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We analyse the stability of the interface between two immiscible fluids both flowing in the7
horizontal direction in a thin cell with vertically varying gap width. The dispersion relation8
for the growth rate of each mode is derived. The stability is approximately determined by9
the sign of a simple expression, which incorporates the density difference between the fluids10
and the effect of surface tension in the along- and cross-cell directions. The latter arises11
from the varying channel width: if the non-wetting fluid is in the thinner part of the channel,12
the interface is unstable as it will preferentially migrate into the thicker part. The density13
difference may suppress or complement this effect. The system is always stable to sufficiently14
large wavenumbers owing to the along-flow component of surface tension.15

1. Introduction16

The parallel co-flow of two fluids occurs in many industrial, biological and environmental17
processes. It is often important to understand the interfacial instability and develop strategies18
to control it. Frequently, these flows occur in thin channels whose thickness varies in the19
cross-flow direction. Examples include: the flow of cement and drilling fluid within a casing20
pipe of a subsurface well, where the intermingling of cement and mud can produce poorly21
sealed wells with the attendant risks of leakage; the flow of coatings in the corner region22
along the line of intersection between two planes, where the displacement of air limits the23
formation of non-coated zones (Weislogel & Lichter 1996); flows of reactants in microfluidic24
channels (Sauer 1987;Huang et al. 2018); and the displacement ofwater byCO2 in permeable25
channels used for CO2 sequestration, where intermingling may enhance the efficiency of the26
sequestration (Woods & Mingotti 2016). For the last example of CO2 sequestration, the27
pore-scale dynamics, which are controlled by capillary effects and the interpore geometry28
are not fully understood but can have a significant effect on macroscale mechanisms such as29
the flux and the residual trapping of the CO2, which are key to estimating storage efficiency30
(Zhao et al. 2019; Benham et al. 2021). If the initial flow involves the displacement of one31
fluid by a second along the channel, the displacing fluid will migrate along the wide part of32
the channel, stretching out the interface; at long times, the interface is approximately directed33
along the channel, and the flow evolves to the co-flowing geometry of the present problem34
(c.f. Woods & Mingotti 2016; Mortimer & Woods 2021).35
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Figure 1: (a) Schematic of the setup. Large arrows indicate the flow direction. (b)
Cross-section perpendicular to the 𝑥 direction. (c) Cross-section in the 𝑥 direction.

We investigate how the stability of the interface between the two fluids in a thin cell with36
vertically varying gapwidth is controlled by cross-layer buoyancy and capillary effects (figure37
1).We assume that inertia plays a negligible role in the base flow. It has been shown that when38
inertia plays a significant role and the two fluids in the Hele-Shaw cell have significantly39
different viscosities, the shear-controlled Kelvin-Helmholtz instability may occur as has40
been observed experimentally (Zeybek & Yortsos 1992; Gondret & Rabaud 1997; Rabaud41
&Moisy 2020). In wider channels, it has been shown that even at zero Reynolds number the42
vertical shear associated with the no-slip boundaries at the top and bottom can give rise to43
interfacial instabilities in the co-flow of two fluids of different viscosity (Yih 1967). Similar44
behaviour can occur in two-layer gravity-driven flow (Loewenherz & Lawrence 1989).45
In the present work, we consider a laterally thin cell in which the vertically varying velocity46

arises from variations in the cell width. The stability is primarily controlled by the density47
difference between the fluids and surface tension. It is well-established that the along-flow48
component of surface tension stabilises larger wavenumbers. The combination of surface49
tension and the cross-cell variation in thickness introduces a new (de)stabilising process50
for small wavenumbers in the case that the (non-)wetting fluid is in the thinner part of the51
channel. This effect may complement or suppress the effect of a density difference between52
the two fluids on the stability of the interface.53
The impact of variations in the surface tension associated with variations in the channel54

width have been explored in detail for the related problem in which an input fluid displaces55
an ambient fluid in a cell whose width varies in the direction of flow (Homsy 1987; Al-56
Housseiny et al. 2012; Dias & Miranda 2013; Grenfell-Shaw &Woods 2017). These studies57
have identified that the effect of cross-cell curvature can complement or suppress the classical58
Saffman-Taylor instability (Saffman & Taylor 1958).59

2. Formulation60

The flow and the cell geometry is illustrated in figure 1. The cell occupies 0 < 𝑦 < 𝐻 and61
has width, 𝑏(𝑦), that varies in the vertical direction,62

𝑏(𝑦) = 𝑏0 + 𝛼𝑦, (2.1)63

where 𝛼 represents the inclination of the cell walls, which may be positive or negative, and64
𝛼 > −𝑏0/𝐻 so that the cell width is non-negative. Flow is driven in both fluids in the 𝑥65
direction by a background pressure gradient with magnitude𝐺. For relatively slow flows, we66
can apply the lubrication approximation, which is to say that the leading order velocities are67
independent of 𝑥. Under this assumption, the momentum and continuity equations for the68
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gap-averaged velocity in each fluid take the form (equation 11 of Gondret & Rabaud 1997)69

𝜕𝒖̄

𝜕𝑡
+ 𝒖̄ · ∇𝒖̄ = − 1

𝜌
∇𝑝 − 12𝜇

𝜌𝑏2
𝒖̄ − 𝑔𝒆𝑦 , ∇ · (𝑏𝒖̄) = 0, (2.2)70

where, ∇ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦), 𝒆𝑦 is the unit vector in the 𝑦 direction and 𝜇 and 𝜌 are the fluid71
viscosity and density, respectively. Also, 𝑝 is the pressure, 𝑔 represents gravity, which acts72
in the negative 𝑦 direction and 𝒖̄ = (𝑢̄, 𝑣̄) is the width-averaged velocity in the 𝑥 and 𝑦73
directions. The boundary conditions are no-flux at the top and bottom of the channel: 𝑣̄ = 0,74
whilst at the fluid-fluid interface, 𝑦 = 𝑦𝐼 , the velocity in each fluid satisfies the kinematic75
boundary condition76

𝜕𝑦𝐼

𝜕𝑡
+ 𝑢̄

𝜕𝑦𝐼

𝜕𝑥
= 𝑣̄. (2.3)77

In addition, there is a pressure jump at the interface associated with its curvature, 𝜅 = ∇2𝑦𝐼 ,78
given by79

Δ𝑝 = 𝛾𝜅, (2.4)80

where 𝛾 represents surface tension. The unperturbed steady base flow is given by81

𝑢̄ = 𝑈0(𝑦) =
𝑏(𝑦)2𝐺
12𝜇

, 𝑣̄ = 0, 𝑝 = 𝑃0(𝑥, 𝑦) = −𝜌𝑔𝑦 − 𝐺𝑥 + const. (2.5)82

The fluids are immiscible and the location of the fluid-fluid interface, 𝑦𝐼 = ℎ is a constant for83
the case of steady flow, which depends on the channel angle, the relative flux in each layer84
and the viscosity ratio. Although the curvature of the interface in the along-flow direction85
vanishes since 𝑦𝐼 is indepedent of 𝑥, there is curvature in the cross-channel direction owing86
to the contact angle at the wall and the varying channel width (figure 1b). Hence, there is a87
pressure jump at the interface, which is independent of 𝑥, and the constants in 𝑃0 in the base88
flow are different in the two fluids.89
We consider perturbations to the interface and steady base flow of the form90

𝑦𝐼 = ℎ + 𝜁𝑒𝑖 (𝑘𝑥−𝜔𝑡) (2.6)91

(𝑢̄, 𝑣̄) = (𝑈0(𝑦), 0) + (𝑢(𝑦), 𝑣(𝑦))𝑒𝑖 (𝑘𝑥−𝜔𝑡) , (2.7)92

𝑝 = 𝑃0(𝑥, 𝑦) + 𝑝(𝑦)𝑒𝑖 (𝑘𝑥−𝜔𝑡) . (2.8)9394

where 𝜁 , 𝑢(𝑦), 𝑣(𝑦) and 𝑝(𝑦) are assumed to be small. We seek to determine the stability of95
such perturbations. The linearised governing equations in each fluid are96

−𝑖𝜔𝑢 + 𝑖𝑘𝑈0𝑢 + 𝑣𝑈 ′
0 =

−𝑖𝑘 𝑝
𝜌

− 12𝜇𝑢
𝜌𝑏2

(2.9)97

−𝑖𝜔𝑣 + 𝑖𝑘𝑈0𝑣 = − 𝑝′

𝜌
− 12𝜇𝑣

𝜌𝑏2
(2.10)98

𝑖𝑘𝑢𝑏 + (𝑣𝑏) ′ = 0, (2.11)99100

where a prime (′) denotes differentiation with respect to 𝑦. We eliminate 𝑝′ to obtain101

− 𝑖𝜔𝑢′ + 𝑖𝑘 (𝑈0𝑢) ′ + (𝑣𝑈 ′
0)

′ − 𝑘𝜔𝑣 + 𝑘2𝑈0𝑣 =
12𝑖𝑘𝜇𝑣
𝜌𝑏2

− 12𝜇(𝑢/𝑏
2) ′

𝜌
. (2.12)102

Also, continuity yields103

𝑢 =
𝑖(𝑣𝑏) ′
𝑘𝑏

=
𝑖

𝑘

(
𝑣′ + 𝑣𝛼

𝑏

)
, (2.13)104
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which can be used to eliminate 𝑢(𝑦) from equation (2.12) and obtain a differential equation105
for 𝑣(𝑦),106

𝐴(𝑦)𝑣′′ + 𝐵(𝑦)𝑣′ + 𝐶 (𝑦)𝑣 = 0, (2.14)107

where the coefficients are defined below for the dimensionless analogue.108

2.1. Non-dimensionalisation109

To scale the system, we use the tank height, 𝐻 as the length-scale and the time-scale is110
𝑇 = 𝜇2/(𝐺𝐻). The pressure scale is 𝐺𝐻. We write111

(𝑥, 𝑦̂) = (𝑥, 𝑦)/𝐻, 𝑘̂ = 𝐻𝑘, 𝑤̂ = 𝑇𝑤, 𝑏̂( 𝑦̂) = 𝑏(𝑦)/𝐻 = 𝑏0 + 𝛼𝑦̂, (2.15)112

with 𝑏̂0 = 𝑏0/𝐻, ℎ̂ = ℎ/𝐻 and 𝜁 = 𝜁/𝐻. The upper fluid is labelled fluid 2, whilst the113
lower is labelled fluid 1 (figure 1). Henceforth, all quantities are dimensionless unless stated114
otherwise and we discard the hat notation. The dimensionless equation in fluid 𝑗 = 1, 2115
becomes116

𝐴( 𝑗) (𝑦)𝑣 ( 𝑗)𝑦𝑦 + 𝐵 ( 𝑗) (𝑦)𝑣 ( 𝑗)𝑦 + 𝐶 ( 𝑗) (𝑦)𝑣 ( 𝑗) = 0, (2.16)117

with coefficients,118

𝐴( 𝑗) =
𝜔𝑏(𝑦)4

𝑘
−

𝑀 𝑗𝑏(𝑦)6

12
+
𝑖𝑏(𝑦)2𝑅 𝑗A

𝑘
(2.17)119

𝐵 ( 𝑗) =
𝜔𝛼𝑏(𝑦)3

𝑘
−

𝑀 𝑗𝛼𝑏(𝑦)5

12
−
𝑖𝛼𝑏(𝑦)𝑅 𝑗A

𝑘
(2.18)120

𝐶 ( 𝑗) =
−𝜔𝛼2𝑏(𝑦)2

𝑘
+
𝑀 𝑗𝛼

2𝑏(𝑦)4

12
− 𝑘𝜔𝑏(𝑦)4 +

𝑀 𝑗 𝑘
2𝑏(𝑦)6

12
− 𝑖𝑘𝑏(𝑦)2𝑅 𝑗A −

3𝑖𝛼2𝑅 𝑗A
𝑘

,

(2.19)
121

122

where 𝑀1 = 𝑀 , 𝑀2 = 1 and 𝑅1 = 𝑅, 𝑅2 = 𝑀 , and we have introduced the following123
dimensionless parameters,124

𝑀 =
𝜇2

𝜇1
, 𝑅 =

𝜌2

𝜌1
, A =

12𝜇1𝜇2
𝜌2𝐻3𝐺

, (2.20)125

which respectively represent the viscosity ratio, the density ratio and the importance of126
viscous drag relative to inertia; A is inversely proportional to a Reynolds number.127

2.2. Boundary conditions128

The perturbed no-flux boundary conditions are129

𝑣 (1) (0) = 𝑣 (2) (1) = 0. (2.21)130

The kinematic boundary conditions (2.3) at the fluid-fluid interface become131

𝑣 (1) (ℎ) = 𝑖𝜁

[
𝑏(ℎ)2𝑀
12

𝑘 − 𝜔

]
, 𝑣 (2) (ℎ) = 𝑖𝜁

[
𝑏(ℎ)2
12

𝑘 − 𝜔

]
. (2.22)132

The dynamic boundary condition at the interface accounts for a jump in pressure associated133
with surface tension and curvature. This comprises two contributions: the along-channel134
curvature and the cross-channel curvature. The former is proportional to the second derivative135
of the interface 𝑦𝐼 in the 𝑥 direction, which furnishes a term proportional to 𝑘2. Treating136
the cross-channel curvature requires more care. The contact angle, 𝜃, is defined as the angle137
between fluid 1 and the channel wall (figure 1b). In a cell with inclined walls, the radius138
of curvature is adjusted from the case of a parallel sided cell and we define an effective139

Focus on Fluids articles must not exceed this page length
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contact angle, 𝜃 = 𝜃 − 𝜙, where tan 𝜙 = 𝛼/2 (Park & Homsy 1984; Romero & Yost 1996;140
Grenfell-Shaw &Woods 2017). The discontinuity in the perturbed pressures at the interface141
is then given by142

𝑝2(ℎ) − 𝑝1(ℎ) = 𝐶𝜁

[
𝑅 − 1 − Bo−1

(
𝑘2 + 2𝛼 cos 𝜃

𝑏(ℎ)2

)]
, (2.23)143

where we have introduced the following dimensionless groups144

𝐶 =
𝜌1𝑔

𝐺
, Bo =

𝑔𝜌1𝐻
2

𝛾
. (2.24)145

We use the dimensionless analogues of equations (2.9) and (2.13) to obtain the dimensionless146
pressures in terms of the vertical velocity, 𝑣, in each fluid,147

𝑝 𝑗 =
12𝑖𝜔

𝑘2𝑅 𝑗𝑀 𝑗A
(𝑣 ( 𝑗)𝑏) ′

𝑏
− 𝑖

𝑘

𝑏(𝑣 ( 𝑗)𝑏) ′
A𝑅 𝑗

+ 2𝑖𝛼𝑏𝑣
( 𝑗)

𝑘A𝑅 𝑗

− 12
𝑀 𝑗 𝑘

2
(𝑣 ( 𝑗)𝑏) ′

𝑏3
. (2.25)148

We substitute the pressures into the dynamic boundary condition (2.23) to obtain149

𝛼𝑣 (1)
(
𝜔

𝑘𝑏
+ 𝑀𝑏

12
+ 𝑖𝑅A

𝑘𝑏3

)
+ d𝑣

(1)

d𝑦

(
𝜔

𝑘
− 𝑀𝑏2

12
+ 𝑖𝑅A

𝑘𝑏2

)
150

− 𝑅𝛼𝑣 (2)
(
𝜔

𝑘𝑏
+ 𝑏

12
+ 𝑖𝑀A

𝑘𝑏3

)
− 𝑅
d𝑣 (2)

d𝑦

(
𝜔

𝑘
− 𝑏2

12
+ 𝑖𝑀A

𝑘𝑏2

)
(2.26)151

=
𝑘𝑅𝑀A𝑖

12
𝐶𝜁

[
𝑅 − 1 − Bo−1

(
𝑘2 + 2𝛼 cos 𝜃

𝑏2

)]
,152

153

where the suppressed argument of 𝑣 (1) , 𝑣 (2) , d𝑣 (1)/d𝑦, d𝑣 (2)/d𝑦 and 𝑏 is 𝑦 = ℎ.154

3. Solution method155

The system for 𝑣(𝑦) comprises two second order linear ODEs in 0 < 𝑦 < ℎ and ℎ < 𝑦 < 𝐻156
(2.16) and four boundary conditions: no flux at the top and bottom boundaries (2.21) and157
the kinematic and dynamic boundary conditions (2.22, 2.26) at the interface. We note that158
the two equations for the kinematic condition (2.22) can be used to eliminate 𝜁 from the159
problem. To solve this system, we first simplify the problem by writing 𝑏̄(𝑦) = 𝑘𝑏(𝑦)/𝛼 and160
obtain the following equation for 𝑣 ( 𝑗) (𝑏̄),161

𝐴( 𝑗) (𝑦)𝑣 ( 𝑗)
𝑏̄𝑏̄

+ 𝐵 ( 𝑗) (𝑦)𝑣 ( 𝑗)
𝑏̄

+ 𝐶 ( 𝑗) (𝑦)𝑣 ( 𝑗) = 0, (3.1)162

with163

𝐴( 𝑗) =𝑎 ( 𝑗)
6 𝑏̄6 + 𝑎

( 𝑗)
4 𝑏̄4 + 𝑏̄2 (3.2)164

𝐵 ( 𝑗) =𝑎 ( 𝑗)
6 𝑏̄5 + 𝑎

( 𝑗)
4 𝑏̄3 − 𝑏̄ (3.3)165

𝐶 ( 𝑗) = − 𝑎
( 𝑗)
6 (𝑏̄6 + 𝑏̄4) − 𝑎

( 𝑗)
4 (𝑏̄4 + 𝑏̄2) − 𝑏̄2 − 3, (3.4)166167

where we have introduced the following for each fluid,168

𝑎
( 𝑗)
6 =

−𝑀 𝑗𝛼
4

12𝑖𝑅 𝑗A𝑘3
, 𝑎

( 𝑗)
4 =

𝜔𝛼2

𝑖𝑅 𝑗A𝑘2
. (3.5)169

The general solution for 𝑣 in each fluid is given by a linear combination of two independent170
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power series,Φ( 𝑗) (𝑏̄) and Ψ ( 𝑗) (𝑏̄), whose coefficients are determined by Frobenius’ method171
(given in Appendix A). The velocities are ( 𝑗 = 1, 2)172

𝑣 ( 𝑗) (𝑦) = 𝑐 ( 𝑗)
(

Φ( 𝑗) (𝑏̄(𝑦))
Φ( 𝑗) (𝑏̄( 𝑗 − 1))

− Ψ ( 𝑗) (𝑏̄(𝑦))
Ψ ( 𝑗) (𝑏̄( 𝑗 − 1))

)
, (3.6)173

where 𝑐 ( 𝑗) are constants and we have used the no-flux boundary conditions at the base and174
the top (𝑦 = 𝑗 − 1). The dynamic boundary condition may be written as (at 𝑦 = ℎ),175

(𝑣 (1) 𝑏̄)𝑏̄
𝑏̄3

+ 𝑎
(1)
4

(𝑣 (1) 𝑏̄)𝑏̄
𝑏̄

+ 𝑎
(1)
6

(
𝑣 (1)

𝑏̄

)
𝑏̄

𝑏̄3 (3.7)176

− 𝑀

[
(𝑣 (2) 𝑏̄)𝑏̄

𝑏̄3
+ 𝑎

(2)
4

(𝑣 (2) 𝑏̄)𝑏̄
𝑏̄

+ 𝑎
(2)
6

(
𝑣 (2)

𝑏̄

)
𝑏̄

𝑏̄3

]
(3.8)177

=
𝑖𝑀𝛼2𝑣 (1)

12𝑘𝜔
𝐶

[
𝑅 − 1 − Bo−1

(
𝑘2 + 2𝛼 cos 𝜃

𝑏2

)] (
𝑎
(1)
6

𝑎
(1)
4

𝑏̄2 + 1
)−1

. (3.9)178

179

The kinematic boundary condition may be written as180

𝑣 (1)

(
𝑎
(2)
6

𝑎
(2)
4

𝑏̄2 + 1
)
= 𝑣 (2)

(
𝑎
(1)
6

𝑎
(1)
4

𝑏̄2 + 1
)
. (3.10)181

Combining the velocities with these two boundary conditions furnishes the following182
dispersion relation183

𝐷 (1)𝐸 (1) − 𝑀𝐸 (2)𝐷 (2) − 𝑆 = 0, (3.11)184

where185

𝐸 ( 𝑗) =
𝑡 𝑗

𝑏̄2
+ 1
𝑏̄3

+ 𝑎
( 𝑗)
4

(
𝑡 𝑗 +

1
𝑏̄

)
+ 𝑎

( 𝑗)
6

(
𝑡 𝑗 𝑏̄
2 − 𝑏̄

)
, (3.12)186

𝐷 ( 𝑗) =
𝑎
( 𝑗)
6

𝑎
( 𝑗)
4

𝑏̄2 + 1, (3.13)187

𝑆 =
𝑖𝑀𝛼2

12𝑘𝜔
𝐶

[
𝑅 − 1 − Bo−1(𝑘2 + 2𝛼 cos 𝜃/𝑏(ℎ)2)

]
, (3.14)188

𝑡1 =
Φ

(1)
𝑏̄

(𝑏̄(ℎ))/Φ(1) (𝑏̄(0)) − Ψ
(1)
𝑏̄

(𝑏̄(ℎ))/Ψ (1) (𝑏̄(0))
Φ(1) (𝑏̄(ℎ))/Φ(1) (𝑏̄(0)) − Ψ (1) (𝑏̄(ℎ))/Ψ (1) (𝑏̄(0))

, (3.15)189

𝑡2 =
Φ

(2)
𝑏̄

(𝑏̄(ℎ))/Φ(2) (𝑏̄(1)) − Ψ
(2)
𝑏̄

(𝑏̄(ℎ))/Ψ (2) (𝑏̄(1))
Φ(2) (𝑏̄(ℎ))/Φ(2) (𝑏̄(1)) − Ψ (2) (𝑏̄(ℎ))/Ψ (2) (𝑏̄(1))

, (3.16)190
191

where 𝑖 is the imaginary unit. For any value of 𝑘 and the dimensionless parameters, we may192
obtain a solution for the growth rate, 𝜔 that satisfies equation (3.11) (e.g. figure 2a).193

4. Analysis194

The terms in the square brackets in 𝑆 (equation 3.14) correspond to the pressure jump at the195
interface and we define196

𝐽 = 𝑅 − 1 − Bo−1
[
𝑘2 + 2𝛼 cos 𝜃/𝑏(ℎ)2

]
. (4.1)197
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(b)(a)

wetting

Figure 2: (a) Growth rate, 𝜔𝐼 as a function of wave number 𝑘 in the case of equal density
fluids (𝑅 = 1). The curves are calculated using the method in §3. The critical

wavenumbers predicted by (4.3) are shown as crosses. We use Bo = 5, ℎ = 0.5, 𝑏0 = 0.3,
𝑀 = 2, A = 1 and 𝐶 = 1. (b) Schematic corresponding to the blue curve.

(a) (b)

Figure 3: (a) The interface height, ℎ, as a function of the relative flux and viscosity, and
the channel angle, 𝛼 for a fixed dimensionless channel area of 0.2. (b) The corresponding
critical wavenumber, 𝑘𝑐 above which the system is stable according to (4.3) for 𝜃 = 3𝜋/4.

Note that the system is stable for all 𝑘 for 𝛼 6 0.

In general, 𝐽 > 0 is associated with instability and 𝐽 < 0 is associated with stability. The first198
term, 𝑅 − 1 represents the density difference between the fluids. It stabilizes the interface for199
𝑅 < 1 and destabilizes it for 𝑅 > 1. The term, −Bo−1𝑘2 stabilizes the interface; it arises from200
surface tension suppressing the curvature in the along-channel (𝑥) direction. The final term201
−2Bo−1𝛼 cos 𝜃/𝑏(ℎ)2 is associated with surface tension acting on the curvature across the202
thickness of the cell. It drives or suppresses an instability depending on whether the wetting203
or non-wetting fluid is in the thinner part of the channel. This corresponds to the sign of204
𝛼 and the sign of cos 𝜃. To interpret the instability, we consider the simpler cases of equal205
density in §4.1, parallel walls in §4.2 before returning to the full problem in §4.3.206

4.1. Equal density (𝑅 = 1)207

In the case of equal density fluids, 𝑅 = 1, the pressure jump reduces to208

𝐽 = −Bo−1
[
𝑘2 + 2𝛼 cos 𝜃/𝑏(ℎ)2

]
. (4.2)209
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For small wavenumber, 𝑘 , the cross-cell surface tension term controls the stability as210
demonstrated in figure 2a. The red and yellow curves correspond to the non-wetting fluid211
occupying the thicker part of the channel and the system is stable as this fluid will remain in212
the thicker part of the channel. The blue and purple curves represent the converse situation in213
which the non-wetting fluid is in the thinner part of the channel and it will move to the wider214
side of the channel leading to an instability (see figure 2b). For larger wavenumbers, the215
along-channel term stabilizes the interface. The along-channel and cross-channel curvature216
terms balance (Bo−1𝑘2 + 2Bo−1𝛼 cos 𝜃/𝑏(ℎ)2 = 0) at a critical wavenumber,217

𝑘𝑐 =

√
−2𝛼 cos 𝜃
𝑏(ℎ) . (4.3)218

For 𝑘 > 𝑘𝑐 , we anticipate that the system is stable. The critical wave numbers are shown219
by crosses for the two unstable setups in figure 2, demonstrating good agreement with220
the predictions from §3. The small discrepancy between the prediction of 𝐽 (4.3) and the221
numerical results arises because of the physical effects, such as inertia, that are incorporated222
in the numerics but are negelected when using 𝐽 as an approximation of the stability criterion.223
In many settings, it is important to understand how the instability depends on the flux in224

each layer. To analyse this, we calculate the relative flux, Q of the top to the bottom layer,225

Q =
𝑄2

𝑄1
= 𝑀−1 (𝑏0 + 𝛼)3 − (𝑏0 + 𝛼ℎ)3

(𝑏0 + 𝛼ℎ)3 − 𝑏30
. (4.4)226

The quantity 𝑀Q = 𝜇2𝑄2/(𝜇1𝑄1) depends only on 𝛼, ℎ and 𝑏0. We consider channels of227
fixed dimensionless area so that228 ∫ 1

0
𝑏(𝑦) d𝑦 = 𝑏0 + 𝛼/2 = constant. (4.5)229

For a given channel area and relative flux, Q, we can calculate the interface height ℎ as a230
function of the channel angle 𝛼 (see figure 3a for the case with dimensionless area 0.2).231
We can also calculate the critical wavenumber, 𝑘𝑐 by using (4.3) (see figure 3b for the case232
𝜃 = 3𝜋/4).233

4.2. Parallel cell walls (𝛼 = 0)234

In the case that the cell walls are parallel,235

𝐽 = 𝑅 − 1 − Bo−1𝑘2. (4.6)236

For small 𝑘 , the stability is controlled solely by the density ratio, 𝑅. In the case that 𝑅 < 1, the237
system is stabilised by the density difference and there are no destabilizing effects (Gondret238
& Rabaud 1997). For 𝑅 > 1, the Rayleigh-Taylor instability is stabilised for large 𝑘 owing to239
the along cell surface tension. Neutral stability is given by240

𝑘𝑐 =
√︁

Bo(𝑅 − 1). (4.7)241

Figure 4 shows the growth rate as a function of wavenumber (obtained in §3). For 𝑅 > 1, the242
critical wavenumber prediction is indicated by crosses, showing good agreement.243

4.3. Competition between density difference and surface tension244

The cross-cell surface tension effect may be nullified or complemented by buoyancy,245
depending on whether the wetting or non-wetting fluid is denser. The critical value of 𝑅246
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Figure 4: Growth rate, 𝜔𝐼 as a function of wave number, 𝑘 , in the case of parallel cell
walls (𝛼 = 0) calculated using the method of §3. The density ratio is 𝑅 = 0.4, 0.8, 1.6, 3.2,
6.4. The crosses correspond to the critical wavenumber for neutral stability for 𝑅 > 1

given by (4.7). We use ℎ = 0.5, 𝑏0 = 0.3, 𝑀 = 2, A = 1, 𝐶 = 1 and Bo = 1.

(a) (b)

Figure 5: Neutral stability curves for (a) 𝜃 = 𝜋/4 and (b) 𝜃 = 3𝜋/4. Blue lines show the
predictions of (4.8) for 𝑘 = 0 and 𝑘 = 1.5. Circles and crosses show the results from §3 for
𝑘 = 0.2, 1.5, respectively. We use Bo = 5, ℎ = 0.5, 𝑏0 = 0.3, 𝑀 = 2, A = 1 and 𝐶 = 1.

corresponding to neutral stability is (see 4.1)247

𝑅𝑐 (𝑘) = 1 +
𝑘2

Bo
+ 2𝛼 cos 𝜃

Bo(𝑏0 + 𝛼ℎ)2
. (4.8)248

The system is stable for all wavenumbers when 𝑅 < 𝑅𝑐 (0), which is shown as a continuous249
blue line in figure 5. The results from §3 for neutral stability for 𝑘 = 0.2 are plotted as black250
circles showing good agreement. A comparison is also shown for 𝑘 = 1.5 as a broken blue251
line.252
Figure 6 shows the critical density ratio 𝑅𝑐 (0) as a function of the relative flux, and the253

channel inclination 𝛼 in the case of a constant cell area, 0.2. The interface height, ℎ is254
obtained from (4.4). When 𝛼 is small, the critical density ratio becomes independent of the255
relative flux (and hence the interface height, ℎ) because wetting effects become unimportant.256

5. Conclusion257

We have obtained the dispersion relation for the co-flow of two immiscible fluids in a Hele-258
Shaw cell with vertically varying gapwidth. The stability of the system is accurately predicted259
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Figure 6: Critical value of 𝑅 corresponding to neutral stability from (4.8) as a function of
cell wall inclination, 𝛼, and relative flux Q𝑀 for 𝑘 = 0, 𝜃 = 3𝜋/4, Bo = 5. The cell area is

fixed as 0.2 and the interface position is given in figure 3a.

by the sign of the quantity260

𝐽 = 𝑅 − 1 − Bo−1
[
𝑘2 + 2𝛼 cos 𝜃/𝑏(ℎ)2

]
. (5.1)261

The last term, associated with channel wall inclination, represents the preference of the262
non-wetting fluid to occupy the thicker part of the channel. The interface is stable when the263
fluids have equal density and the wetting fluid occupies the thinner part of the channel. A264
density difference may complement or oppose this effect. We have obtained critical values of265
the density ratio, 𝑅, below which the system is stable to all wave-numbers. Our results also266
provide a basis for exploring the stability of important but more complex situations such as267
cells with elastic walls and cells whose vertical structure varies in the horizontal direction268
(e.g. Pihler-Puzović et al. 2013).269
Declaration of Interests: The authors report no conflict of interest.270

Appendix A. Coefficients for Frobenius’ method271

In either fluid, the governing equation takes the form272

(𝑏̄2+𝑎4𝑏̄4+𝑎6𝑏̄6)𝑣𝑏̄𝑏̄ + (−𝑏̄+𝑎4𝑏̄3+𝑎6𝑏̄5)𝑣𝑏̄ + (−3+ (−1−𝑎4)𝑏̄2− (𝑎4+𝑎6)𝑏̄4−𝑎6𝑏̄
6)𝑣 = 0.
(A 1)273

The indicial polynomial is 𝑛2 − 2𝑛 − 3 = 0, which has solutions, 𝑛 = 3 and 𝑛 = −1. We write274
the first power series of 𝑣(𝑏̄) as275

Φ(𝑥) = 𝑥3
∞∑︁
0

𝑃𝑛𝑥
𝑛, (A 2)276

with 𝑃0 = 1 and the recurrence relation277

𝑃𝑛

[
𝑛2 + 4𝑛

]
+ 𝑃𝑛−2

[
𝑛(𝑛 + 2)𝑎4 − 1

]
+ 𝑃𝑛−4

[
𝑎6(𝑛2 − 2𝑛) − 𝑎4

]
− 𝑃𝑛−6𝑎6 = 0 (A 3)278

The second independent power series solution is given by279

Ψ(𝑥) = Φ(𝑥) log 𝑥 + 𝑥−1
∞∑︁
0

𝑄𝑛𝑥
𝑛, (A 4)280

Rapids articles must not exceed this page length
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where 𝑄0 = 16/(4𝑎4 − 1), 𝑄2 = −𝑄0/4, 𝑄4 = 1 and281

0 = (𝑛2 − 4𝑛)𝑄𝑛 +𝑄𝑛−2
[
𝑎4(𝑛 − 2) (𝑛 − 4) − 1

]
+𝑄𝑛−4

[
𝑎6(𝑛 − 4) (𝑛 − 6) − 𝑎4

]
(A 5)282

−𝑄𝑛−6𝑎6 + 𝑃𝑛−4(2𝑛 − 4) + 𝑃𝑛−6𝑎4(2𝑛 − 6) + 𝑃𝑛−8𝑎6(2𝑛 − 10). (A 6)283284
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