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The steady lateral spreading of a free-surface viscous
flow down an inclined plane around a vertex from
which the channel width increases linearly with
downstream distance is investigated analytically,
numerically and experimentally. From the vertex the
channel wall opens by an angle α to the downslope
direction and the viscous fluid spreads laterally along
it before detaching. The motion is modelled using
lubrication theory and the distance at which the
flow detaches is computed as a function of α using
analytical and numerical methods. Far downslope
after detachment, it is shown that the motion is
accurately modelled in terms of a similarity solution.
Moreover, the detachment point is well approximated
by a simple expression for a broad range of opening
angles. The results are corroborated through a series
of laboratory experiments and the implication for the
design of barriers to divert lava flows are discussed.

This article is part of the theme issue ‘Stokes at 200
(Part 1)’.

1. Introduction
Viscous gravity currents are abundant in nature and
industry and their modelling began with Sir George
Stokes’ equations for creeping flow. His ideas in this
area have been applied to gravitationally driven viscous
flows in diverse fields including glass manufacture, lava
flows, coating and printing processes, food manufacture
and many biological settings [1]. These flows often
encounter fixed obstructions, for example in thin film
flow around nuts within aeroengine chambers or when a
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Figure 1. Schematic for gravitationally driven viscous flow down an inclined plane at an angleβ to the horizontal. The channel
expands with opening angleα to the downslope direction, which we take to be the X axis, while the Y axis is in the cross-slope
direction. (Online version in colour.)

lava flow interacts with a barrier [2,3]. Detailed knowledge of the deformation of the free surface
is essential for understanding and informing engineering decisions and design.

The interaction between gravity-driven flows and topographic mounds has been well studied
and controls on when the mound is surmounted by the flow have been determined [4–9]. There
have also been theoretical, numerical and experimental analyses of the flow behaviour upstream
of surface piercing cylinders of various cross-sections [2,10–12]. These works have shown that
there may be a dry zone (in which there is no fluid) downstream of the obstruction and there
have been investigations into the location and extent of the dry zone in the regime that capillary
forces play a dominant role [11]. However, at larger length scales, for which the effects of surface
tension are negligible, the dependence of the dry zone shape on the obstruction cross-section is
not yet well understood.

The present work addresses aspects of this problem and our results have important
implications for the optimal design of lava flow barriers. While the previous upstream analyses
provide valuable estimates of the barrier height that is required to prevent overtopping by
the oncoming flow, it is also important to quantify the controls on the downstream dry zone.
The downstream behaviour is challenging to model because of the complex interaction between
the spreading fluid and the back of the obstruction, which may lead to the fluid detaching from
the barrier to leave a ‘dry’ (fluid-free) zone. To make progress in studying the downstream
interaction, we consider the more straightforward geometry of a semi-infinite channel whose
wall opens at a vertex downstream (figure 1). The flow detaches from the angled wall at some
distance downstream and a major aim of this work is to quantify how the detachment distance
along the wall, d, depends on the wall opening angle, α and the depth of the oncoming flow. It is
noteworthy that the viscously dominated dynamics analysed in this study are very different from
situations in which the flow has significant inertia and detaches at the vertex.

Since a constant flux of fluid is supplied from upstream, the only length scale in the problem is
the oncoming flow depth, H∞. This enables the derivation of a parameter-free governing equation
in §2, using a lubrication approximation. We introduce the numerical method in §3 and present
contour plots of the steady flow depth. The dimensionless wall detachment location depends
only on the opening angle, α. We show that the contact line where the flow depth vanishes is
relatively insensitive to the opening angle and is well described by a simple similarity solution,
with a single virtual origin for any opening angle. The results demonstrate that away from the
vertex, the influence of the wall and the downslope component of gravitational slumping are
negligible and the flow is governed by a balance between the component of gravity acting down
the slope and the cross-slope slumping (§§4 and 6). In addition, we construct an exact solution
for the special case of α = π , which corresponds to the abrupt end of the channel wall at x = y = 0
(§5). This solution is used to validate the numerical results and to demonstrate the utility of the
similarity solution. New experimental results are presented in §7 and these show good agreement
with our theoretical and numerical predictions for the detachment distance. We conclude with a
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brief discussion of the implications of our results in the context of lava flow barrier design and
infer that the design of the downstream side of barriers has little influence on the extent of the
fluid-free zone that is safely protected.

2. Formulation
We consider flow down a channel inclined at an angle β to the horizontal (figure 1) and focus on
the steady state that develops at long times after transient effects associated with the passage of
the front have decayed. The channel opens at the origin in (X, Y) coordinates so that the shape
of its wall is given by Y = 0 for X < 0 and Y = X tan α for X > 0 (figure 1). Fluid is supplied
with constant flux, Q per unit width, from a line source far upstream, which is semi-infinite in
Y (−∞ < Y < 0). The flow thickness far upstream is a constant that may be obtained by balancing
the downslope component of gravity with the viscous stresses [13,14]

H∞ =
(

3μQ
ρg sin β

)1/3

, (2.1)

where μ, ρ and g are the dynamic viscosity, the density of the fluid and gravitational acceleration,
respectively. We use the lubrication approximation to determine the hydrostatic pressure and
velocities in the fluid [15]. Local mass conservation is applied to the velocities to obtain [14]

∂H
∂T

= ρg sin β

3μ

[
cot β

∂

∂X

(
H3 ∂H

∂X

)
+ cot β

∂

∂Y

(
H3 ∂H

∂Y

)
− ∂H3

∂X

]
. (2.2)

In this expression we have assumed that the effects of surface tension are negligible; for the
experiments described below the capillary length is approximately 2 mm [12], which is much
smaller than the streamwise length scale. On adopting dimensionless variables h = H/H∞ and
(x, y) = [X/(H∞ cot β), Y/(H∞ cot β)], we find that the steady governing dimensionless equation is

∂h3

∂x
= ∇ · (h3∇h

)
, (2.3)

while the dimensionless flux in the x and y directions is

q = h3

(
1 − ∂h

∂x
, −∂h

∂y

)
. (2.4)

We next describe the boundary conditions for the steady flow. The line source is far upstream of
the wall vertex and the line source is semi-infinite. Thus h → 1 as x → −∞ and h → 1 as y → −∞.
There is no-flux, q · n = 0, into the angled wall, where the normal direction to the angled wall is
n = (sin α, − cos α). Thus the boundary condition on y = x tan α, x > 0, may be written as(

1 − ∂h
∂x

)
tan α + ∂h

∂y
= 0 provided that h > 0. (2.5)

Downstream of the point where the flow detaches from the wall, there is a contact line, y =
yc(x), where the current depth first vanishes: h(x, yc(x)) = 0. We denote the dimensionless distance
along the wall at which the flow detaches by d. This nondimensionalized distance depends only
on the opening angle α and we write d = f (α). One of the main aims of this work is to determine
this dependence. We note that f is a decreasing function of α and f (α) → ∞ as α → 0 because the
flow does not detach in this limit.

Our model neglects the no-slip boundary condition at the channel wall in accordance with the
leading order lubrication model. We have also neglected surface tension, which may become very
significant near the contact line (see, for example, [16]). A detailed local treatment of these effects
would be needed to complete the solution but they do not affect bulk behaviour and hence can be
neglected for our purposes. For a detailed study of the flow near the wall associated with no-slip
and matching with the bulk flow, see [17].
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3. Numerical method
We use a finite-element method to integrate the steady governing equation (2.3) numerically. The
routine is part of Matlab’s Partial Differential Equation ToolboxTM, which uses adaptive mesh
generation. The steady state is found iteratively; we take an initial guess to be h = 1 everywhere
and iterate until a converged solution is found. A similar approach has previously been used
for flow over a mound and flow past a cylinder [9,12]. We solve the system with the following
boundary conditions. There is no normal flux (q · n = 0) into the wall along y = 0 for x < 0 and
y = x tan α for x > 0. There is also no flux across the domain boundary at y = −c. Constant flux
(q · n = 1) is supplied at the upstream boundary, x = −a, −c < y < 0. Finally, we apply a free-flux
condition (∂h/∂x = 0) at the downstream boundary at x = b, −c < y < b tan α. The domain size is
determined by the parameters a, b and c. The system is solved with an initial choice of a, b and c
and then they are increased and the system solved again. This process is repeated until increasing
the domain size further has a negligible influence on the solution. In the case α = π/4, for example,
the domain size is given by a = 5, b = 20 and c = 15. Note that the contour plots presented in this
paper include only the region of interest rather than the entire domain of the numerical method.
Typically, the mesh for the finite-element method contains approximately 100 000 triangles, which
provides sufficient resolution. Contour plots of the steady flow thickness are shown in figure 2
for two values of the angle, α.

The nonlinear diffusive terms on the right-hand side of (2.3) become negligible when h is very
small. The original numerical scheme was not effective in this regime. It was necessary to add a
small flux out of the open wall to coat the region in which h = 0 with a thin film. The modified
boundary condition along y = x tan α is q · n = ε where the parameter ε was selected to be as small
as possible while enabling the code to run efficiently and typical values were 10−7. The influence
of ε is predominantly seen at the steep edges of the current, which are slightly smoothed (for
example, see figure 3a). Beyond the steep edge of the current, where we anticipate that the flow
depth vanishes, the calculated flow depth is at most h = 10−2. We use this value (rather than h = 0)
to define the edge of the current and obtain the detachment point and the location of the contact
line [y = yc(x)].

4. Far-field similarity solution (x � 1)
Sufficiently far downslope from the wall detachment point, (x � 1), the governing equation (2.3)
may be approximated by [9,14,18]

∂h3

∂x
= ∂

∂y

(
h3 ∂h

∂y

)
(4.1)

and the downstream flow is unlikely to be effected by the details near the vertex. The upstream
boundary condition at x = 0 is given by h = 1 in y < 0 and h = 0 in y > 0. Also h → 1 as y → −∞
because the upstream line source is semi-infinite. The system is self-similar with scaling y ∼ x1/2

and the omitted streamwise diffusive term, ∂(h3∂h/∂x)/∂x, relative to the advective term ∂h3/∂x
is therefore of order 1/x and negligible in the far-field (x � 1). We transform equation (4.1) using
the similarity variables, η = y/x1/2 and h(x, y) = χ (η), to

− 1
2
η

d
dη

(
χ3
)

= d
dη

(
χ3 dχ

dη

)
, (4.2)

with boundary conditions χ (η0) = 0 and χ → 1 as η → −∞. To solve this system numerically, we
shoot from χ = 0 and iterate to determine η0. The shooting requires a second boundary at η = η0,
which we determine in the regime χ � 1 as

χ = η0

2
(η0 − η) + · · · . (4.3)

We find η0 ≈ 1.578. In figure 3a, we show that cross-sections of the numerical results become
self-similar in the far-field. The similarity solution, χ (η), shows good agreement with the
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Figure 2. Contour plots of the dimensionless thickness of the steady flow, h(x, y) in a channel that expands at x = 0 for two
values of the opening angle, α: (a) α = π/4 and (b) α = π/2. The results are obtained numerically, as described in §3.
Contours are plotted at h= 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. (Online version in colour.)

numerical results for x � 1 as expected. For smaller x, the results diverge because the similarity
solution neglects the influence of the angled wall and the downslope diffusive term, ∂2h4/∂x2 on
the right-hand side of (2.3), both of which are important in x ∼ 1. The flow depth along the line
y = 0− is plotted for four values of the opening angle in figure 3b. The x gradients are relatively
large near the wall vertex at x = 0 but quickly become negligible further downstream, as expected.
The upstream flow depth is unity and the downstream flow depth is also constant, because along
the line y = 0, the similarity variable is η = 0 and the flow depth is χ (0) = 0.812.

5. Exact solution forα = π

In the special case that the wall opening angle is α = π , an exact solution for the flow depth can
be obtained. We introduce the following conformal mapping of the physical space

s + it = 2(x + iy)1/2 (5.1)

and in this case the domain now corresponds to s > 0. The governing equation (2.3) for the flow
depth is recast as (

s
∂

∂s
− t

∂

∂t

)(
h3)=

(
∂2

∂s2 + ∂2

∂t2

)(
h4/2

)
. (5.2)

The far field conditions can be written as h → 1 as s → −∞ and h → 0 as s → +∞. The no-flux
boundary condition on both sides of the wall (y = 0+ and y = 0−) is ∂h/∂y = 0, which becomes

∂h
∂s

= 0 on s = 0. (5.3)
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Figure 3. (a) Steady flow depth along three cross-sections (x = 1, 3, 5) in the case of a channel opening angle of α = π/2
as a function of the similarity variable, y/x1/2. The similarity solution (obtained in §4) provides good agreement with the
numerical result for x ≥ 5 for this value of α. There is slight divergence for very small h because the extra source term added
for the numerical method has an influence here. (b) Steady flow depth along the line y = 0− as a function of streamwise
distance for four values of the opening angle, α. The upstream flow depth is unity. The downstream flow depth is given by
the similarity solution, which is a constant, h(x, 0)= χ (η = 0)= 0.812. The numerically computed solutions adjust to the
similarity value over relatively short lengths. The results are obtained through numerical integration of the governing partial
differential equation (2.3),with the exception of the caseα = π , forwhich there is an analytic solution (see §5). (Online version
in colour.)

This boundary condition suggests a solution of the form h =H(t) and upon substituting into
(5.2), we find that H(t) satisfies the same ODE (4.2) and boundary conditions as χ (η). The complete
solution is therefore given by

h = χ
{

±
√

2
[
(x2 + y2)1/2 − x

]1/2
}

, (5.4)

where the argument of χ has positive sign when y > 0 and negative when y < 0. Contours of the
height field (5.4) correspond to

y = η∗
(

x + η2
∗/4

)1/2
, (5.5)

where χ (η∗) = h∗. In particular the contact line yc(x) is given by η∗ = η0 (see §4). We plot the
contours (5.5) for h∗ = 0.01, 0.4, 0.7 in figure 4, showing excellent agreement with the numerically
computed solution. We also note that when x � 1,

h = χ
(

y/x1/2
)

+ O (1/x) , (5.6)

thus recovering the downstream similarity solution (§4) and confirming that near-field corrections
to it are O(1/x).
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Figure 4. Contours of the steady flow depth for the caseα = π . Contours of the numerical result (continuous coloured lines)
are plotted at h= 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 The thick black line represents the wall. Contours of the exact
solution (5.4), plotted as dashed lines for h= 0.01, h= 0.4 and h= 0.7 show excellent agreement. (Online version in colour.)
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values ofα. The translated similarity solution (which is also the exact solution forα = π ) provides amuch better prediction for
the contact line than the untranslated similarity solution. The agreement is good for allα but better for wider opening angles.
(Online version in colour.)

6. The translated similarity solution
We can improve the agreement between the earlier similarity solution and the numerical
computations for all α by translating it a distance x = −x1 < 0 upstream. We use the similarity
variable η = y/(x + x1)1/2 [19]. The idea is that this virtual origin accounts for the adjustment
to the similarity solution in the region in which x ∼ 1. The solution χ (η) is unchanged but is
translated upstream a distance x1. The parameter x1 is chosen to agree with the contact line
from the exact solution for α = π (5.4); we use x1 = η2

0/4 ≈ 0.623. We first note that the translated
similarity solution does not agree precisely with the exact solution for α = π away from the
contact line because the contours take the form given by (5.5). Of course, the solution converges
to the similarity shape for large x, as before.

The prediction for the contact line from the translated similarity solution is significantly
improved from the untranslated similarity solution even for α �= π (figure 5). The agreement for
the contact line between the similarity solution and the numerical results could be improved
further still by allowing the location of the virtual origin to depend on α. However, the single
choice of x1 = η2

0/4 provides sufficient agreement and enables the contact line to be simply
approximated for any α.
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Figure 6. The distance along the wall, d, at which detachment occurs as a function of the channel opening angle, α. The
prediction from our numerical simulations is plotted as a continuous black line and the red pluses indicate the experimental
results (table 1). The prediction from the similarity solution (equation (6.2)) is plotted as a blue dashed line and we also include
its behaviour asα → 0, which is d = (η0/α)2 (a yellow dot-dashed line). (Online version in colour.)

Our prediction for the location of the contact line can be used to estimate the location of the
detachment from the wall as a function of α. The similarity solution with virtual origin at −x1 =
−η2

0/4 predicts that the shape of the current edge where h = 0 is given by

y = η0(x + x1)1/2. (6.1)

The intersection of the contact line (6.1) obtained from the similarity solution with the wall,
y = x tan α, yields the following location for the detachment distance along the wall,

d = η2
0

2(1 − cos α)
. (6.2)

This prediction is compared with the numerical results in figure 6. We note that locating
the virtual origin at −x1 = −η2

0/4 provides good agreement for all angles of expansion and the
agreement is exact at α = π . As α → 0, equation (6.2) predicts that d ∼ (η0/α)2 and we include this
in figure 6. It provides good agreement over the whole range of opening angles, α.

7. Laboratory experiments
We conducted a series of experiments in which golden syrup was released from a line source at
constant flux onto a Perspex tank inclined at an angle β = 10◦. The line source was restricted to
one side of the tank, which was bounded by a wall parallel to the direction of steepest descent
down the slope. Further downstream, the wall opened at its vertex with angle α, which was
varied. The region around the wall was cleaned each time the angle was changed to ensure that
the influence of surface tension at the detachment point was consistent across all experiments.
The syrup was released from a lock gate behind which the depth was maintained fixed by hand
to ensure constant flux. When the steady state was attained, the flow depth upstream, H∞, was
obtained by projecting a narrow laser line onto the free-surface and recording the difference
between the deflection of the line in the absence of fluid [12,20]. In order for this method to be
effective the fluid must be relatively opaque and this required the addition of a few drops of
paint to the syrup. It was confirmed (through rheometer measurements) that the syrup remained
Newtonian with dynamic viscosity 89.6 Pa s.
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Table 1. Experimental results.

angle of opening flow thickness wall distance wall distance

α (degrees) H∞ (mm) D (mm) d (dimensionless)

53.8 7.9 110 2.46
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57.0 8.0 105 2.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68.4 8.0 84 1.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

71.3 7.9 95 2.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

81.5 7.9 83 1.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90.0 8.0 41 0.90
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

102.4 8.0 36 0.79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

116.6 7.9 33 0.74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The dimensional detachment distance along the wall, D, was measured from photographic
images of the steady flow and the results are shown in table 1. They show good agreement with
the numerical predictions and analytical estimates from our theory (figure 6).

8. Discussion and conclusion
This contribution has described the spreading of viscous fluid into an expanding channel using
the equations of Stokes flow and the lubrication approximation. The governing equation has
been solved numerically and far downstream the shape of the flow depth is self-similar, being
governed by a balance between the gravity-driven flux down the slope and the cross-slope
gradients in the hydrostatic pressure. We have obtained an exact analytical solution to the
complete system in the case that there is a single, semi-infinite wall (α = π ). This solution
motivates translating the similarity solution, which provides very good predictions for the
location of the contact line and the wall detachment distance as a function of the vertex angle.
These results also show good agreement with our laboratory experiments.

Our investigation was motivated by the need to optimize the design of lava flow barriers,
which are used to protect towns and infrastructure in many regions of volcanic hazard. The flow
around a vertex studied here is analogous to the flow at the downstream side of a deflecting
barrier, albeit that our flows are uniform upstream. Civil defence authorities are particularly
interested in the size and shape of the downstream dry region and our results demonstrate that
surprisingly this may be insensitive to the shape of the trailing side of the barrier (the contact
line is always well-approximated by equation (6.1)). This suggests that the size of the dry zone is
primarily controlled by the cross-stream width of the barrier and the upstream deflection of the
oncoming flow. Therefore, efforts should be directed at ensuring the barrier is as wide as possible
in the cross-stream direction and shaped to minimize the upstream flow depth and potential for
overtopping, a problem that was analysed in [12]. It would be interesting to extend the present
analysis to downstream boundaries with curved shape and explore whether the current thickness
is also insensitive to the shape in this case.
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