the present analysis breaks down for ψ close to449

π/2 (see §7.2).450

7.1.2 Relatively high permeability cylinder (λ� F−1)451

In the case of a relatively high permeability ratio (λ � F−1), there is a shallow452

pond just upstream of the downstream boundary and away from the centreline. The depth453

there is of order (Fλ)−1/2 as in the case of a circular cylinder because the balance is the454

same. The flux out of the cylinder away from the centreline is proportional to (Fλ)−1/2,455

which is small provided that λ� F−1.456

The deep pond near the centreline has depth h = F−1(x−x0). At the downstream457

boundary we rotate coordinates with458

x̂ = (x− cotψ) cosψ − y sinψ, ŷ = x sinψ + y cosψ (54)

In these coordinates, the downstream boundary lies along −1/ sinψ < x̂ < 0, ŷ = cosψ.459

The pond depth is given by460

h = F−1(x̂ cosψ + x̂0 cosψ) (55)

The flux out of the cylinder is given by461 ∫ 0

−x̂0

F−1(x̂ cosψ + x̂0 cosψ) sinψ dx̂ = 1. (56)

We integrate and obtain x̂0 = (2F)1/2(sinψ)−1/2 and the maximum flow depth is462

F−1/221/2(sinψ)−1/2 cosψ (57)

Note the different depth scaling to the circular cylinder for which h ∼ F−1/3 (see (48)).463

In fact, the depth scaling in the deep pond in sensitive to the detailed shape (unlike the464

scaling upstream of a relatively impermeable cylinder).465

In the shallow pond, the flow depth is466

h = F−1ŷ sinψ + (λF)−1/2(x̂+ 1/ sinψ)1/2

(
2 sin2 ψ

cosψ

)1/2

(58)

which has the same scaling as the circular cylinder. This scaling occurs for any down-467

stream boundary that is not perpendicular to the centreline.468
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7.2 Square cross-section cylinders469

We consider a square cylinder occupying −1 < x < 1, −1 < y < 1. Plots of the470

steady flow thickness are shown in figure 9. In the case that there is little diversion of471

fluid, (λ ∼ 1), there is a thin transition region, similar to that for a circular cylinder,472

near the upstream and downstream boundaries of the square.473

7.2.1 Relatively low permeability cylinder (λ� F2/3)474

The main difference to the circular case is that the flux out of the upstream pond475

arises from terms associated with hydrostatic pressure gradients (which are proportional476

to F) rather than from the advective flux associated with gravity acting downslope. This477

is because the boundary is perpendicular to the slope direction. We treat the interior478

of the square as impermeable. The pond depth is given by h = F−1(x + 1) + Gs(y).479

The flux balance in the pond is480

1 =
∂

∂y

(∫ 1

x̂

−Fh∂h
∂y

dx

)
, (59)

where x̂ = −1− FGs(y). We note that Gs(1) = 0 and G′s(0) = 0 owing to the end of481

the pond at the corner of the square and symmetry about the centreline, respectively.482

This yields the following expression483

Gs(y) = F−2/3
[
3(1− y2)

]1/3
, (60)

which is a different scaling for the flow depth to the low permeability circular cylinder.484

This prediction for the the maximum flow thickness is hmax = 31/3F−2/3, which is com-485

pared to the numerical results in figure 9c. The square cylinder behaves as impermeable486

for λ� F2/3 (note the difference with the circular case).487

7.2.2 Relatively high permeability cylinder488

In the case that the square cylinder is of much higher permeability than the ex-489

terior, the negligible diversion regime described above, in which the flow is approximately490

parallel to the centreline, applies. This is in contrast to the behaviour for circular and491

kite cross-sections, where the behaviour associated with negligible diversion breaks down492

at high permeability ratios because the flow in the direction tangential to the downstream493

boundary becomes significant. However, for a square cross-section, the downstream bound-494

ary is perpendicular to the slope direction and a permeability contrast does not give rise495

to cross-slope flow here. Hence there is no distinct high permeability regime for the square496

and the negligible diversion results apply provided that λ� F2/3. This is demonstrated497

in figure 9b, where we have used λ = 40 and F = 0.1 but the flow depth is approxi-498

mately 1 at the downstream boundary.499

At the cross-stream boundaries y = ±1, there is a transition in the depth from500

the interior value, h = λ−1, to the exterior value, h = 1. Away from the corners at501

x = ±1, y = 1 (by a distance of greater order than F), the motion is controlled by a502

balance of downslope advection and cross-slope diffusion. Therefore, the governing equa-503

tion in the transition region around y = 1 is approximately,504

∂h

∂x
= F ∂

∂y

(
h
∂h

∂y

)
, (61)

in y > 1 and y < 1 with boundary conditions of continuity of h and a jump in ∂h/∂y505

associated with λ at y = 1. This has a similarity solution with η = (y − 1)/[F(1 +506

x)]1/2 with h(η) satisfying507

−1

2
η
∂h

∂η
=

∂

∂η

(
h
∂h

∂η

)
, (62)
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Figure 9: (a,b) Color plots of the thickness of the steady flow past a square cross-section
inclusion (note the different depth scales). (c) The maximum flow thickness for low per-
meability square inclusions. (d) The self-similar behaviour in the cross-sectional flow
depth near the cross-stream boundary of the square (y = 1) for λ = 40.
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subject to continuity of h and λ∂h/∂η− = ∂h/∂η+ at η = 0. We note that this self-508

similar transition behaviour also occurs in the ‘negligible’ diversion regime (λ ∼ 1). The509

system (62) is integrated numerically and is compared to the numerical results in fig-510

ure 9d for λ = 40, demonstrating that the flow depth is approximately self-similar near511

the cross-stream boundary.512

8 Discussion and application513

We recall the two dimensionless parameters that govern the flow: λ = Ki/Ko and514

F = H∞/(L tanβ). In the case that the cylinder is relatively narrow (F � 1), the515

dimensionless flux into the cylinder is 4λ/(λ+1). The corresponding dimensional flux516

is517

4Ki

Ki +Ko
LQ. (63)

The flux (63) is independent of the upstream depth, H∞ and the slope gradient, tanβ518

(provided that L� H∞/ tanβ) unlike the regime F � 1. The particle paths are also519

independent of H∞ and tanβ. This surprising result is related to the analogy between520

the F � 1 regime and the case of pressure driven flow (for which there is no free-surface)521

described in §3.522

We consider the common interaction between a CO2 plume and an abandoned well523

(which may have been used for hydrocarbon recovery). We take the following typical pa-524

rameters: well radius of L = 0.25 metres, the permeability increases by a factor λ =525

1000, the upstream plume thickness is H∞ = 3 metres and the slope gradient is tanβ =526

0.01 (Celia et al., 2005). This yields F = 1200. We calculate that the flow depth varies527

by less than a centimetre and fluid is drawn in from an upstream region of width one528

metre. Thus the depth is very slightly changed by the well but the particle paths are strongly529

diverted.530

For a relatively wide cylinder (F � 1), there are three sub-regimes depending on531

the permeability ratio, λ. For large permeability contrasts, ponds accumulate at either532

the downstream or upstream boundary. For example, consider a rectangular inclusion533

of cross-stream width L = 200 metres and much smaller permeability than the surround-534

ings so that effectively λ = 0, (e.g. figure 9 of Boggs et al. (1992) and Di Donato and535

Blunt (2004); Fitch et al. (2015)). Suppose that the inclusion is in a CO2 storage site536

where the upstream depth is H∞ = 1 metres and the slope is tanβ = 0.02. This in-537

clusion may only be a few metres thick in the z direction. We calculate F = 0.25. The538

depth increases to approximately 4 metres upstream of the inclusion. If instead the in-539

clusion had twice the permeability of the exterior (λ = 2), then the depth within it would540

be approximately 0.5 metres near its upstream boundary but would gradually return to541

1 metre further downstream as fluid from the exterior flows across the sides of the in-542

clusion.543

9 Conclusion544

We have analysed the interaction of a gravitationally-driven free-surface flow in an545

inclined porous medium with a cylindrical inclusion of different permeability to the ex-546

terior. In the case that the cylinder is relatively narrow (F � 1), we have obtained ex-547

pressions for the flux into the cylinder and the particle paths, which may be strongly di-548

verted or focused by the cylinder even though the free-surface is only weakly perturbed.549

For relatively wide inclusions (F � 1), we have found three qualitatively differ-550

ent regimes depending on the ratio, λ, of the internal and external permeabilities. In the551

case that the permeabilities are similar (λ ∼ 1), the flow is everywhere parallel to the552

downstream direction. The flow thickness takes two approximately constant values in-553

side and outside the cylinder owing to mass conservation. The flow transitions in small554
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regions adjacent to the cylinder boundary. We have shown that the flow in the upstream555

transition zone diverts more flow around than into the cylinder when the cylinder is of556

lower permeability, λ � F1/2. The cylinder appears almost impermeable and a deep557

pond of fluid forms upstream with a horizontal free-surface and depth h ∼ F−1/2. This558

scaling is general to cylinders with non-zero curvature at the upstream stagnation point.559

For the case of a square cylinder, the scaling for the depth in this pond is h ∼ F−2/3
560

instead.561

The third regime for shallow oncoming flow occurs in the case of a high permeabil-562

ity cylinder. The transition away from the first regime is analogous to that for a low per-563

meability cylinder; the flux tangential to the downstream boundary just inside the cylin-564

der exceeds the flux out of the cylinder when λ � F−1. The flow is focused towards565

the rear side of the cylinder and there forms a pond of fluid within the cylinder at the566

rear. The flux out of the cylinder arises predominantly from the flow into and out of this567

pond. Interestingly, the flow depth in the pond becomes independent of the permeabil-568

ity contrast λ, when the latter is sufficiently large. Also, the flow depth in the pond is569

sensitive to the shape of the inclusion. Indeed, for a downstream boundary shape of the570

form y = (1− x)1/n the deep pond has maximum depth h ∼ F−a where a = −1/(1 +571

n). A kite corresponds to the case n = 1 and a circle corresponds to n = 2.572

Our results provide insight into which of the various physical effects dominate in573

the interaction of free-surface porous flows with a single inclusion. It would be interest-574

ing to extend the analysis to an array of inclusions. Also, further study could focus on575

the transient evolution to the steady state such as investigating the role of capillary ef-576

fects at the invading front and calculating the time taken for the inclusion to be filled577

with fluid. Finally, the model presented here may be straightforwardly adapted to in-578

clude the effect of vertical leakage from within the inclusion through the underlying low579

permeability seal layer. This is manifest by an expression for mass loss in (10) associ-580

ated with leakage driven by the hydrostatic pressure (Acton et al., 2001; Pritchard &581

Hogg, 2002; Neufeld et al., 2011). We briefly comment that in this scenario for relatively582

narrow cylinders (F � 1), the flow depth is not changed at leading order; it still given583

by h = 1 + F−1h1, although h1 takes a different form. For relatively wide cylinders,584

the maximum vertical leakage flux out of the cylinder is bounded above by the flux into585

the cylinder from the calculations described in this paper.586
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