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Abstract— The adoption of assistive lower limb exoskeletons
in built environments is reliant on the further development of
these devices to handle the varied conditions experienced in
everyday life. The required development includes more varied
and flexible gait patterns, but also appropriate user interfaces
to enable fluid gait. This work explores the properties of an
algorithm used to predict user intent based on sensors on-
board a user-balanced robotic exoskeleton system. Specifically,
classification algorithms built with different input data sets
are compared — with varying detail of the interaction forces
between the crutches and the ground, and the duration of
the data sample used to make the prediction. Data were
collected with one able-bodied participant using an exoskeleton,
training three independent classifiers corresponding to different
exoskeleton states. The results indicate the value of including
information about the interaction forces between the crutches
and the ground in improving prediction accuracy, with increas-
ing prediction window also generally resulting in an increase
in prediction accuracy. Whilst no categorical recommendation
can be made with respect to either parameter, these results
provide a baseline which can be used in conjunction deliberate
consideration of the costs associated with implementation.

I. INTRODUCTION

The development of lower limb exoskeletons to assist
those with movement impairments to ambulate has seen
great strides in the last two decades, with technological
improvements allowing the development of numerous re-
search and commercial devices. Whilst these devices have
seen adoption within controlled clinical settings, use within
assistive — every day — environments remains limited.
Although there are numerous issues to overcome, it remains
that exoskeletons are currently incapable of producing the
variations in movements required for traversing everyday life
[1], [2]. Achieving these movements is a multi-faceted prob-
lem: developers must derive exoskeleton movement patterns
to ensure that the movements can physically be performed
safely, but, simultaneously, user interfaces must be developed
to account for the myriad of new options in a fluid, natural
way. In this work, we explore the use of force sensors in
crutches to assist the pursuit of this second goal.

Typically, assistive exoskeletons have a number of set
movements (e.g. walking or sitting from a standing posture),
with the user using buttons to select from the options pre-
sented on a screen. Scaling these interfaces to accommodate
many more movement patterns is impractical due to the
number of button presses required. Therefore, exploration
towards other modes of identifying user intent is warranted.
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Important to the adoption of such interfaces is usability and
practicality. For example, donning and doffing time has been
identified as another factor limiting assistive exoskeleton
adoption [1], and thus solutions utilising systems integrated
into the exoskeleton system are preferred. This limits the use
of biosignals such as electromyography (EMG) or electroen-
cephalogram (EEG), as in [3], [4], which require careful and
time-consuming placement of additional sensors on the user’s
body. Furthermore, techniques requiring that the user has
some voluntary control of their legs, such as kinetic sensors
measuring the interaction force between the user’s leg and the
exoskeleton [5], are also not suitable, given users of assistive
devices do not necessarily have this control.

In user-balanced exoskeletons, crutches are used to main-
tain balance, but also to affect subtle changes in gait —
for example, turning or small variations in foot placement.
Thus, it is hypothesised that data from these crutches may
be useful in development of scalable user interfaces. Whilst
such signals have been used in threshold-based algorithms
[6], such strategies become difficult to employ when more
movement patterns are added. This work seeks to specifically
explore their use within data-driven classifiers, which may
be more easily scalable. Whilst this prevents application to
exoskeletons not requiring crutches (e.g. [7]), it is clear that
user-balanced exoskeletons are closer to real-world adoption,
and thus studies specific to these devices are justified.

As such, this preliminary work investigates the charac-
teristics of a movement classifier which predicts the user’s
next intended movement. Specifically, this work sought to
understand the value of including crutch/ground interaction
forces in improving the prediction, comparing classifier
performance when data from different sensors are included.
This is achieved through a data collection experiment with a
single able-bodied participant using a lower limb exoskeleton
with limited movements, and manually-controlled movement
transitions; and training and evaluation of classifiers using
differing subsets of the collected data.

II. BACKGROUND

A. Intention Detection in Assistive Exoskeletons

User Interfaces in assistive exoskeletons have traditionally
been quite simple, with limited options in their control
modalities requiring limited user interfaces. A recent review
[8] reported that approximately half of the exoskeletons
in the world follow predefined trajectories, with the other
half modifying these trajectories based on the interactions
between the user and the device.



Choosing between predefined movement trajectories has
generally been achieved either through the use of buttons
or other manual user interface, or by using discrete trig-
gers (thresholds) based on crutch sensors, in-foot pressure
sensors and centre of mass predictions. This has provided
distinct rules to initiate a limited number of step types [6],
where thresholds were used to trigger transitions. Similarly,
the Indego exoskeleton (Parker Hannifin Corporation, USA)
initiates different movements based on an estimate of the
position of the user’s centre of pressure (CoP). Such ap-
proaches become less viable with the introduction of more
and more movements — as any thresholds become closer
and closer together, which increases the likelihood of an
automatic initiation of any undesired movement.

On the other hand, works in which trajectories are con-
tinuously adjusted during their execution have explored the
use of additional signals — particularly biosensors, such as
electromyography (EMG) or electroencephalogram (EEG).
Such techniques often attempt to modify the movement
pattern based on muscle activations during gait, such as in
the Hybrid assisted limb (HAL) (Cyberdyne Inc., Tsukuba,
Japan), and the works reviewed in [9]. However, such signals
are difficult to integrate into practical assistive devices, due
to the time required to place the sensors each time the device
is to be used, and the large amount of human-to-human
variability and sensitivity to sensor placement. Whilst some
of these problems can be overcome with purely mechanical
sensors — such as a using onboard sensors (motor torques)
to change gait speed [10] — such approaches require some
function of the lower limbs, reducing their viability for
those who have lost voluntary limb control. A recent novel
approach used a mechanism of using “poles” (or crutches)
to control the position of the foot [11]. In that work, force
sensors embedded in poles are used to virtually ‘pull’ along
the foot. This clever approach allows for a high degree of
continuous control over feet positions. However, it is also
potentially cumbersome as the hands are now completely
occupied to control the feet, which may have implications for
maintaining balance in user-balanced exoskeleton devices.

The goal of the present project is to explore techniques
for switching between movement trajectories, which can
be applied to cases in which the predefined trajectories
are more similar than those explored in the literature, for
example, a short or long step. It is hypothesised that a small
number of additional movement trajectories, combined with
the user’s ability to influence trajectories using their own
dynamics [12], will significantly improve the variability that
the human-exoskeleton system is capable of handling.

B. Proposed Operational Approach

The proposed approach for controller the exoskeleton is as
follows: based on the set of available actions, an algorithm
using information from the user’s movements is used to
identify the action which the user is most likely attempting to
execute. The selected movement is presented to the user for
confirmation (for example, by pressing an easily-accessible

crutch-mounted button), who then initiates the movement
with certainty, see Fig. 1.
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Fig. 1. Operational approach proposed in this work. In a given state,
algorithm continuously makes predictions of the next desired user action
from the set of possible actions, based on a sliding window of data. The
“current” prediction is actioned upon confirmation by the user.

A data-driven approach is ideal for this algorithm, as it
enables the classifier to capture the ‘natural’ actions of the
user as that movement is attempted. A similar approach has
been taken with lower limb prostheses, where information
from similar sensors was used to predict the intended step
type for the user [13]. It is noted that the use of data-driven
algorithms is prevalent in the related field of prostheses, com-
monly referred to as locomotion mode recognition (LMR),
with works demonstrating success of the approach using
on-board sensors include inertial measurement units, force
sensors, motor torques and camera-based data [14], [15].

III. MATERIALS AND METHODS

In this section, the experimental platform on which the
study was conducted is introduced; along with methods used
to capture the input data; and the techniques used to create
and evaluate the support vector machine-based classifiers.

A. Exoskeleton System

A modified ExoMotus X2 (Fourier Intelligence, China)
was used for this work. This lower limb exoskeleton has four
active degrees of freedom (hip and knee flexion/extension)
and is driven by a custom application developed using
CANOpen Robot Controller (CORC) [16].

In the application, the set of allowable movements was
limited, and is represented in state diagram form in Fig. 2.
For each stationary pose (state), a movement (transition) is
used to move to another pose. The software was configured
to allow standing from a seated position, forward and back-
wards steps, and for the user to bring their feet together. The
three poses of interest in this work are the standing pose
(3 possible movements), the left foot forward (LFF) pose
(2 possible movements) and the right foot forward (RFF)
pose (3 possible movements). This limited state machine was
chosen as a test case for this study in order to understand
feasibility of the approach, as the three different classifiers re-
quired different numbers and types of available movements.
As a result, the state machine notably included asymmetric
LFF and RFF states, and excluded some movements likely
required for everyday use — such as stepping forward with
the right foot when in the standing state.



The system was driven by a crutch-mounted user inter-
face. A screen displayed the current state (pose) and the
currently selected movement. When the exoskeleton was in
a stationary pose, the user could scroll through the available
movements using physical buttons, before initiating and
executing the movement with a trigger under the index finger.
Importantly, this trigger provided a ‘ground truth’ around the
timing of the user’s intention — it is at the point the user
initiates the movement that the decision is made, and thus it
is hypothesized that the information available immediately
before the trigger is pressed can be used to predict the
intention of the user at that moment in time.

LEFT FOOT
e mmall FORWARD

Together | _»
Step
stand Forward St
-1 and ey i P Step Back
SITTING STANDING Forward
- Sit — 1
Step Back
Feet \

Together N\ RIGHT FOOT
FORWARD

Fig. 2. State machine representation of the possible movements within this
work.

Two sets of sensors were available (see Fig. 3):

o Exoskeleton Motors: Each actuated joint on the ex-
oskeleton (The hips and the knees) were driven by
Copley ACK-055-06 Accelnet Micro Module Motor
drives (Copley Controls, USA) powering Maxon EC60
Motors (Maxon Group, Switzerland), coupled with a
belt and pulley and gearbox. The drives output motor
position, velocity and torque information.

o Crutch Forces: Robotous RFT80-6A01-A sensors
(Robotous Inc, Korea) were installed at the end of
each crutch. These sensors output both force and torque
information in three dimensions.

Motors

Crutch
Sensors

Fig. 3. Location of sensors used for data collection.

B. Parameters of Interest

With the goal of the system being to predict the intention
of the user, the present investigation aimed to investigate
effect of two main parameters regarding the input data to
the system: the use of sensors measuring the interaction
force between the crutches and the ground, and the length
of the prediction window. These parameters have practical
implications for the implementation of a more complex
system capable of classifying between a larger number of
classes. Whilst it was expected that these parameters would
have an effect on the performance of the classifier, the present
investigation sought to explore the effects’ magnitudes, to
identify any clear cost/performance trade-offs.

1) Sensor Set: Exoskeleton actuators generally have some
means of reporting their level of actuation. Whilst there is
likely a non-trivial amount of transmission loss before the
joint, it is hypothesised that this ’free’ source of data may
provide information about the pose of the user, and thus their
intention. This provides the baseline data set.

In addition, we also sought to understand the value of
including crutch-ground interaction kinetics. Data from the
Force/Torque sensors at the ends of the crutches were also
considered, along with subsets of this data, with the hy-
potheses that (1) this information may improve classification
accuracy, and (2) simpler, less expensive sensors may provide
similar results. Thus, the available data sets were:

e CM: Crutch Moments

¢ CF: Crutch Forces

o CFZ: Axial Crutch Force (z-axis only)
« MT: Motor torques

And models were evaluated with the following sets of data:

e [CM + CF + MT]

e [CF + MT]

e [CFZ + MT]

o [MT]
where the [MT] set represents the case when no F/T sensors
are included in the system, with other options considered
including a single-axis load cell (CFZ), a tri-axis load cell
(CF), and the full F/T sensor (CM + CF).

2) Prediction Window: As a second objective, the pro-
posed approach required a “rolling” prediction, which up-
dates continuously until an action is confirmed. This investi-
gation also sought to explore whether increasing the length
of the prediction window would significantly improve the
results. This has implications for the delay before the first
prediction is offered, as well as the complexity and perfor-
mance requirements on the hardware running the classifier.

C. Data Collection

One able-bodied individual with no known underlying
neurological conditions was recruited for this study (Male,
22years old). After familiarization with the operation of the
exoskeleton, the individual was asked to perform a series
of movements between each of the states, over experimental
sessions over two days. Movement direction was random,
with each step within an arc of approximately 120 degrees



(60 degrees either side) in front of the user. It is to note that
the exoskeleton does not have degrees of freedom in these
directions, and thus turning maneuvers were achieved using
force from the user’s upper limbs. Reflecting real-world use,
the participant was aware of the plans for each subsequent
movement prior to the completion of the previous.

Data from each of the sensors was logged at 100Hz, along
with the exoskeleton state and trigger state, on a dedicated
logging device running a custom logging application. At
completion of the data collection, data were segmented into
pre-movement periods, for each state-transition pair, using
the data representing the trigger press as a marker. State
information recorded from the exoskeleton software was used
as indicators for the state and transition. This provided a full
dataset, subsets of which were then used to train different
classifiers to understand the important characteristics of such.

D. Classifier Development

To provide a mode of comparison, a consistent method
of producing a classification classifier was constructed. At
its core, this classifier used a Support Vector Machine
(SVM) classifier to predict the movement intention from the
available data. This work leveraged scikit-learn [17]
for the construction of the classifier.

1) Data Scaling and Dimension Reduction:

a) Scaling: For this initial investigation, all components
of the input data were considered of equivalent importance.
Thus, StandardScaler was used to standardize the ef-
fects of any given input parameter.

b) Dimension reduction (PCA): In addition, a Princi-
ple Components Analysis (PCA) was used to reduce the
dimensionality of the dataset. The goal was to reduce the
complexity of the classifiers, particularly those with larger
input datasets. PCA was applied to the entire sample (thus
choosing more informative channels over others), reducing
the dimensionality to the point which captured 80% of the
variability. Whilst a relatively arbitrary choice, it provided a
common standard across all prospective classifiers.

2) Support Vector Machine: Support vector machines
(SVM) were chosen over a neural nets due to their improved
performance for smaller training datasets — which was of
interest given the possibility that a unique classifier may
need to be created for each individual user. In cases where a
non-binary classification was required, a one-vs-one strategy
was employed. To accommodate the likely scenario that the
datapoints could not be separated using a linear boundary, a
kernel function was used. The exact kernel function used was
left as a parameter to be optimized, using GridSearchCV,
between the commonly selected kernel functions types of
linear, radial basis, polynomial, and sigmoid.

E. Evaluating Classifier Performance

Classifiers were compared on accuracy — i.e. the classi-
fier’s percentage of correct predictions against total predic-
tions. However, to understand the level of generalisability
of the classifier, the process was performed 12 times, with
a randomized train/test (75%/25%) data split each time the

classifier was created and evaluated. This ensured that any
particular evaluation of the classifier (or approach) was not
biased by any particular test/train split.

IV. RESULTS

In total, data for 717 movements were collected, with a
distribution which can be seen in Table 1.

TABLE I
TOTAL DATA POINTS COLLECTED

State Transition Movements Movements
Recorded in State
Sitting 26
Standing Step Forward 105 215
Step Back 84
Left Foot Step Forward 147 268
Forward Feet Together 121
. Step Forward 80
ll}é%‘l;tag)m Feet Together 52 234
Step Back 102
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Fig. 4. Performance of the Stand Classifier. Error bars represent one
standard deviation. Data points separated for clarity on error bars only —
prediction window times were set at multiples of 100ms.

The Stand classifier produced an accurate response across
all input datasets, with all classifiers across all prediction
windows and all sensor sets producing a classification error
of less than 1.5% on average.

B. Left Foot Forward Classifier

The Left Foot Forward (LFF) classifier showed large
improvements in performance with each additional sensor
data set added (4.5%, 7.1% and 4.7% for axial force, all
force and moment interactions respectively). In addition,
the performance of the classifier improved with a longer
prediction window in almost all cases, from the 100ms to
1000ms range explored.
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Fig. 5.  Performance of the Left Foot Forward Classifier. Error bars
represent one standard deviation. Data points separated for clarity on error
bars only — prediction window times were set at multiples of 100ms.
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Fig. 6. Performance of the Right Foot Forward Classifier. Error bars
represent one standard deviation. Data points separated for clarity on error
bars only — prediction window times were set at multiples of 100ms.

C. Right Foot Forward Classifier

The Right Foot Forward (RFF) classifier saw a larger
increase in performance when the bare minimum crutch
axial forces were added (5.9% on average), with smaller
improvements with additional crutch force and moment data.
Increasing the prediction window in this classifier did not
appear to significantly improve the performance.

V. DISCUSSION
A. Classifier-Specific Comments

The performance of the Stand classifier was very good
across all conditions. This is unsurprising, given that the
three movements are very different, and thus easily distin-
guishable. Interestingly, the same level of performance was
observed with only the motor torque information, suggesting
that the crutch information was not required. However, given
that this classification problem can intuitively be solved
with simple thresholds (as in [6]), the performance of this
classifier does not significantly influence the implications for
this work, with the exception of validating the pipeline.

The performance of the LFF classifier increased almost
monotonically with additional input data, as well as predic-
tion window. However, the classification error is as low as
5% with all available data. This performance is promising
with respect to being able to differentiate between smaller
step sizes, due to the fact that the two options for this
classifier are effectively a ‘normal’ step and a ‘small’ step.

The lower performance of the RFF classifier is surprising,
especially when considered along side to the LFF classifier,
as the additional movement considered in the RFF is in the
opposite direction. This is explored further in Fig. 7, which
presents the average confusion matrix for the [CM+CF+MT]
RFF Classifier with a 300ms Prediction Window, which can
be considered representative of all RFF classifiers. Whilst
the classifier clearly identifies the Step Back movement,
the ability of the classifier to differentiate between the Step
Forward and Feet Together step types is reduced compared to
the LFF classifier. This may be due to the PCA, which may
reduce the dimensionality of the data in a direction which
was used to differentiate between the two movements in the
LFF classifier. Alternatively, the behaviour of the participant
may have changed between the right and left sides.

Prediction outcome

SF FT SB

2 SF'|079 | 022 | 0.00
K
= FT' | 021 || 0.78 || 0.00
=
2 SB"1 000 | 000 | 1.00

Fig. 7.  Average Confusion Matrix for the [CM+CF+MT] Right Foot
Forward Classifiers, 300ms Prediction Window. SF = Step Forward, FT
= Feet Together, SB = Step Back

B. Implications for Classifier Prediction Window

Practically, a shorter prediction window would be advan-
tageous in terms of prediction time (reducing delay) and
processor requirements. It was hypothesised that, after some
threshold time period (e.g. the amount of time required
for the user to physically prepare for the movement) there
would be limited advantage in a longer prediction window.
This appears to be true in the RFF classifier, with similar
performance across all prediction windows in all sensor data
combinations. In contrast, the LFF classifier’s accuracy con-
sistently improves with longer prediction windows by similar
amounts. Thus, the results presented here do not present
any notable or obvious candidates for an optimal prediction
window, with such a decision likely to be more reliant
on other requirements, such as definition of an acceptable
processing delay or minimum accuracy requirement.

C. Implications for Sensor Set

The results unsurprisingly suggest that additional informa-
tion provides the classifier with more information to make a



better prediction. However, it is interesting to note the rela-
tive importance that additional measurements, particularly on
the crutches, can provide. The LFF classifier saw relatively
limited improvement in performance with the addition of
the single axial crutch force — on average 4.5% across
prediction windows — but a larger improvement with the
addition of all forces 7.1%. In contrast, the RFF classifier
saw its largest improvement with the addition of axial forces
only (5.9%), with less improvement with additional sensors
after that (3.4% and 2.0% for all forces and moments
respectively). This suggests that the additional direction
information about the forces at the end of the crutch may be
useful for differentiating between movements close to each
other, but potentially less useful for larger differences.

D. Implications for Extension to More Movement Classes

The ultimate goal of this work was to apply the process
developed here to a system with a larger variety of movement
transitions. Whilst the performance of the LFF classifier is
promising, given the performance level achieved and the
similarity between movements, the RFF detracts from this
success as more options are introduced. It is also noted that,
with a smaller number of transitions it may be useful to
bias the classifier towards one which has a larger-margin
separating hyperplane — which may be achieved by using
a smaller “C parameter” (at the cost of potentially reduced
accuracy). For simplicity and for a fair comparison, the “C
parameter” was not modified between classifiers. However,
this may be a parameter which may require tuning to improve
performance if more movement classes were considered.

E. Limitations and Future Work

There are a number of limitations associated with this
work. First, this work is a case study, with the classifiers
created and evaluated with subsets of a limited data set
captured from a single user, with no testing between indi-
viduals performed. Initial tests (not reported here) suggest
that performance with data from other individuals is poor,
which may mean that a unique classifier must be developed
for each individual. This should be further investigated.
Secondly, the user themselves selected the movements within
the testing protocol. Implementation and testing of the final
classifier design in a ‘live’ system, and evaluation of the
performance, remains a task to be performed. Thirdly, the set
of sensors used in this work is quite limited, with additional
sensors potentially including inertial measurement units, or
in-sole feet sensors potentially providing better performance.
This seems likely given that including additional sensors
categorically improved performance.

VI. CONCLUSIONS

This work explored the effects of changing the input data
to a classifier against the performance of said classifier in
predicting user intent, with the view that such a classifier
may be useful in a ‘continuous prediction’ paradigm. This
study included only a single, able-bodied participant, and
thus the results should be treated with caution, however, the

results indicated that that approach may have promise, with
potential advantages in increasing the available sensor set
beyond that considered within this work.
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