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Abstract

Free-surface flows of yield-stress fluids down inclined planes are modelled under

the assumptions that they are shallow and sustained by a uniform oncoming

stream to determine the steady state that emerges as the flow passes topographic

features. In general, the flow may surmount the topography and be deflected

around it depending on the thickness of the oncoming flow, the lateral extent and

elevation of the mound, the inclination of the plane, and the magnitude of the

yield stress relative to the gravitational stress of the flowing layer. Flows deepen

upstream of mounds, with amplitude increasing with increasing yield stress. In

the absence of a yield stress, flows around isolated mounds exhibit a maximum

thickness at a location that is displaced laterally and downstream of the mound

due to flow diversion. However, the location of the maximum thickness differs

for yield-stress fluids: with increasing yield stress, the flow thickens immediately

upstream of the mound and the deflected flux is diminished, leading to a sharp

transition in the location of the maximum. Larger amplitude mounds may not

be surmounted at all, leading to ‘dry zones’ downstream into which no fluid

flows. It is shown that the steady shape of the dry zone is dependent on the

initial condition, because the transient evolution towards it depends upon the

plug at its margin, which is not unique. The results are computed by numerical
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integration of the governing equations and through their asymptotic analysis in

various flow regimes to draw out the interplay of the dynamical processes.

Keywords: Bingham, free-surface flow, lava flow, viscoplastic, topography,

gravity-driven flow

1. Introduction

The effects of topography are ubiquitous in gravity-driven geophysical flows

including avalanches, mudflows, lahars, lava flows, glaciers and ice sheets, while

also playing a key role in coating and film deposition processes [1, 2]. These

problems have sometimes been modelled as the interaction of Newtonian vis-5

cous fluids with topography, which has yielded important insights such as the

sensitive dependence of the flow thickness on the steepness of the topography

and the very gradual return to constant thickness sheet-flow downstream in

three-dimensional geometries [3, 4, 5, 6, 7]. However, many of the flows of inter-

est exhibit non-Newtonian behaviour, which has a strong effect on the motion10

[8, 9, 10, 11]. In this article, we analyse the steady, gravitationally-driven, free-

surface flow of a yield-stress fluid interacting with various topographic features

on an inclined plane, complementing and contrasting with the recent study of

the Newtonian analogue of this problem [7].

The importance of topography in directing, splitting and channelling vol-15

canic lava flows has led to great efforts to measure the elevation near volcanoes

at high resolutions in order to predict flow routes [12, 13, 14]. Significant efforts

have also been made to determine the bed elevation underlying ice sheets and

the topography for the likely paths of debris flows [15, 16]. Hazard assessments

are strongly informed by topographical effects; for example depressions can fo-20

cus the flow and enhance the likelihood of inundation [17]. Constructed mounds,

barriers, and even depressions produced by aerial bombing have been deployed

to defend against lava flows and we aim to inform improved design practices

[18, 19]. There are many numerical tools that determine how lava, fluidised de-

bris and ice sheets flow over a specified and detailed input topography [20, 21].25
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Our approach complements these studies by analysing a model of shallow flow

over and around an idealised topographical feature in which we draw out the

effects of a yield stress in flowing material. This provides simple generic insights

to a wide range of geophysical and industrial applications.

Our analysis builds on much previous research of shallow free-surface flows.30

The motion of a viscous Newtonian fluid on an smooth inclined plane has been

studied in the shallow regime and has provided a useful base for exploring the

diversion of such flows around obstacles [22, 23]. Hinton et al. [7] showed that

isolated mounds divert the viscous flow, which then returns to its unperturbed

behaviour further downstream. Shallow viscous films flow over topography that35

is everywhere downhill but when there is an uphill region, the flow either forms

an upstream deep pond to surmount the mound or there is a dry zone in its lee

depending on the lateral extent of the mound. In flows where surface tension

plays a key role, dry zones can be sustained even on planar horizontal and

inclined surfaces [24, 25]. Cylindrical and oblique obstructions to the shallow40

flow have also been analysed [26, 27, 28, 29, 30].

Studies of Newtonian fluids on inclined planes have been extended to treat

many different rheological and non-isothermal aspects of environmental flows

[31, 10, 32]. The shallow flow of a viscoplastic fluid over an inclined plane has

a velocity profile consisting of an upper region where the velocity gradient is45

negligible and a lower region with parabolic profile (figure 1a) [33]. At first sight,

it seems that the upper layer is a plug whilst nearer the base the fluid yields

owing to gradients of the hydrostatic pressure. However, asymptotic analysis in

the lubrication regime reveals that this upper layer is actually a ‘pseudo-plug’

held just above the yield stress and the magnitude of the velocity gradients are50

negligible but non-zero; the two regions are separated by a ‘fake’ yield surface

[34]. Only the leading order velocity profile is needed for analysing the behaviour

of the free surface.

The evolution of yield-stress flows on inclined planes arising from vents,

extrusions and dam breaks have been well-studied [35]. For example, a finite55

volume of Bingham fluid released on an inclined plane eventually comes to rest
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because gravitational forces no longer overcome the yield stress [33]. The final

profile is sensitive to the initial condition and subsequent evolution as the regions

in which the fluid never yields must be determined [36, 37]. We find that the

difficulty of selecting the correct late-time profile also arises in the steady flow60

around topography in the case that there is a dry region (discussed in §5.2).

Another challenge associated with calculating the steady state is the very slow

(algebraic) convergence of transient yield-stress flows to their final shape [38].

The late-time profile of a finite slump of yield-stress fluid on a surface with

varying topography was calculated by Balmforth et al. [39]. The role of topog-65

raphy and obstructions on the migration of finite slumps has also been inves-

tigated numerically [40]. Other researchers have considered viscoplastic flow in

open channels [41] and over substrates such as cylinders and cones, again ob-

taining various possible late-time profiles [42, 43]. In this paper, we analyse the

late-time, steady flow around a topographic feature emanating from a constant-70

flux line source. Our investigation contrasts with previous works by considering

the non-stationary, steady flow around the feature rather than the final shape

of a fixed volume of fluid. We limit the analysis to a simple Bingham fluid to

provide clarity for the effects of a yield stress on the interaction, noting that

the analysis of other viscoplastic models would be straightforward extensions.75

We neglect surface tension, which is unimportant at environmental scales, and

inertia on the assumption that viscous and yield-stress processes are dominant,

as is the case for many lava, mud and debris flows [44].

The paper is structured as follows. In §2, we derive the governing equations

and introduce three dimensionless groups that represent the magnitude of the80

yield stress relative to viscous stresses, and the flow thickness and topography

amplitude relative to the lengthscale of the topography. The analysis begins

with the case of a topographic feature that is laterally extensive so that the

problem is one-dimensional (§3). We identify that the flow thickness response

to the topography is more exaggerated for fluids with higher yield stresses. An85

isolated mound (§4) leads to both diversion of fluid around the mound and

thickening of the flow upstream. For a Newtonian fluid, the former is the much
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Figure 1: (a) Schematic of the steady flow over topography. The ŷ axis is into the page. (b)

The far-upstream dimensionless flux, (1 − B)2(1 + B/2) as a function of the dimensionless

yield stress, B. (c) ‘Downhill’ topography (green arrows) and ‘uphill’ topography (red arrow).

stronger effect but in contrast, the latter plays an increasing role with larger

yield stresses. The flow may not surmount an isolated mound with an uphill

zone (§5) and instead is entirely diverted leading to a dry zone in which there90

is no fluid. For a yield-stress fluid, the shape of the dry zone is sensitive to the

initial conditions that lead to the steady state (§5). We discuss applications of

our results and make concluding remarks in §6.

2. Governing equations

We consider the flow of a Bingham fluid down an inclined plane at an angle95

β to the horizontal (figure 1). The fluid has density ρ and we neglect the effects

of inertia (i.e. small Reynolds number). The constitutive law is given by the

Bingham model [45]; the fluid is rigid when the yield stress, τ0, is not exceeded

and the stress is a linear function of the strain rate when the yield stress is

exceeded with ‘viscosity’ µ. We orientate the coordinate axes as follows: the100

x̂ axis is directed down-slope, the ŷ axis cross-slope and the ẑ axis is perpen-

dicular measured from ẑ = 0 at the topography. The topography is written

as a perturbation to the underlying plane of the form Dm(x̂, ŷ) (with height
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scale D), where m → 0 as x̂ → ±∞ (see figure 1). The flow is supplied by a

line-source, located far upstream of the topography, which delivers a constant105

flux per unit width, Q0. We consider the steady flow which develops long after

the leading front of the fluid has passed the topography. In the steady state,

the flow thickness above the topography is denoted by ẑ = ĥ(x̂, ŷ).

We assume that the flow is relatively shallow and apply the lubrication ap-

proximation, corresponding to the velocity component in the ẑ direction, ŵ,110

being much smaller than that in the x̂ and ŷ directions (û, v̂, respectively),

ŵ � û, v̂. The pressure is then hydrostatic to leading order. Combined

with Bingham’s model this formulation furnishes the well-known velocity profile

shown in figure 1 [34]. There is a ‘pseudo-plug’ in the upper region where the

yield stress is just exceeded and the velocity gradients vanish to leading order.115

In the lower region, the yielded fluid has a parabolic velocity profile to leading

order [34].

Far upstream of the topography, the steady flow has constant thickness, H∞,

and the flux balance in the x̂ direction is given by [33, 34]

Q0 =
ρg sinβ

6µ
(H∞ −HY )2(2H∞ +HY ), (1)

where

HY =
τ0

ρg sinβ
(2)

is the constant thickness of the ‘pseudo-plug’ far upstream and HY < H∞ by

assumption (see figure 1). Equation (1) may be used to obtain the thickness

H∞ given the flux, Q0 and the yield stress, τ0.120

To non-dimensionalise the problem, we scale flow thicknesses with H∞ and

lengths with the streamwise lengthscale of the topography, L,

(z, h) = (ẑ, ĥ)/H∞, (x, y) = (x̂, ŷ)/L, m(x, y) = m(x̂/L, ŷ/L). (3)

We scale the flux per unit width with ρgH3
∞ sinβ/(3µ), which is the far-upstream

flux per unit width for a constant thickness Newtonian flow. The Bingham num-

ber is

B =
τ0

ρgH∞ sinβ
, (4)
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which represents the magnitude of the yield stress relative to downslope gravi-

tational stress. Alternatively we can write B = HY /H∞, which is the ratio of

the plug thickness to the flow thickness far upstream. We note that H∞ is an

increasing function of the yield stress τ0 (see equation 1) and by construction,

0 ≤ B < 1. Far upstream, the dimensionless flow thickness is unity, the yield125

surface is at z = 1−B and the dimensionless flux is (1−B)2(1 +B/2), which

is plotted in figure 1b; it is a monotonically decreasing function of B in [0, 1).

Under this non-dimensionalisation, material that is flowing but with relatively

high yield stress corresponds to (1−B)� 1.

Upon incorporating the topography in the hydrostatic pressure, the dimen-

sionless flux is given by [39]

q =
1

2
Y 2(3h− Y )

(
1−F ∂h

∂x
−M∂m

∂x
, −F ∂h

∂y
−M∂m

∂y

)
, (5)

where

Y = max

(
0, h− B√

(1−Fhx −Mmx)2 + (Fhy +Mmy)2

)
, (6)

represents the location of the ‘fake’ yield surface and the subscripts x and y

denote ∂/∂x and ∂/∂y, respectively. We have introduced the following two

dimensionless parameters, [7]

F = H∞/(L tanβ), M = D/(L tanβ), (7)

which represent the flow thickness and amplitude of the topography relative to

the extent of the topography and the gradient of the underlying plane, respec-

tively. In the steady state, mass conservation is given by

∇ · q = 0. (8)

We restrict our attention to topographic features for which m(x, y)→ 0 as x→

±∞. In this case, the flow returns to its unperturbed state far upstream and

downstream of the topography, which imposes the following boundary condition

h→ 1 as x→ ±∞. (9)
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To illustrate the key aspects of the interaction with the topography, we consider

m(x, y) = exp(−x2) in §3, which is laterally extensive so that the problem

is one-dimensional, and m(x, y) = exp(−x2 − y2) in §4, which is an isolated,

axisymmetric feature. We note that other topographic profiles could easily be

considered as well. With these choices, the topography represents a mound for

M > 0 and a depression for M < 0. We also define the topographic elevation

as

T (x, y) = −x+Mm(x, y), (10)

which is analogous to the dimensionless elevation above sea-level (i.e. relative130

to the dashed horizontal line in figure 1a). Its dimensional scale is L sinβ. We

note that the free-surface elevation is at T (x, y) + Fh(x, y).

Throughout this paper, we focus on F � 1 as this regime, where the flow is

thin relative to the topography, exhibits many interesting behaviours such as dry

zones and ponding. In addition, in this regime the topography has a very strong135

influence on the flow paths. For relatively thick flows (F � 1), hydrostatic

pressure gradients associated with thickness variations play the dominant role

in steering the motion rather than the topographic gradients (and very often

the perturbations to the free-surface are negligible).

We solve equation (8) numerically and use asymptotic analysis in the regime140

F � 1 to identify the dominant features of the flow.

3. Laterally extensive topography

In this section, we analyse steady flow over a laterally extensive topographic

feature for which m(x, y) = m(x). The steady problem is one-dimensional,

h = h(x). We neglect any instabilities that could cause this film to develop145

undulations in the transverse direction and even break up into rivulets as may

occur in rimming flow inside cylinders [42, 46]. We use m(x) = exp(−x2).

Although this is a simplified geometry, it reveals some key features of the flow

over topography, which are important in their own right, and assists in the

analysis of an isolated mound in §4.150
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Figure 2: (a) Steady flow thickness over a mound of amplitude M = 0.5 with F = 0.1 for a

variety of values of B. The solutions are calculated numerically. (b) Comparison between the

numerical and asymptotic flow thickness in the case M = 0.5 and B = 0.5.

The flux in the downslope direction is constant, which yields the following

governing equation for the flow thickness,

(1−B)2(1 +B/2) =
1

2
Y 2(3h− Y )

(
−F dh

dx
− dT

dx

)
, (11)

where

Y = h− B

(−Fhx − Tx)
, (12)

which is always positive since the flux is a positive constant for 0 ≤ B < 1.

The denominator, −Fhx − Tx, is positive for the same reason. We integrate

(11) numerically to obtain h(x). The integration is carried out in the negative

x direction from x = +∞ (x = L � 1) owing to a numerical instability that

arises when integrating in the positive x direction [7].155

We first consider flow over mounds for which there are no ‘uphill’ regions

and the topography is everywhere downslope, −Tx = 1−Mmx > 0 (see figure

1c). For the Gaussian profile, m = exp(−x2), this requires

0 <M <Mc =
√
e/2 ≈ 1.166 (13)

For larger mounds with an uphill region (M >Mc), we anticipate that quali-

tatively different behaviour occurs as the relatively shallow flow (F � 1) must
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thicken significantly to surmount the mound; this situation is analysed in §3.1.

The flow thickness, calculated numerically, in the case that M = 0.5 and

F = 0.1 is shown in figure 2a for a variety of values of B. For a fixed value160

of B, there is a larger perturbation to the flow thickness at smaller values of

F (see figure 2b). Figure 2a illustrates that the flow thickens upstream of the

mound and thins downstream of the mound prior to returning to its far-field

thickness. This effect is magnified with a greater yield stress (larger B). It

also appears that in the limit as B → 1, corresponding to the pseudo-plug165

occupying almost the entire thickness of the flow, a limiting free surface, which

bounds the free surface for B < 1 is obtained. We explore these observations

through asymptotic analysis.

In the regime F � 1, we seek the following expansion for the flow thickness,

h = h0 + Fh1 + . . . (14)

We find that the leading order term, h0(x), satisfies the following cubic equation

(1−B)2(1 +B/2) = −
(
h0 +

B

Tx

)2(
h0 −

B

2Tx

)
Tx, (15)

and the second term, h1(x), satisfies

3h0h1Tx +

(
h2

0 −
Bh0

2Tx
+

3B2

2T 2
x

)
dh0

dx
= 0 (16)

provided that Tx < 0 everywhere (‘downhill’ topography). The leading term,

h0(x), is plotted in figure 2b for the case M = 0.5 and B = 0.5 and shown to170

capture accurately the numerical solution obtained for three values of F .

To interpret how the behaviour depends on the yield stress, B, we expand

the solution to (15) for small B, which is given by

h0 =
(
− Tx

)−1/3
+
B
(
− Tx

)−2

2
−
B
(
− Tx

)−1/3

2
+ . . . (17)

For any value of B, the flow thickness increases when the fluid migrates onto

shallower slopes (smaller Tx). This relationship arises because the flux increases

with greater flow thickness and decreases with shallower slope. For a constant
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flux, a shallower slope thus requires a thicker flow. In the case of a Newtonian

fluid, the flux is proportional to the thickness cubed and so the thickness is [7]

h0 =
(
− Tx

)−1/3
, (18)

where −Tx is the inclination. For a Bingham fluid, the dependence of the

flow thickness on the slope gradient is much stronger (note the second term in

equation 17 and see figure 2a). We interpret this by considering the pressure

gradient driving the flow. For thin flows, F � 1, the pressure gradient is given

by −Tx to leading order. On shallower slopes, the pressure gradient is reduced

and so the pseudo-plug occupies a greater proportion of the flow, which reduces

the flux. Thus, when a yield-stress fluid migrates onto a shallower slope its

thickness increases more than a Newtonian fluid (to maintain a constant flux).

The end-members of this behaviour are a Newtonian fluid (18) and a Bingham

fluid whose flow is dominated by its large yield stress (B close to 1). The flow

thickness for the latter is given by (15)

h0 =
(
− Tx

)−1
, (19)

which corresponds to Y ≈ 0 everywhere. The flow thicknesses for 0 ≤ B < 1 in

the regime F � 1 are thus enclosed in the envelope of the solutions for B = 0

and B → 1 (figure 2a). The maximum flow thickness in the regime F � 1 for

0 ≤ B < 1 may be obtained from the B → 1 solution; it occurs at x = −1/
√

2

and is given by

hmax =
(
1−M/Mc

)−1
. (20)

The increased sensitivity of the steady flow thickness to the slope gradient at

higher yield stresses is a general result that applies to any topographic profile

that does not exhibit locally uphill regions.

The present analysis breaks down whenM >Mc, corresponding to a feature

with an ‘uphill’ zone (where Tx > 0; see figure 1c). In this case, the function

Tx = −1 +Mmx = −1− 2xM exp(−x2) (21)
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Figure 3: (a)-(c) ‘Uphill’ mound with M = 2 and F = 0.1. (a) Comparison between the

numerical and asymptotic flow thickness for B = 0.5. (b) Free surface elevation, T (x)+Fh(x)

and the topographical elevation, T (x), (black line). The dots denote the turning points of

T (x) (x0 and x1) and the upstream end location of the pond (x2). (c) Steady flow thicknesses,

h(x) (continuous lines) and corresponding yield surfaces, Y (x) (dashed lines), for a range of

values of B. For B = 0, Y ≡ h. (d) The maximum flow thickness over a mound. The vertical

dashed line represents the critical magnitude,M =Mc above which there is an ‘uphill’ zone.

has two zeros and h0(x) becomes singular at these locations (see the red dashed175

line in figure 3a). Hence, different analysis is needed to capture the flow be-

haviour near the uphill zone.

3.1. Mounds with an uphill region (M >Mc)

In order for a shallow flow (F � 1) that is driven by gravity to surmount

uphill topography the flow must deepen; there is no inertia to carry fluid over

the hill. We expect that a thick pond of fluid forms upstream of the uphill

region (see figure 3). The pond has a horizontal free surface to leading order
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(T + Fh = constant) and so we write

h = F−1h−1 + γc0 + . . . , h−1 = −T (x) + c−1, (22)

where the magnitude of γ and the two constants, c−1 and c0 are to be determined

via matching to the h ∼ 1 expansion, h0(x), which is valid away from the pond180

and given by (15). The solution h = F−1h−1 corresponds to vanishing volume

flux and the flux from upstream, (1−B)2(1 +B/2) is balanced by lower order

terms.

It is useful to define the key points in the topography. We denote the turning

points of the topography (Tx = 0) by x0 and x1 (x0 > x1) (see figure 3b). We

also define x2 as the upstream end of the pond and so it satisfies T (x2) = T (x0)

to leading order. The pond thickness returns to order unity at x0 and x2 beyond

which the leading order solution, h0(x) is valid. The full details of the matching

at x = x0 of the two asymptotic expansions is given in Appendix A. We find

that

c−1 = T (x0), c0 = 2.946, γ = F−1/3[−Txx(x0)]−1/3B2/3. (23)

The pond expansion (22) and h ∼ 1 expansion (15) are compared to the nu-

merical solution in figure 3a for the case M = 2, F = 0.1 and B = 0.5. The185

expansion derived here for the pond thickness is valid for any value of B, which

is sufficiently large to contribute to the γ term. When B � 1, however, the

second order term in the pond expansion must be adjusted. For B = 0, it was

shown the second term was proportional to γ ∼ F−1/7 [7] rather than F−1/3,

which arises due to the yield stress effects (23). This difference occurs because190

for a Newtonian fluid, the pond is matched to the h ∼ 1 behaviour via consider-

ing mass continuity but for a yield-stress fluid, the pond is matched by instead

requiring that the fake yield surface is above the base everywhere (Y > 0).

Figure 3c shows the flow thickness and yield surface, Y , for flow over a

mound with an uphill region (M = 2) for a range of values of B. The yield195

surface is much smaller than the flow thickness, Y � h, within the pond and

the flow is mostly plugged in this region with yielding only near the base, z = 0.
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The pond thickness is greater for fluids with greater yield stress.

3.2. Maximum flow thickness

The maximum flow thickness, calculated numerically, is compared between

the Newtonian and non-Newtonian cases in figure 3d for two values of F . For

the case of M <Mc in which there are no uphill regions, the maximum flow

thickness, hmax, for the Newtonian case (B = 0) was found to be [7]

hmax = (1−M/Mc)
−1/3. (24)

Whilst for a yield-stress fluid, the maximum flow thickness is given by hmax =200

h0(−1/
√

2).

For larger mounds, M >Mc, the maximum flow thickness occurs asymp-

totically at x = x1 and is given by ([7] and Appendix A),

hmax(B = 0) =F−1
[
T (x0)− T (x1)

]
+ 1.61F−1/7

[
− Txx(x0)

]−1/7
, (25)

hmax(B > 0) =F−1
[
T (x0)− T (x1)

]
+ 2.95B2/3F−1/3

[
− Txx(x0)

]−1/3
, (26)

for the Newtonian and yield-stress cases respectively. The expressions suggest

that the system is in the Newtonian regime for B � F2/7; a relationship that

arises for any topographic feature with an uphill region.

3.3. Depressions (M < 0)205

We briefly discuss the flow behaviour in the case of a laterally-extensive

depression corresponding toM < 0. The flow thickens on shallower inclines and

thins on steeper inclines. The location of the steeper and shallower inclinations

are reversed for a depression from the case of a mound. The leading order

thickness, h0, is simply a reflection (x → −x) of the case of M > 0 since210

Tx(x;M) = Tx(−x;−M).

For depressions with larger amplitude (|M| >Mc), a pond forms in order for

the flow to surmount the uphill portion of the depression. The solution may be

obtained in an identical manner to a mound (for both the first and second order

terms in the pond expansion; 15 and 16), noting that the matching location215
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Figure 4: (a) The flow thickness in the case of a depression with an uphill region (M = −2)

with F = 0.1 and B = 0.5. The numerical solution is plotted as a continuous line, the pond as

a dotted line and the h ∼ 1 expansion as a dashed line. (b) The elevation of the free-surface

(blue line) and the topography (black line).

is translated downstream (x0 > 0). An example with F = 0.1, B = 0.5 and

M = −2 is shown in figure 4. The pond solution we have obtained applies to

any laterally extensive topography with an uphill region.

4. Isolated topography

We analyse the interaction with an isolated topographic feature, centred at

the origin. For ease of exposition, we focus on an axisymmetric Gaussian mound

with elevation given by

T = −x+Mm(x, y), m(x, y) = exp(−x2 − y2). (27)

However, we note that the analysis and results may be applied to a wide range220

of isolated topographic features.

The steady flow thickness over such a mound, with amplitudeM = 0.5 and

flow parameter F = 0.1, is shown in figure 5a for B = 0 and in figure 5b for

B = 0.5 (calculated numerically; details of the method are given in Appendix

B). The ‘fake’ yield surface, Y (x, y) is shown in figure 5c for B = 0.5. We also225

include the flow thickness in the case that F = 2 in figure 5d. When F is not

small, the free surface is approximately parallel to the underlying plane and the
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Figure 5: Steady flow over an isolated mound with M = 0.5. (a) Flow thickness, h(x, y), for

B = 0 and F = 0.1. (b) Flow thickness for B = 0.5 and F = 0.1 (same colour scale as (a)).

(c) The plug height, Y (x, y) for B = 0.5 and F = 0.1. (d) Flow thickness for a relatively

thicker flow (F = 2), with B = 0.5.
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flow thickness adjusts accordingly (i.e. it is thinner over the mound). We focus

on the relatively long and wide mound (or equivalently, relatively thin flow)

regime, F � 1, as in §3.230

Figure 5 indicates that generally the flow thickens upstream and to the sides

of the mound and is diminished in the lee of the mound. In the case that

B = 0, the flux is proportional to h3, whilst for B > 0, the flux is proportional

to Y 2(3h − Y )/2. In the regime F � 1, the flux direction is approximately

given by the steepest descent of the topography (as described below). These235

two observations imply that the variation in the yield surface, Y for B = 0.5 is

somewhat similar to the flow thickness in the Newtonian case, B = 0 (compare

figure 5a and figure 5c).

The maximum flow thickness occurs upstream of the mound when there is

a sufficient yield stress e.g. B = 0.5, whereas in the absence of a yield stress240

(B = 0), it occurs cross-stream (see figure 5a and figure 5b). In the case

of a significant yield stress, there is less diversion of fluid around the mound,

relative to a Newtonian fluid. We explore these observations through asymptotic

analysis below. As with laterally extensive mounds (§3), the case of an isolated

mound with an uphill region is qualitatively different to the present analysis for245

M <Mc and is described in §5.

4.1. Asymptotic analysis for a mound (F � 1)

For small F and a mound with no uphill region, we seek an h ∼ 1 expansion

as before,

h = h0 + Fh1 + . . . (28)

To leading order, the ‘fake’ yield surface is at

Y = h0 −
B

|∇T |
. (29)

The leading order terms in the governing equation (8) are

−∂T
∂x

∂P
∂x
− ∂T

∂y

∂P
∂y

= P∇2T, (30)
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where

P =

[
h0 −B/|∇T |

]2[
h0 +B/(2|∇T |)

]
(1−B)2(1 +B/2)

, (31)

and we have the boundary condition P → 1 in the far-field, as x2 + y2 → ∞.

Since B does not appear in (30) or in the far-field boundary condition, we

conclude that P(x, y) is independent of B. It provides a universal profile from250

which the thicknesses h0 may be obtained for different B via inverting equation

(31). For F � 1, the flux at any point relative to the far upstream flux is

−P∇T , and (30) is simply a statement that ∇ · (P∇T ) = 0. Indeed, P(x, y) is

proportional to the magnitude of the flux at (x, y) relative to the far upstream

flux, (1−B)2(1 +B/2).255

We obtain P(x, y) by applying the method of characteristics,

dx

dτ
= −∂T

∂x
,

dy

dτ
= −∂T

∂y
,

d log(P)

dτ
= ∇2T, (32)

where τ parameterises the characteristic curves. We note that this solution

method requires ∂T/∂x < 0 everywhere (i.e. downhill)1.

The characteristic projections in the (x, y) plane are shown as continuous red

lines in figure 6a for the case M = 0.5. They follow the steepest descent of the

topography and thus represent the flow paths. The relative flux, P, is also shown260

in figure 6a by the colormap. We note that ∇2T = 4M(r2 − 1)e−r
2

, which is

positive for r > 1 and greatest at r =
√

2. The two circles r = 1 and r =
√

2 are

shown as dashed lines in figure 6a demonstrating that the maximum value of P

occurs on characteristics that pass near these circles. Within the unit circle, the

value of P decreases along characteristics, which is associated with the diversion265

of flux around the mound; see also equation 32c. The flow thickness decreases

when characteristics diverge and increases when characteristics converge owing

to the flux accumulating.

1The behaviour for an isolated depression (with no uphill regions; −Mc <M < 0) may

simply be obtained by reflecting the behaviour for a mound (M > 0), as in the case of a

laterally-extensive feature. This is because the asymptotic description for h0 is invariant

under the transformation M→−M and x→ −x.

18



(d)

B = 0.2

B = 0.4

(b) (c)

B = 0

(a)

B = 0.6

(e)

(f) (g)

B = 0.8 B = 0.95

Figure 6: (a) Colormap of the relative flux, P(x, y) for M = 0.5 and the characteristic

projections (continuous lines). The dashed lines denote the circles r = 1 and r =
√

2. (b-g)

Corresponding colormaps of the flow thickness, h0 for various values of B.
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With the solution P(x, y) in hand for a given topography, we may invert

(31) to obtain a unique solution for h0 for any B (shown in figure 6b-g). The

predicted flow thickness along the centreline, h0(x, 0) is plotted in figure 7a. As

x → ∞, the relative flux, P(x, y) → P∞(y). The far downstream thickness,

h(x, y)→ h∞(y) as x→∞, is given by the solution to

P∞(y) =

[
h∞(y)−B

]2[
h∞(y) +B/2

]
(1−B)2(1 +B/2)

, (33)

since |∇T | = 1 far downstream to leading order. Moreover, the magnitude of

the downstream flux, scaled by its upstream value, is given by P∞(y). The270

predicted downstream flow thickness h∞(y) is plotted in figure 7b.

Figure 6 and 7, demonstrate that there is a rich dependence of the flow

structure on the yield stress in this asymptotic regime. First, it can be observed

that the increase in flow thickness just upstream of the mound is stronger for

larger values of B (see figure 6b-g). This behaviour was also shown for a laterally275

extensive mound (§3) and is associated with the greater response of a yield-stress

fluid to a change in slope. However, unlike a laterally extensive mound, the

isolated mound also diverts the flow cross-stream. For a Newtonian fluid, this

leads to the maximum flow thickness occurring cross-stream and downstream

of the isolated mound (figure 6). Figure 6 and 7 illustrate that for increasing280

values of B, the downstream flow thickness h∞(y) is flattened. In particular,

for B close to 1, h∞(y) = 1 + O(1 − B) (from 33). This behaviour may be

rationalised as follows. We recall that the relative flux, P is independent of B.

The different behaviours arise because for increasing values of B, the absolute

flux, (1−B)2(1+B/2) is smaller and so less fluid is actually diverted, leading to a285

reduced perturbation to the flow thickness far downstream. In summary, a yield

stress leads to the surprising outcome of an increased thickness perturbation

upstream of the mound but a decreased thickness perturbation cross-stream

and downstream.

We next analyse the controls on the location of the maximum flow thickness.290

First, for a Newtonian fluid (B = 0), we note that P = h3
0 and the maximum

value of h0 occurs at the same place as for P, which is far downstream (x→∞)
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Figure 7: Flow thickness predicted by the characteristic solution, h0, (see equation 32) for the

case M = 0.5. (a) Along the centreline, y = 0. (b) Cross-section far downstream, x→∞.

and cross stream (c.f. figure 5a and figure 6a). This result follows from the lead-

ing order expansion for the flow thickness (28), which becomes non-asymptotic

far downstream where weak cross-stream gradients become no longer negligi-295

ble. These effects modify the fluid thicknesses somewhat: see, for example,

the small discrepancy between the predicted and simulated maximum thickness

when B � 1 for F = 0.03 (figure 8a). We reinstate this cross-stream diffusion

in §4.3 with the consequence that the maximum thickness is found at some fi-

nite distance downstream of the topography and at some lateral offset from the300

y = 0 symmetry axis (see figure 5a).

We also note that the point (x, y) = (−1, 0) is a saddle point of P(x, y) for

anyM∈ (0,Mc) and hence it is also a saddle point of h0 for a Newtonian fluid

(B = 0). This may be observed from (32): d log(P)/dy = 2y at x = −1, so

log(P) ∼ y2+ const near y = 0. Although (x, y) = (−1, 0) is a saddle point of

P(x, y), it may not be a saddle point of h0 for B > 0. At the extremum, (−1, 0)

we use (31) to write

3h0

(
h0−

B

|∇T |

)
∂2h0

∂y2
= (1−B)2(1+B/2)

∂2P
∂y2
− 3B

2

TxTxyy + T 2
yy

T 2
x

(
h2

0−
B2

T 2
x

)
.

(34)

Hence for larger values of the yield stress, the second term on the right-hand side

dominates the first and ∂2h0/∂y
2 changes sign so that (x, y) = (−1, 0) becomes

a local maximum. For sufficiently large B, the thickness at (−1, 0) is also the
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Figure 8: (a) The maximum flow thickness of the characteristic solution (continuous lines).

The upstream local maximum thickness (dashed line) and downstream local maximum (dotted

line) are also shown. The blue stars represent the maximum for F = 0.03 and M = 0.6 from

the numerical simulations. (b) The critical value of B = Bc(M) at which the global maximum

changes location.

global maximum. There is a qualitative change in the behaviour of the maximum305

flow thickness at a critical value, B = Bc. This is demonstrated in figure 8a,

where the upstream maximum is plotted as a dashed line, the downstream

maximum as a dotted line and the global maximum as a continuous line. For

B < Bc, the maximum occurs cross-stream and downstream of the mound; it

also decreases in magnitude with B. However, for B > Bc, the maximum occurs310

directly upstream of the mound and its magnitude is an increasing function of

B. The critical value at which the maximum changes location, B = Bc(M) is

shown as a function of M in figure 8b.

4.2. Large yield stresses (|1−B| � 1)

The effect of a yield stress on the flow can be further interpreted by analysing

the limiting regime of a very large yield stress (B close to 1). For a laterally

extensive mound (§3), this regime provided an end-member of the behaviour

for 0 < B < 1. For an isolated mound, with F � 1 and B ≈ 1, the fake yield

surface is at Y = 0 to leading order, which furnishes the leading order expression

h0 =
1

|∇T |
(35)
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Figure 9: Flow thickness along the centreline (y = 0) for F = 1, M = 0.3 and four values of

B. The red dashed line is the prediction from Charpit’s method (Appendix C).

and this satisfies the boundary condition that h0 returns to 1 far away from the315

mound. Equation (35) may also be obtained by taking the limit B → 1 in the

expression for P (31). This solution provides an envelope of the flow thickness

for 0 ≤ B < 1 (an upper bound on the upstream perturbation and a lower

bound on the downstream perturbation; see the dashed lines in figure 7). The

flow thickness according to (35) corresponds to zero diversion of flux around320

the mound providing the limiting case of the discussion above. Indeed, along

the centreline, the flow thickness is identical to the case of a laterally extensive

mound and they have the same maximum flow thickness, (1 −M/Mc)
−1 (see

§3). The flow thickness given by (35) arises from maintaining the fake yield

surface at exactly z = 0 rather than explicitly enforcing mass continuity. This325

analysis breaks down for uphill mounds (M >Mc).

When B is close to 1, the flow thickness can be calculated for any value of

F by using Charpit’s method to solve the equation Y = 0 [35]. Details are

given in Appendix C. The method is shown to accurately capture the flow

thickness for the case F = 1 and M = 0.3 in figure 9. The solution to Y = 0330

neglects the cross-stream diffusive slumping, even for F > 0. For larger mounds

(and thinner flows), the flow is more significantly diverted by the mound, which

means that diffusive slumping plays a key role downstream and hence Charpit’s

method becomes invalid; for details, see Appendix C.
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4.3. Downstream behaviour335

The downstream behaviour of h0(x, y) predicted by the characteristic solu-

tion does not converge to h = 1 as x→∞ (figure 7b). The cross-slope slumping

terms, F∂h/∂y must be reintroduced downstream to capture the redistribution

of the flux that was diverted by the mound so that h → 1 far downstream.

To analyse this behaviour in the regime F � 1, far downstream of the mound

(x� 1), we write

x̃ = Fx. (36)

Then √
(1−Fhx −Mmx)2 + (Fhy +Mmy)2 = 1 + . . . (37)

and hence Y = h−B to leading order. In the present analysis, valid when there

are no uphill regions so that the flux is positive everywhere, we have h > B.

The approximate governing equation becomes

∂

∂x̃

[
Y 2(Y + 3B/2)

]
=

∂

∂y

[
Y 2(Y + 3B/2)

∂Y

∂y

]
. (38)

We integrate equation (38) numerically with the initial condition, Y (x̃ = 0, y) =

h∞(y)−B, given by the far-downstream behaviour of the characteristic solution

(see figure 7b). The numerical integration is carried out by discretizing the

right-hand side using central differences and stepping forward in x̃ using the

fourth-order Runge-Kutta method. We recover the thickness via h = Y + B.340

The prediction for h is compared with the numerical result along the centreline

in figure 10.

5. Isolated topography with an uphill region (|M| >Mc)

It has previously been shown that in the regime of shallow Newtonian flow

(F � 1, B = 0) past an isolated mound with an uphill region (M > Mc),345

there is a dry zone in which there is no fluid [7]. The characteristic projections

(32) which were deployed in the previous section to determine the flow thickness

for smaller mounds, do not cover the entire plane for M > Mc and the flow
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Figure 10: Flow thickness along the centreline for B = 0.5. The numerical result (for F =

0.1) is compared to the characteristic (‘upstream’) asymptotic solution and the ‘downstream’

prediction of equation (38).

(c)

B=0.5

B=0.5

B=0
(a) (b)

(d)

B=0.5

Figure 11: Flow thicknesses for M = 2 and F = 0.1. A dry zone, incorporating the peak of

the mound, forms. (a) Flow thickness in the Newtonian case (B = 0). (b) Flow thickness for

B = 0.5. (c) The plug height, Y corresponding to (b). The characteristic projections from

(32) are shown in y < 0. (d) An alternate steady state for the flow thickness in (b).
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thickness prediction becomes singular near the edge of the region invaded by the

characteristics owing to the uphill zone where Tx > 0. A different approach is350

needed for these larger mounds. Figure 11 shows the flow thickness, calculated

numerically, in the case that there is an uphill region (M = 2) for a Newtonian

fluid (panel a) and a yield-stress fluid with B = 0.5 (panel b). Figure 11c

shows the height of the ‘fake’ yield surface, Y (x, y) corresponding to figure 11b;

the characteristic projections from (32) are also included in y ≤ 0. There are355

numerous interesting features demonstrated in these panels, which we describe

in this section.

Some features are reminiscent of the flow over a mound with no uphill re-

gion. For example, the variation of the thickness of the Newtonian fluid (figure

11a) displays some similarities with the yield surface of the Bingham fluid with360

B = 0.5 (figure 11c). Secondly, the maximum flow thickness occurs along the

centreline for the yield-stress fluid whilst for the Newtonian fluid the maximum

is cross-slope and further downstream.

The uphill region introduces a major new feature: a dry zone in which there

is no fluid. The characteristic projections (equation 32) map out the shape of365

the upstream edge of the dry zone, which is identical for Newtonian and yield-

stress fluids. This suggests that the Newtonian analysis for the behaviour just

upstream of the dry zone may be adapted to the case of a yield-stress fluid (see

§5.1). On the other hand, the downstream shape of the dry zone is different for

the Newtonian and yield-stress fluids and there can be different steady solutions370

for the same parameter values (figure 11b and figure 11d; for the latter, we have

wetted the region downstream in r > 2). This situation is analysed in §5.2.

5.1. Upstream edge of the dry zone

Along the centreline, the topography is uphill in x1 < x < x0 (see figure 3).

The flow does not surmount the uphill topography. Instead it intrudes slightly

beyond (x, y) = (x1, 0), where |Tx| vanishes. Near this point the flow thickness

and its x gradients become large and we write

x = x1 + F1/3η, h = F−1/3H. (39)
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Figure 12: Flow thickness along the centreline for three values of F with B = 0.5, M = 2

in rescaled coordinates. The asymptotic prediction is given by the solution to (40) with

η0 = 0.42.

Noting that variations of h in the y direction are negligible, we obtain the

following second order ordinary differential equation for the flow thickness along

the centreline [7],

d

dη

(
Q

dH

dη

)
+ c0η

dQ

dη
+ c1Q = 0, (40)

where

Q =

(
H − B

|dH/dη + c0η|

)2(
H +

B

2|dH/dη + c0η|

)
(41)

and

c0 =Mmxx(x1, 0), c1 =M(∇2m)(x1, 0). (42)

The first and third terms in equation (40) are associated with hydrostatic pres-

sure gradients arising from variations in the flow thickness and the topography,

respectively. The topography is locally horizontal at x = x1 (i.e. η = 0) and the

middle term in (40) incorporates gravity acting tangential to the topography.

Hence this term changes sign at η = 0 owing to the change in slope from down-

hill in η < 0 to uphill in η > 0. The behaviour near the contact point (H � 1)

is given by setting Q = 0 leading to

H ≈
√

2B(η0 − η)1/2, (43)
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Figure 13: Cross-sections of the fake yield surface, Y , at x = 1 (black line) and x = 10 and

20 (solid coloured lines) for M = 2 and F = 0.1. The dashed red lines show the predictions

from the asymptotic method of §5.2.

where η = η0 is the contact point, which is determined as part of the solution.

The far-upstream behaviour is given by matching to the characteristic solution

for which h ∼ B/|Tx| near the uphill region and so

H ∼ B/c0|η| as η → −∞. (44)

We numerically shoot in (40) from η = η0 and match with the far-field behaviour

to obtain η0 = 0.42. The solution to (40) is shown to capture well the full375

numerical result along the centreline for F = 0.1, B = 0.5, M = 2 in figure 12.

We comment that this analysis breaks down for small B in which case differ-

ent scalings for the flow thickness are needed at x = x1 [7]. For such Newtonian

flow, the limiting behaviour of the characteristic solution, h0, near the uphill

zone is given by mass continuity and depends upon an anomalous exponent of380

F [7]. In contrast, with a yield-stress fluid, the condition that the yield surface

is just above z = 0 gives more singular behaviour near the uphill zone and leads

to the scaling h ∼ F−1/3. This difference between Newtonian and yield-stress

fluids is another manifestation of what was found in §3 when matching to the

pond solution for a laterally extensive mound.385

5.2. Downstream behaviour

As in the case of shallower topography, the flow is diverted cross-stream

by the mound. Further downstream, the flux is redistributed by the cross-
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stream diffusive fluxes so that the free surface returns to its steady constant

thickness, h = 1. We would like to replicate the downstream analysis of §4.3390

for the case of an uphill mound but this presents two difficulties. First, for

M >Mc, the method of characteristics does not furnish a sensible downstream

solution to use as the initial condition for h; it has a singularity. Second, the

previous downstream analysis required that h > B but there are dry zones

(h = 0) downstream of larger mounds. To overcome the first issue, we use a395

cross-section of the numerical solution at x = 1 as the initial condition. For

the second issue, we solve equation (38) for the yield surface Y as before but

note that where Y = 0, we cannot use the relationship h = Y + B because the

material is entirely unyielded and hence the thickness may be less than B. By

solving for Y rather than h, we postpone the analysis for 0 < h < B. The cross-400

section of Y at x = 1 for M = 2 and F = 0.1 is shown as a black line in figure

13 and this provides the initial condition for equation (38). Cross-sections of

the numerical solution further downstream (continuous coloured lines) compare

favourably to integrations of (38) (red dashed lines). We can reconstruct the

free surface where Y > 0 from h = Y +B > B.405

The flow thickness where Y = 0 can be non-unique (see for example figure

11b and figure 11d). Far downstream, |hx| � |hy| and |m| � 1 so that the flow

thickness satisfies

h =
B√

1 + (Fhy)2
. (45)

One possible solution is h = B in all of the region where Y = 0 beyond some

downstream edge of the mound at say r ≈ 2, where there is an adjustment

between h = B and h = 0 (e.g. figure 11d). Another possible solution is that

there is a small fully unyielded zone at the edge, y = ±ȳ(x), of the yielded flow

with free-surface shape

y = ±ȳ(x)∓F
√
B2 − h2, (46)

and beyond this zone the flow thickness vanishes in the interior, −ȳ + FB <

y < ȳ − FB (e.g. figure 11b). Intermediate solutions with 0 < h < B within
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the interior and an adjustment at the edge of the yielding region are also valid.

We require additional data to select one of these behaviours.

The zone that is dry or plugged (Y = 0) is never invaded by fluid from410

the line source and so any fully unyielded fluid that was there initially remains

there indefinitely. This gives rise to a non-uniqueness when solving for the

steady state. We choose the steady state associated with topography that was

completely dry prior to the initiation of the line source. There is a fully unyielded

region only at the edge of the yielded flow and h = 0 beyond this (see figure 11b)415

[31]. Details of the adaptations required to the numerical method to obtain this

solution are given in Appendix B. However, an example of the non-uniqueness

that would arise is that the late-time steady state (in the Y = 0 region) following

an increase in the line source flux from say Q/2 to Q is different to the steady

state following a decrease in the flux from 2Q to Q. Our results also demonstrate420

that pre-cursor films, which are sometimes used in transient computations of

free-surface viscoplastic flows, may hide dry zones even if the source of the film

is subsequently removed because the unyielded material remains covering the

zone that may have been dry. This phenomenon does not arise for a Newtonian

fluid because pre-existing fluid slowly flows away.425

6. Discussion and conclusion

In this paper we have analysed the interaction of a steady free-surface yield

stress flow with a topographical feature and compared the results to the case of

a viscous Newtonian flow. The flow thickens on shallower slopes and thins on

steeper slopes, which is associated with the maintenance of a streamwise volume430

flux. This response is enhanced at higher yield stresses. For an isolated mound,

the flow is also diverted cross-stream. For the same flow thickness, less fluid is

diverted at higher yield stresses because the steady flux is smaller. Hence the

thickening of the flow cross-stream is reduced with increasing yield stress. The

thickening of the flow upstream is also increased with yield stress owing to the435

response to a shallower slope. The culmination of these two effects is that the
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maximum thickness occurs cross-stream and downstream of the mound at low

yield stresses but upstream of the mound at higher yield stresses.

In the case that the mound has an uphill region, the flow either develops a

thick ponded region to surmount the topography or the flow is entirely diverted440

around the mound and a dry zone forms. Which of the regimes occurs will

depend on the cross-slope dimension of the mound. For a yield-stress fluid, the

shape of the dry zone is not unique for a given steady flow; it also depends on

the transient evolution as the dry zone may have been previously covered by a

slump of plugged fluid that remains stationary.445

In many applications, the free surface of the fluid is known but the under-

lying topography or the rheology is unknown (e.g. glaciers and lava flows) [47].

[48] showed that the method of characteristics can be used to reconstruct the

topography required to produce a particular free-surface profile for a thin New-

tonian. In the case of lava flows, the topography is typically known prior to the450

emplacement but the rheology is highly uncertain. Our results provide a first

step towards developing an inverse method for constraining rheology from the

topography and the free surface. We have shown that lavas with higher yield

stresses are likely have their maximum thicknesses upstream of obstructions

whilst the maximum thickness arises from diversion cross-stream for those with455

lower yield stresses.

Another important avenue of further research is to analyse carefully the

transient evolution to the steady flow. There has been some success in accurately

predicting the paths of lava flows but estimating the temporal evolution and

inundation timing have been very challenging [21, 49]. In the problem considered460

in this paper, the characteristics that described flow around an isolated mound

may be extended to incorporate a time derivative. The downstream re-joining

of the flow owing to cross-stream diffusive fluxes is a very slow process owing to

the relatively small thickness of the current and consequently, the convergence

to the steady upstream maximum thickness is much faster than the evolution465

to the final dry zone shape.

Finally, it would be interesting to incorporate inertia into the problem and
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analyse how this affects the surmounting of uphill mounds as has been stud-

ied for Newtonian flows [50]. Such investigation may also assist in developing

models for granular flows around topography; for example the case of a later-470

ally extensive mound is sensitive to any stationary deposited material prior to

initiation of the current [51].
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Appendix A. Matching to the pond

We match the pond solution (22), valid in x2 < x < x0, to h0(x) at x = x0.

Near, but just downstream of x0, we have |Tx| � 1 and the behaviour of h0 and

h1 here is given by (equations 15 and 16),

h0 ∼
B

|Tx|
+

(
2(1−B)2(1 +B/2)

3B

)1/2

, h1 ∼
B2Mm′′(x)

|Tx|4
. (A.1)

This behaviour differs from the Newtonian case (B = 0) for which h0 ∼ |Tx|−1/3

and h1 ∼ |Tx|−8/3 near x0. The scalings for the Newtonian case arise from im-

posing that the flux is constant as x0 is approached from downstream. However,

for B > 0, we require that the fluid does not fully plug over its thickness (Y > 0)480

as x0 is approached, which requires more extreme behaviour than the flux con-

dition and imposes h0 ∼ |Tx|−1. These two different limiting behaviours near

the uphill region for the Newtonian and yield-stress fluids will lead to differ-

ent magnitudes for γ, which determines the scale of the perturbation to the

horizontal static layer within the pond region (see 22).485

To match the pond and order unity expansions for a yield-stress fluid, we

introduce an intermediate region and write

x = x0 + F1/3B1/3χ−2/3η, h = F−1/3B2/3χ−1/3H, (A.2)
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where the scalings are chosen for a balance in the first two terms of the outer

h ∼ 1 expansion (A.1) and we have introduced

χ = −Mm′′(x0). (A.3)

The leading order equation (from 11) in the intermediate region is

dH

dη
+

1

H
= η, (A.4)

which is equivalent to requiring that the flow is fully plugged, Y = 0, at leading

order. This equation has the following exact implicit solution

η = −22/3 Ai ′
[
(η2/2−H)/21/3

]
Ai
[
(η2/2−H)/21/3

] (A.5)

where Ai is the Airy function. The behaviour up and downstream is given by

matching to the respective expansions;

H ∼ η2/2 + c0 η → −∞, (A.6)

H ∼ η−1 − η−4 η → +∞. (A.7)

We also obtain

c−1 = −x0 +Mm(x0), γ = F−1/3χ−1/3B2/3, (A.8)

from matching with the pond. As η → −∞, the right-hand side of (A.5)

becomes singular, in order to satisfy (A.6). This corresponds to the first zero of

the Airy function from which we obtain,

c0 = 2.946 to 3 decimal places. (A.9)

This fully determines the first two terms in the pond expansion. There is also

a relatively unimportant matching region at x = x2; for details of an analogous

procedure for a Newtonian fluid, see [7].
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Figure B.14: Relative error for the FEniCS numerical prediction for the maximum flow thick-

ness for a laterally extensive mound with B = 0.4 and M = 0.5 as compared to the one-

dimensional integration. The number of elements per unit square is shown.

Appendix B. Numerical integration for an isolated feature

We first describe the numerical approach in the case that there is no dry

zone (M < Mc, §4), which follows the approach of [52]. To solve the steady

problem, ∇ · q = 0, we recast it in weak form by multiplying by a test function

v and integrating by parts over the domain, Ω to obtain∫ ∫
Ω

q · ∇v dxdy = 0, (B.1)

where Ω = [−a, b] × [−c, c] is a rectangle and we have applied the boundary490

condition h = 1 on its boundaries, which corresponds to v = 0. This variational

problem is solved in FEniCS via a finite-element method [53]. The steady

solution is found by initially guessing that h = 1 everywhere and iterating

until a converged solution that accounts for the topography is obtained. The

domain size is chosen so that increases to its size lead to negligible changes495

in the solution. For M < Mc, the flow thickness, h, and fake yield surface,

Y are positive everywhere and the method obtains a converged solution (e.g.

figure 5). To verify the numerical results, the maximum thickness obtained for

a laterally extensive mound from FEniCS was compared to the one-dimensional

integration in §3. The relative error for 100, 200 and 400 elements per unit500

square is shown in figure B.14 in the case that B = 0.4 and M = 0.5. For the

figures in this paper, we typically used 2000 elements per unit square.
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In the case that there is a dry region (§5), an adjusted approach is needed

owing to the degeneracy as h→ 0. First, we obtain a prediction for the shape of

the dry region from the method of characteristics (32); the region not accessed505

by the characteristics is an outer bound on the dry region. For a Newtonian

fluid (B = 0), we ensure that h > 0 by adding a small flux over the dry region

and the governing equation becomes ∇ · q = ε(x, y) [7]. We set ε = ε0 in the

region bounded by the limiting characteristics and the line x = 10 (see figure

11c) and ε = 0 elsewhere. We use ε0 = 10−5. The solution can then be obtained510

as before and the dry zone is covered by a very thin film of fluid.

In the case that yield stresses are important (B > 0), this method needs

further adaptation because the introduction of a small additional flux over the

dry zone will lead to Y � 1, rather than h� 1, and thus h may be of order B

in the supposedly dry zone (see §5.2). To overcome this difficulty, we regularise

the stress-strain relationship following the appendix of [9] so that h is small

when the flux is small. In the flux q, we replace Y with

1

2

[
Y +

√
Y 2 +

νh3/2

B[(1−Fhx −Mmx)2 + (Fhy +Mmy)2 + ν2]

]
, (B.2)

where ν is a regularisation parameter, which we typically take to be ν = 10−4.

The system can then be solved in FEniCS noting that the steady solution ob-

tained corresponds to the scenario in which the dry zone was never invaded by

fluid. If the dry region was invaded by the fluid prior to the initiation of the515

upstream line source, then a different steady late-time solution is required as

discussed in §5. This non-uniqueness does not occur for a Newtonian fluid.

Appendix C. Charpit’s method for the flow thickness (B ≈ 1)

In the limiting regime of a very high yield stress, the governing equation

may be approximated by Y = 0 with boundary condition h → 1 in the far

field. For any F > 0, the equation Y = 0 (equation 6) may be solved by

applying Charpit’s method, which yields the following characteristic equations
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Figure C.15: (a,b) Flow thickness for B = 1 with h → 1 as r → ∞. (c,d) Corresponding

characteristic projections. The red lines show the characteristics that meet the seam and the

dotted blue line represents the limiting characteristic emanating from y = 0 upstream.
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[see chapter 8 of 54]

ẋ = 2F(1−Fp−Mmx) (C.1)

ẏ = −2F(Fq +Mmy) (C.2)

ṗ = −2Mmxx(1−Fp−Mmx)− 2Mmxy(Fq +Mmy) + 2pB2/h3 (C.3)

q̇ = −2Mmxy(1−Fp−Mmx)− 2Mmyy(Fq +Mmy) + 2qB2/h3 (C.4)

ḣ = 2Fp(1−Fp−Mmx)− 2Fq(Fq +Mmy) (C.5)

where p = ∂h/∂x and q = ∂h/∂y and the dot denotes the derivative in the

direction of the characteristics. These equations are integrated in the negative520

x direction from x = +∞ with boundary condition h = 1 since a numerical

instability arises when integrating in the positive x direction. The solution and

characteristic projections in the (x, y)-plane are shown in figure C.15 for F =

0.1. Figure C.15 shows that the characteristics may cross (red lines), even for

mounds with no uphill region (M <Mc). To avoid intersecting characteristics,525

we introduce a seam by terminating the characteristics at y = 0 to maintain a

continuous single-valued free surface [35]. We note that as a consequence ∂h/∂y

is not necessarily zero along the centreline. Charpit’s method may be applied to

obtain profiles that satisfy Y = 0 and h→ 1 in the far-field even for M >Mc

by introducing a seam.530

In the case that the characteristics do not cross, Charpit’s method provides

the limiting thickness for steady flow over a mound at very high yield stresses

(since Y → 0 as B → 1). However, in the case that the characteristics cross,

the mathematical solution to the problem Y = 0, h → 1 in the far-field may

not be the correct solution for the steady flow thickness. The mathematical535

solution corresponds to a plugged lump of fluid that is stationary everywhere.

The entropy condition is violated because data is required to leave the seam and

travel downstream (red lines in figure C.15d), which is unphysical if the fluid is

flowing slowly downslope. There is a limiting characteristic which bounds the

area that is physically accessed by the characteristics emanating from upslope540

(blue dashed line in figure C.15d). To mathematically capture the fluid that
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flows from upstream into the zone bounded by the blue dashed line requires

the reintroduction of non-negligible flux. Indeed, the solution to Y = 0 cannot

capture the restriction that thin flows cannot surmount uphill topography unless

they deepen.545
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lant, C. M. L. Vélez, M. Ordoñez, R. Malservisi, N. K. Voss, et al., High-

resolution DEM generation from spaceborne and terrestrial remote sensing590

data for improved volcano hazard assessment—A case study at Nevado

del Ruiz, Colombia, Remote Sensing of Environment 233 (2019) 111348.

doi:10.1016/j.rse.2019.111348.

[15] A. R. Darnell, J. C. . Phillips, J. Barclay, R. A. Herd, A. A. Lovett, P. D.

Cole, Developing a simplified geographical information system approach to595

39

http://dx.doi.org/10.1029/97RG00426
http://dx.doi.org/10.1017/S0022112099006916
http://dx.doi.org/10.1029/2005JB004225
http://dx.doi.org/10.1016/j.jnnfm.2006.05.005
http://dx.doi.org/10.1016/j.jnnfm.2006.05.005
http://dx.doi.org/10.1016/j.jnnfm.2006.05.005
http://dx.doi.org/10.1002/2014JF003103
http://dx.doi.org/10.1002/2014JF003103
http://dx.doi.org/10.1002/2014JF003103
http://dx.doi.org/10.1186/s13617-017-0061-x
http://dx.doi.org/10.1016/j.rse.2019.111348


dilute lahar modelling for rapid hazard assessment, Bulletin of Volcanology

75 (4) (2013) 1–16. doi:10.1007/s00445-013-0713-6.

[16] X. Cui, H. Jeofry, J. S. Greenbaum, J. Guo, L. Li, L. E. Lindzey, F. A. Hab-

bal, W. Wei, D. A. Young, N. Ross, et al., Bed topography of Princess Eliz-

abeth Land in East Antarctica, Earth System Science Data 12 (4) (2020)600

2765–2774. doi:10.5194/essd-12-2765-2020.

[17] E. Gallant, J. Richardson, C. Connor, P. Wetmore, L. Connor, A new ap-

proach to probabilistic lava flow hazard assessments, applied to the Idaho

National Laboratory, eastern Snake River Plain, Idaho, USA, Geology

46 (10) (2018) 895–898. doi:10.1130/G45123.1.605

[18] J. P. Lockwood, F. A. Torgerson, Diversion of lava flows by aerial bomb-

ing—lessons from Mauna Loa volcano, Hawaii, Bulletin Volcanologique

43 (4) (1980) 727–741. doi:10.1007/BF02600367.

[19] S. Scifoni, M. Coltelli, M. Marsella, C. Proietti, Q. Napoleoni, A. Vicari,

C. Del Negro, Mitigation of lava flow invasion hazard through optimized610

barrier configuration aided by numerical simulation: The case of the 2001

Etna eruption, Journal of Volcanology and Geothermal Research 192 (1-2)

(2010) 16–26. doi:10.1016/j.jvolgeores.2010.02.002.

[20] C. Del Negro, L. Fortuna, A. Herault, A. Vicari, Simulations of the

2004 lava flow at Etna volcano using the magflow cellular automata615

model, Bulletin of Volcanology 70 (7) (2008) 805–812. doi:10.1007/

s00445-007-0168-8.

[21] A. J. Harris, S. K. Rowland, FLOWGO 2012, An Updated Framework

for Thermorheological Simulations of Channel-Contained Lava, Hawaiian

Volcanoes: From Source to Surface, Geophysical Monograph Series 208620

(2015) 457–481.

[22] P. C. Smith, A similarity solution for slow viscous flow down an inclined

40

http://dx.doi.org/10.1007/s00445-013-0713-6
http://dx.doi.org/10.5194/essd-12-2765-2020
http://dx.doi.org/10.1130/G45123.1
http://dx.doi.org/10.1007/BF02600367
http://dx.doi.org/10.1016/j.jvolgeores.2010.02.002
http://dx.doi.org/10.1007/s00445-007-0168-8
http://dx.doi.org/10.1007/s00445-007-0168-8
http://dx.doi.org/10.1007/s00445-007-0168-8


plane, Journal of Fluid Mechanics 58 (2) (1973) 275–288. doi:10.1017/

S0022112073002594.

[23] J. R. Lister, Viscous flows down an inclined plane from point and line625

sources, Journal of Fluid Mechanics 242 (1992) 631–653. doi:10.1017/

S0022112092002520.

[24] G. I. Taylor, D. H. Michael, On making holes in a sheet of fluid,

Journal of Fluid Mechanics 58 (4) (1973) 625–639. doi:10.1017/

S0022112073002375.630

[25] S. K. Wilson, B. R. Duffy, S. H. Davis, On a slender dry patch in

a liquid film draining under gravity down an inclined plane, European

Journal of Applied Mathematics 12 (3) (2001) 233–252. doi:10.1017/

S095679250100417X.

[26] A. Mazouchi, G. M. Homsy, Free surface Stokes flow over topography,635

Physics of Fluids 13 (10) (2001) 2751–2761. doi:10.1063/1.1401812.

[27] M. Sellier, Y. C. Lee, H. M. Thompson, P. H. Gaskell, Thin film flow on

surfaces containing arbitrary occlusions, Computers & fluids 38 (1) (2009)

171–182. doi:10.1016/j.compfluid.2008.01.008.

[28] M. Sellier, Modelling the wetting of a solid occlusion by a liquid film, In-640

ternational Journal of Multiphase Flow 71 (2015) 66–73. doi:10.1016/j.

ijmultiphaseflow.2014.12.007.

[29] E. M. Hinton, A. J. Hogg, H. E. Huppert, Viscous free-surface flows past

cylinders, Physical Review Fluids 5 (8) (2020) 084101. doi:10.1103/

PhysRevFluids.5.084101.645

[30] E. M. Hinton, A. J. Hogg, H. E. Huppert, Shallow free-surface Stokes

flow around a corner, Philosophical Transactions of the Royal Society A

378 (2174) (2020) 20190515. doi:10.1098/rsta.2019.0515.

41

http://dx.doi.org/10.1017/S0022112073002594
http://dx.doi.org/10.1017/S0022112073002594
http://dx.doi.org/10.1017/S0022112073002594
http://dx.doi.org/10.1017/S0022112092002520
http://dx.doi.org/10.1017/S0022112092002520
http://dx.doi.org/10.1017/S0022112092002520
http://dx.doi.org/10.1017/S0022112073002375
http://dx.doi.org/10.1017/S0022112073002375
http://dx.doi.org/10.1017/S0022112073002375
http://dx.doi.org/10.1017/S095679250100417X
http://dx.doi.org/10.1017/S095679250100417X
http://dx.doi.org/10.1017/S095679250100417X
http://dx.doi.org/10.1063/1.1401812
http://dx.doi.org/10.1016/j.compfluid.2008.01.008
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.12.007
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.12.007
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.12.007
http://dx.doi.org/10.1103/PhysRevFluids.5.084101
http://dx.doi.org/10.1103/PhysRevFluids.5.084101
http://dx.doi.org/10.1103/PhysRevFluids.5.084101
http://dx.doi.org/10.1098/rsta.2019.0515


[31] P. Coussot, S. Proust, Slow, unconfined spreading of a mudflow, Journal

of Geophysical Research: Solid Earth 101 (B11) (1996) 25217–25229. doi:650

10.1029/96JB02486.

[32] D. R. Hewitt, N. J. Balmforth, Thixotropic gravity currents, Journal of

Fluid Mechanics 727 (2013) 56–82. doi:10.1017/JFM.2013.235.

[33] K. F. Liu, C. C. Mei, Slow spreading of a sheet of Bingham fluid on an

inclined plane, Journal of Fluid Mechanics 207 (1989) 505–529. doi:10.655

1017/S0022112089002685.

[34] N. J. Balmforth, R. V. Craster, A consistent thin-layer theory for Bingham

plastics, Journal of Non-Newtonian Fluid Mechanics 84 (1) (1999) 65–81.

doi:10.1016/S0377-0257(98)00133-5.

[35] N. J. Balmforth, R. V. Craster, R. Sassi, Shallow viscoplastic flow on an660

inclined plane, Journal of Fluid Mechanics 470 (2002) 1–29. doi:10.1017/

S0022112002001660.

[36] N. Dubash, N. J. Balmforth, A. C. Slim, S. Cochard, What is the final

shape of a viscoplastic slump?, Journal of Non-Newtonian Fluid Mechanics

158 (1-3) (2009) 91–100. doi:j.jnnfm.2008.08.004.665

[37] C. Ancey, S. Cochard, The dam-break problem for herschel–bulkley vis-

coplastic fluids down steep flumes, Journal of Non-Newtonian Fluid Me-

chanics 158 (1-3) (2009) 18–35. doi:10.1016/j.jnnfm.2008.08.008.

[38] A. J. Hogg, G. P. Matson, Slumps of viscoplastic fluids on slopes, Journal of

Non-Newtonian Fluid Mechanics 158 (1-3) (2009) 101–112. doi:10.1016/670

j.jnnfm.2008.07.003.

[39] N. J. Balmforth, R. V. Craster, A. C. Rust, R. Sassi, Viscoplastic flow over

an inclined surface, Journal of Non-Newtonian Fluid Mechanics 139 (1-2)

(2006) 103–127. doi:10.1016/j.jnnfm.2006.07.010.

42

http://dx.doi.org/10.1029/96JB02486
http://dx.doi.org/10.1029/96JB02486
http://dx.doi.org/10.1029/96JB02486
http://dx.doi.org/10.1017/JFM.2013.235
http://dx.doi.org/10.1017/S0022112089002685
http://dx.doi.org/10.1017/S0022112089002685
http://dx.doi.org/10.1017/S0022112089002685
http://dx.doi.org/10.1016/S0377-0257(98)00133-5
http://dx.doi.org/10.1017/S0022112002001660
http://dx.doi.org/10.1017/S0022112002001660
http://dx.doi.org/10.1017/S0022112002001660
http://dx.doi.org/j.jnnfm.2008.08.004
http://dx.doi.org/10.1016/j.jnnfm.2008.08.008
http://dx.doi.org/10.1016/j.jnnfm.2008.07.003
http://dx.doi.org/10.1016/j.jnnfm.2008.07.003
http://dx.doi.org/10.1016/j.jnnfm.2008.07.003
http://dx.doi.org/10.1016/j.jnnfm.2006.07.010


[40] I. R. Ionescu, Viscoplastic shallow flow equations with topography, Journal675

of Non-Newtonian Fluid Mechanics 193 (2013) 116–128. doi:10.1016/j.

jnnfm.2012.09.009.

[41] C. C. Mei, M. Yuhi, Slow flow of a Bingham fluid in a shallow channel

of finite width, Journal of Fluid Mechanics 431 (2001) 135–159. doi:10.

1017/S0022112000003013.680

[42] S. K. Wilson, B. R. Duffy, A. B. Ross, On the gravity-driven draining of a

rivulet of a viscoplastic material down a slowly varying substrate, Physics

of Fluids 14 (2) (2002) 555–571. doi:10.1063/1.1416882.

[43] M. Yuhi, C. C. Mei, Slow spreading of fluid mud over a conical sur-

face, Journal of Fluid mechanics 519 (2004) 337–358. doi:10.1017/685

S0022112004001478.

[44] C. C. Mei, K.-F. Liu, M. Yuhi, Mud flow—slow and fast, in: Geomorpho-

logical fluid mechanics, Springer, 2001, pp. 548–577.

[45] E. C. Bingham, Fluidity and plasticity, McGraw-Hill, 1922.

[46] S. K. Wilson, R. Hunt, B. R. Duffy, On the critical solutions in coating and690

rimming flow on a uniformly rotating horizontal cylinder, The Quarterly

Journal of Mechanics and Applied Mathematics 55 (3) (2002) 357–383.

doi:10.1093/qjmam/55.3.357.

[47] C. Heining, M. Sellier, N. Aksel, The inverse problem in creeping

film flows, Acta Mechanica 223 (4) (2012) 841–847. doi:10.1007/695

s00707-011-0599-3.

[48] M. Sellier, S. Panda, Beating capillarity in thin film flows, International

journal for numerical methods in fluids 63 (4) (2010) 431–448. doi:10.

1002/fld.2086.

[49] M. P. Poland, T. R. Orr, J. P. Kauahikaua, S. R. Brantley, J. L. Babb,700

M. R. Patrick, C. A. Neal, K. R. Anderson, L. Antolik, M. Burgess, et al.,

43

http://dx.doi.org/10.1016/j.jnnfm.2012.09.009
http://dx.doi.org/10.1016/j.jnnfm.2012.09.009
http://dx.doi.org/10.1016/j.jnnfm.2012.09.009
http://dx.doi.org/10.1017/S0022112000003013
http://dx.doi.org/10.1017/S0022112000003013
http://dx.doi.org/10.1017/S0022112000003013
http://dx.doi.org/10.1063/1.1416882
http://dx.doi.org/10.1017/S0022112004001478
http://dx.doi.org/10.1017/S0022112004001478
http://dx.doi.org/10.1017/S0022112004001478
http://dx.doi.org/10.1093/qjmam/55.3.357
http://dx.doi.org/10.1007/s00707-011-0599-3
http://dx.doi.org/10.1007/s00707-011-0599-3
http://dx.doi.org/10.1007/s00707-011-0599-3
http://dx.doi.org/10.1002/fld.2086
http://dx.doi.org/10.1002/fld.2086
http://dx.doi.org/10.1002/fld.2086
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