
CANopen Robot Controller (CORC): An open software stack for
human robot interaction development

Justin Fong*, Emek Barış Küçüktabak$†, Vincent Crocher*, Ying Tan*, Kevin M. Lynch$,
Jose L. Pons$†, Denny Oetomo*

Abstract— Interest in the investigation of novel software and
control algorithms for wearable robotics is growing. However,
entry into this field requires a significant investment in a testing
platform. This work introduces CANopen Robot Controller
(CORC) — an open source software stack designed to accelerate
the development of robot software and control algorithms —
justifying its choice of platform, describing its overall structure,
and demonstrating its viability on two distinct platforms.

I. INTRODUCTION

The rapid progression of actuation, power and processing
technologies has significantly improved the capabilities and
possible applications of exoskeleton and wearable robotic
devices. With these developments, interest in developing
controllers and control algorithms for gait trajectory planning
and human-robot interactions strategies has risen, with this
field being recently identified as a key developmental oppor-
tunity for improving exoskeleton performance [1]. However,
a key challenge in the pursuit of this field is the development
of tools for testing said algorithms. This is particularly true
for wearable devices, which see large variations in actuator
and sensor configurations and designs.

The present work introduces the CANopen Robot Con-
troller (CORC) — an open source software stack designed
to accelerate the development of robotic devices based on
CANopen hardware. CORC allows modular hardware use by
leveraging the CANopen standardisation while providing a
real-time system meeting the safety requirements of wearable
devices. Within this work, the design and architecture of
CORC is introduced, and the viability of the the stack is
demonstrated through measurement of control loop period
jitter on two CORC implementations running respectively
on the Fourier Intelligence X2 exoskeleton [2] and the EMU
upper-limb manipulandum [3].

II. MATERIALS AND METHODS

A. Goals and Objectives

CORC was developed as a common development platform
for robots which primarily use CANOpen devices. CANOpen
has a 25+ year history as a communications protocol in
industrial automation, and is commonly used in robotic
devices. Therefore, the objectives of CORC are to provide a
flexible, modular architecture for different applications and
devices, with a loop rate of at least 200Hz with low jitter.

*University of Melbourne and Fourier Intelligence Joint Laboratory, the
University of Melbourne. $McCormick School of Engineering, Northwest-
ern University †Legs + Walking Lab, Shirley Ryan Ability Lab

Correspondence: fong.j@unimelb.edu.au

B. Platform

Two major decision points were made for the platform of
the CORC software stack — the operating system and the
programming language.

1) Operating System - Linux-based: Linux-based oper-
ating systems presented themselves as the obvious choice,
primarily due to their open and stable nature, as well as
their ability to be run with a real time kernel — which can
be critical in human-robot interactions. Furthermore, Linux
is well-supported on the larger range of hardware platforms.

2) Programming Language - C/C++: For efficiency rea-
sons, C is used for the critical sections of the software and
C++ at the higher level to take advantage of the Object Ori-
ented Programming design without sacrificing performance.

C. Software Architecture

CORC software stack is divided into three distinct layers
to enable flexible implementations on different platforms.

1) CANopen Layer: The CANopen layer handles the
application layer transfer of CAN messages, including poll-
response (Service Data Object, SDO) and streamed (Pro-
cess Data Object, PDO) protocols. This layer is based on
CANopenSocket [4], and licensed under the Apache License,
Version 2.0. Limited changes are required to this layer to
develop using CORC.

2) Robot Layer: The robot layer describes the robotic
structure, and links it with the input (e.g. sensors) and
output devices (e.g. motor drives). It acts as an abstraction
between the control algorithms and the hardware, allowing
implementation of kinematic and/or dynamic models. CORC
also contains base classes according to CAN in Automation
(CiA) standards. This layer is designed to be modified only
when new hardware is added to the robotic device.

3) Application Layer: The application layer implements
overall program logic and control algorithms. In CORC,
each application is a dedicated state machine, derived from a
common class. This architecture encourages safe execution
while leaving complete freedom for logic implementation.
Specific ad hoc libraries can be used at this level to ex-
tend capabilities such as providing Robot Operating System
(ROS) node capabilities to the application. Given an existing
robot implementation, only the application layer modification
is required to perform research into novel control strategies.
With this approach, a CORC application can also be used
as a robot firmware for a specific application with routine
execution, or for communication with a third-party software.

(a) RViz
Visualisation of
Fourier Intelligence
X2 Exoskeleton
showing forces at
force sensors

(b) EMU Upper Limb Manipulandum

Fig. 1: Hardware platforms tested

D. Viability test

The viability test sought to demonstrate two key goals of
the toolbox: flexibility for different hardware platforms, and
consistency in control loop execution rate. Therefore, simple
programs were implemented on two hardware platforms
(Fig. 1), and executed at different control frequencies. The
hardware platforms were:

1) A Fourier Intelligence X2 Exoskeleton including 4
Copley Accelnet ACK-055-06 motor drives and 4
custom force sensors, driven by a laptop computer
(Intel Core i7-9750H CPU, 16.0GB RAM, Ubuntu
18.04, ROS Melodic) with a PCAN-USB adapter [5].

2) The EMU Upper Limb Manipulandum including 3
Kinco FD123-CA motor drives and driven by a Beagle-
bone AI singleboard computer (Dual Arm R© Cortex R©-
A15, 1.0GB RAM, Debian, Linux Kernel v4.14 with
a PREEMPT-RT patch).

Three tests cases were run: X2-P: The X2 moving contin-
ually between sitting and standing with calculation of joint
angles through inverse kinematics based on a hip position
trajectory, and with the application set up as a ROS node
broadcasting joint state and force sensor readings to be
visualised using Rviz (Fig. 1a); EMU-I: the EMU operated
in impedance control with a feedforward position-dependent
gravity compensation term; and EMU-P: in position control
following a minimum jerk task space trajectory.

Each test case was run with different nominal control loop
periods for a minimum of 60 seconds, and the actual loop
period recorded whilst the control was operational — with
‘system configuration’ periods removed. Loop periods were
normalised against nominal for comparison.

III. RESULTS

Fig. 2 illustrates the control loop times. Note that it was
not possible to run the EMU platform with a period of less
than 2.5ms. However, all cases produced a mean loop period
within 0.001% of the nominal period.

It is to note that no changes were required at the CANopen
layer between the applications on the two platforms, and only

Fig. 2: Loop Periods (normalised to nominal). The extents of
the box capture exactly 80% of datapoints, and the extents
of the whiskers capture exactly 99%.

at the application layer for the two EMU cases.

IV. DISCUSSION
The results demonstrate the capability of the CORC soft-

ware stack to be used on two entirely different platforms
which share no common hardware. As such, CORC achieved
its primary goal of portability and flexibility.

Increasing variation was observed with decreasing nom-
inal period. It is noted that the effect of this variation is
extremely dependent on the sensitivity of the implemented
control, and as such, these results are presented only as an
indication of performance. Interestingly, at lower frequencies
and despite having less processing power, the EMU platform
demonstrated less variation — likely due to the real time
kernel running on the Beaglebone AI.

CORC’s primary limitation is that it is designed primarily
to run robots which have CAN devices. Whilst the choice of
CANopen provides a number of advantages, its serial nature
results in bandwidth limitations. Thus, as additional CAN
devices are added to the bus, less bandwidth is available for
each, reducing the possible motor update speeds.

V. CONCLUSIONS
The present work introduces the CORC toolbox — a

software stack designed for robotic devices — to accelerate
the development of control algorithms and trajectories. This
first evaluation demonstrates its implementation flexibility
and performance stability across different hardware plat-
forms. This open software stack is available1 to the wearable
robotics community for use and development. Future work
includes the development of a robust logging module and fur-
ther integration with ROS, beyond the currently-implemented
broadcast functionality.

REFERENCES

[1] Sawicki, GS., et al. ”The exoskeleton expansion: improving walking
and running economy.” Journal of NeuroEngineering and Rehabilita-
tion 17.1 (2020): 1-9.

[2] Fourier Intelligence, X2 http://www.fftai-global.com/lower-extremity/
[3] Fong, J, et al. ”EMU: A transparent 3D robotic manipulandum for

upper-limb rehabilitation.” 2017 IEEE International Conference on
Rehabilitation Robotics (ICORR). pp. 771-776

[4] CANopenSocket https://github.com/CANopenNode/CANopenSocket
[5] PEAK-System, PCAN-USB https://www.peak-system.com

1https://github.com/UniMelbHumanRoboticsLab/CANOpenRobotController

