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Abstract—Iterative learning control (ILC) is a class of data-
driven techniques, which can “learn” the unknown desired con-
trol input signal to accurately track a desired output trajectory
using input and output measurements when the tracking task is
performed over a finite time interval repetitively. Although many
ILC algorithms have been proposed and successfully applied to
various engineered systems, not much work has been done to
handle input and output hard constraints simultaneously when
the dynamic models are unknown. This paper proposes a novel
gradient estimator to minimise a cost function whose analytical
expression is unknown, but measurable. By incorporating both
input constraints and output constraints into the cost function,
the proposed method can achieve a uniform semi-global practical
asymptotic convergence of the tracking performance by tuning
the parameters of a family of dithers carefully with constraints
satisfactions. Simulation results are presented to support the
theoretical findings.

I. INTRODUCTION

Iterative learning control (ILC) learns to perform a task
through repetitions by incorporating the error learned from the
previous iterations. It was first proposed by Uchiyama [1] and
soon attracted much attention after the pioneering works by
Arimoto et.al [2]. Due to its model-free nature and simplicity
in implementation, a large number of applications have been
reported in the literature, such as precision motion control
[3], [4], wind energy generation [5], robotic rehabilitation [6]
[7], traffic flow control [8], high-speed trains [9], modelling
of human motor control [7], see more applications in survey
papers [10]–[12] and references therein.

In practical implementations of ILC algorithms, hard con-
straints in terms of input and output signals always exist. For
example, both sensors (for the output) and actuators (for the
input) have the upper and lower limit. When the system model
is unknown, ensuring the convergence of the tracking error as
well as satisfying both input and output constraints becomes
challenging.

For continuous-time plants, the input constraints have been
addressed in the design of ILC for a certain class of lin-
ear/nonlinear continuous-time systems using CEF based de-
sign [13]–[16]. Barrier functions like Lyapunov functions (BF-
LFs) have been used in the stability analysis of nonlinear
systems to deal with output constraints [17]. The BF-LF can

be extended to the learning control design, see for example,
[18]–[23] and references therein.

When the system of interest is in discrete-time, by using
the super vector formulation, the ILC with constraints can
be converted into a constrained optimization problem in a
high dimensional space, see for example, [24]–[26] for input
constraints and output constraints [27]–[30] by using typical
optimization techniques provided that the analytical form of
the cost is known, leading to a standard gradient based
iterative algorithms. However, in most of ILC applications,
such an analytical form for the cost is unknown. This work
extends the existing work without assuming the knowledge
of the engineered systems. Utilizing the input/output data,
the gradient of the cost function can be estimated from the
measured data instead of computing from the analytic form of
the cost function.

In this work, the gradient of the unknown nonlinear map-
ping is estimated using a suitable family of discrete-time
dither signals. This idea is motivated from the continuous-
time version of dither-based gradient estimators [31]. The
closeness of solution between the the proposed dither-based
gradient estimator and the gradient is shown by extending the
existing discrete-time averaging theory [32] to a new setting,
in which the averaged system is semi-globally practically
asymptotically (SPA) stable. This concludes that the proposed
algorithm can converge uniformly semi-globally practically
asymptotically to the optimal solutions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations and Preliminaries
Let N represent the set of all non-negative integers. The

notation R represents the set of all real numbers. For any
vector x ∈ Rn, |x| represents its Euclidean norm, defined as
|x| ≜

√
x⊺x, where (·)⊺ represents the transpose. For a matrix

A ∈ Rn×m, |A| is the induced matrix norm. Im represents a
identity matrix for size m×m.

For a mapping f(·) : R → Rm, if there exist positive
constants k, η∗ ∈ R such that and for any η ∈ [0, η∗] the
inequality |f(η)| ≤ kη holds. The function f(η) is the order
of η and denoted by O(η) [33, Definition 10.1].



The set of n times continuously differentiable functions is
represented by Cn with n ∈ N . For a nonlinear mapping
f(·) : Rn → R satisfying f(·) ∈ C1, its gradient is defined as

∇f(x) =
[
∂f(x)
∂x(1)

∂f(x)
∂x(2) · · · ∂f(x)

∂x(n)

]
.

B. Problem formulation
A class of multiple-input-multiple-output (MIMO) discrete-

time nonlinear non-affine systems is considered. At the ith

iteration, it has the following form

xi[k + 1] = f(xi[k],ui[k]), xi[0] ∈ Rn

yi[k] = g(xi[k],ui[k]), (1)

where k ∈ [0, 1, 2, · · · , N − 1] represents time steps in
discrete-time and i ∈ N represent the iteration (or trial)
number. The vector x ∈ Rn represents the state. The output
is y ∈ Rp and the input is u ∈ Rm. Here nonlinear unknown
mappings f(·, ·) : Rn×Rm → Rn, g(·, ·) : Rn×Rm → Rm

are assumed to be locally Lipschitz continuous. Although the
nonlinear mappings are unknown, the output signal yi[k] is
measurable. A super vector is introduced to describe the input
and output sequences

ũi = [ui[0]
⊺,ui[1]

⊺, . . . ,ui[N − 1]⊺]
⊺ ∈ Rm·N ,

ỹi = [yi[0]
⊺,yi[1]

⊺, . . . ,yi[N − 1]⊺]
⊺ ∈ Rp·N , (2)

so that the nonlinear model (1) can be represented as the fol-
lowing unknown nonlinear static mapping ϕ : Rm·N → Rp·N

ỹi = ϕ (ũi,yi(0)) . (3)

For a given reference trajectory yr[k],∀k ∈ [0, . . . , N −
1], the ILC design tries to track this reference trajec-
tory. For convenience of notation, we also define ỹr =
[yr[0]

⊺,yr[1]
⊺, · · · ,yr[N − 1]⊺]

⊺ and the error vector is de-
fined accordingly.

ẽi ≜ ỹr − ỹi, i ∈ N . (4)

The input constraints and the output constraints are:

ψ1(y[k]) ≥ 0n1
, k = 0, . . . , N − 1 (5)

ψ2(u[k]) ≥ 0n2
, k = 0, . . . , N − 1, (6)

where ψ1(·) and ψ2(·) are smooth nonlinear functions with
appropriate dimensions. Here n1, n2 ∈ N and 0n is a vector in
Rn in which each element of the vector is zero. For simplicity
of analysis, the following identical initial condition [34] is
assumed.

Assumption 1: The system (1) satisfies yi[0] = yr[0],
for all i ∈ N , which is an identical initial condition [34].
Moreover, the system input and output at first iteration ũ0, ỹ0

are assumed to satisfy the constraints defined in (5) and (6).
□

Control Objective is to find a sequence of input signals
{ũi}i∈N such that lim

i→∞
|ẽi| = 0 by satisfying both input

constraints (5) and output constraints (6).
We can formulate the problem as the following optimiza-

tion:

min
ũ∈Rm·N

ẽ⊺ẽ, (7)

s.t.
{
ψ1(y[k]) ≥ 0n1

, k = 0, . . . , N − 1,
ψ2(u[k]) ≥ 0n2 , k = 0, . . . , N − 1

.

Next assumption assumes that the optimization problem (7) is
feasible.

Assumption 2: For the given ỹr, which satisfies the output
constraints (6), there exists a unique ũr, which is the solu-
tion of the optimization problem (7) and also satisfied input
constraints (5). □
Based on the optimization formulation (7), the following cost
function is constructed

J(ũi) = ẽ⊺i ẽi −
N−1∑
k=0

n1∑
s=1

V y
(
ψ1,s(yi[k]),θy

)
−

N−1∑
k=0

n2∑
s=1

V u
(
ψ2,s(ui[k]),θu

)
, (8)

where V y, V u are smooth barrier functions parameterized by
some design parameters θy and θu respectively. These two
barrier functions have the standard form:

V (ψ(y),θy) =

 µ1(y,θy) if y ∈ I1(θy)
µ2(y,θy) if y ∈ I2(θy)

0 if y ∈ I3(θy),
, (9)

where the sets I1, I2, and I3 are parameterized by the
parameter θy . The set I3 is a compact subset of the original set
satisfying the constraints, while I2 is a transition set to ensure
the needed smoothness requirement of the barrier function.
When constraints are violated, µ1(·, ·) will approach to infinity.
This type of barrier function will not introduce an addition
bias in terms of the tracking error. More precisely, the optimal
solution of (8) is ẽ = 0. As the reference output yr is known,
it can be used to design an appropriate parameter θy and
three sets. However, as ur is unknown, for simplicity of the
presentation, the following assumption is used to ensure that
the ur is within the set I3.

Assumption 3: The unknown reference input ur in Assump-
tion 2 is compatible with the form of the proposed barrier
function (9), i.e., there exists an appropriate parameter θu such
that ur ∈ I3(θu) holds. □
In simulations, we will show an example of such barrier
functions.

If the nonlinear mapping ϕ in (3) is known, the analytic
form of the cost function in (8) is known. In the sequel, the
following gradient-descent algorithm is usually used, see, for
example, [28] and references therein,

ũi+1 = ũi − ε∇J(ũi), (10)

where 0 < ε < 1 represents the step size of the gradient
descent method. The following assumption is used.

Assumption 4: For the cost defined in (8), which satisfies
Assumptions 1–3, the gradient-descent algorithm proposed in
(10) can achieve a global asymptotic convergence, uniformly
in small ε. More precisely, there exists a class KL function
β(·, ·) such that there exists ε∗0 > 0 such that for any ε ∈
(0, ε∗0), the solutions of (10) satisfy the following inequality:

|ũi − ũr| ≤ β (|ũ0 − ũr| , εi) (11)

for any |ũ0 − ũr| ∈ Rm×N . Note that the convergence of the
input ũ indicate that the cost will always be bounded, it also
means the constraints are satisfied. □



Remark 1: Gradient-descent methods are one of the most
widely used optimization techniques in practice. Although it
works locally, if the cost function J(·) : Rm·N → R≥0 is
convex1 and differentiable for any ũ ∈ Rm×N , we can obtain
global convergence. A similar analysis can be easily extended
to the cases when the updating law (10) converges locally
asymptotically. ◦

Remark 2: The proposed method can be extended to other
gradient-based optimization techniques, for example, Newton-
method, which uses both the first order gradient and the second
order gradient (Hessian matrix). The idea is similar to [35],
which implements any gradient-based optimization algorithm,
which relies on the known form of the cost, by using a class
of gradient estimators to estimate the needed gradient. Our
future work will exploit how to generate a similar framework
in the area of ILC convergence. ◦

Although there exists an optimization algorithm (10) that
can work well, it requires the explicit analytical form of
the cost function. As the nonlinear mapping ϕ(·, ·) in (3)
is unknown, the analytic form of the cost function is not
available. Therefore, we can not compute the gradient ∇J(ũ).
In this work, the measured input and the cost will be used
to estimate the gradient. Hence, we will design a data-driven
gradient estimator to obtain ∇̂J(ũ), which is an approximation
of the needed gradient.

III. MAIN RESULTS

As ILC algorithms are usually model-free technique without
knowing the model information, this work assumes that the
analytical form of system nonlinear mappings f(·, ·),g(·, ·) is
not available. We can only measure the cost J(ũi) at each
iteration. Thus a data-driven method is required to approximate
the gradient needed in (10).

It is well known that the gradient of a static mapping can
be estimated by some dither-based techniques, such as the
extremum seeking method [36], Lie-bracket approximation
[31] in continuous-time domain. The key idea is to inject a
family of high frequency dither signals to probe and extract
the gradient information. It is not easy to extend such method
directly to the iteration domain. On the one hand, high
frequency dither signals cannot be applied to the iteration
domain. The fastest possible periodic signal (not constant) in
iteration domain repeats itself in two iteration. In order to keep
an appropriate time scale separation, we need to slow down
the updating law to make the periodic signal “fast” compared
with the slow updating law. This leads to the following form
of updating law, which is served as the gradient estimator.

ũa
i+1 = ũa

i +
√
εΓ
(
ζi + ξi

)
, (12)

ζi = sin(J(ũa
i )) · di (13)

ξi = cos(J(ũa
i )) · qi, (14)

where di,qi are dither signals and Γ ∈ Rm·N×m·N is a
diagonal matrix with all positive elements. The choice of Γ
depends on the selected dither signals. Here ε comes from
(10) satisfying Assumption 4.

1A differentiable function J(·) : Rm·N → R is said to be convex, if
for any x̃1, x̃2 ∈ Rm·N the following inequality holds: J(x̃1) ≥ J(x̃2) +
∇xJ(x̃2)(x̃1 − x̃2)

The role of the parameter ε is two-fold. On one hand,
it is the step size of gradient descent method (10). On the
other hand, it serves as a time scale separation parameter so
that the updating law is slower than the periodicity of dither
signals so that the standard discrete-time averaging technique
[32] is applicable. Our main result will show the closeness
of solutions between the gradient descent system (10) and its
estimation (12).

Dither signals di,qi ∈ Rm·N play an important role in
the proposed gradient estimation algorithm (12). In general,
they need to be “rich” enough or persistently excited (PE) to
estimate a high dimensional parameter as pointed out in [37].
In order to guarantee the needed PE condition, the dithers need
to satisfy the following assumption:

Assumption 5: Let di,l(dj,l), qi,l(qj,l) be the lth(jth) ele-
ment of di, qi respectively.

(1) di,l, qi,l are bounded periodical signals with the same
period Kl ∈ N . That is, di+Kl,l = di,l and qi+kl,l = qi,l
for all i ∈ N .

(2) Both di,l and qi,l have zero mean, i.e.,
∑Kl−1

i=0 di,l = 0

and
∑Kl−1

i=0 qi,l = 0.
(3) Let K be the least common multiple of Kl, l =

1, . . . ,m ·N . There exist positive constants c1,l and c2,l
such that the following conditions hold

K−1∑
i=0

(
qi,j

i∑
s=0

qs,l

)
=

{
c1,l, if j = l
0, otherwise , (15)

K−1∑
i=0

(
qi,j

i∑
s=0

ds,l

)
=

{
c2,l, if j = l
0, otherwise , (16)

K−1∑
i=0

(
qi,j

k∑
s=0

ds,l

)
= −

K−1∑
i=0

(
di,j

i∑
s=0

qs,l

)
, (17)

K−1∑
i=0

(
di,j

i∑
s=0

ds,l

)
=

K−1∑
i=0

(
qi,j

i∑
s=0

qs,l

)
. (18)

For the convenience of analysis, the diagonal matrices
C1, C2 ∈ Rm·N×m·N are defined with elements c1,l and
c2,l.

□
Remark 3: As the dimension of the input of the optimization

problem (8) is very high, i.e., ũ ∈ Rm×N , the choice of dithers
becomes quite challenging as the number of frequencies used
is proportional to the number of parameters to estimate. At
the same time, when more dither frequencies are used, the
parameter ε needs to be sufficiently small to keep the time
scale separation, leading to a slower convergence speed. In
our future work, we will explore optimization techniques that
are less sensitive to the high dimensional input. ◦

A. Closeness of solutions

Next will show that if Assumption 5 holds, the proposed
updating law ũa

i well approximates the gradient descent ILC
ũi by selecting appropriate ε.

Theorem 1: Considering the gradient descent algorithm (10)
and its approximation (12)–(14). If Assumptions 1–5 hold,
for any positive integer K1 ∈ N and K,C2 coming from
Assumption 5, there exists a constant 0 < ε∗1 < ε∗0, where ε0



comes from Assumption 4, such that for any ε ∈ (0, ε∗1], the
following inequality is satisfied with Γ = KC−1

2

|ũa
i − ũi| = O(ε), (19)

for all i ∈ [0, 1, . . . , ⌊K1

εK ⌋K] and ũa
0 = ũ0.

Proof : We first analyze the trajectories of (12) in a finite time
interval [0,K], where K comes from Assumption 5. It is noted
that Assumption 4 indicates that for the finite time interval
[0,K], the trajectories of (10) is bounded. The trajectories of
the updating law (12) at the Kth step are:

ũa
K = ũ0 +

√
εΓ

K−1∑
s=0

(
ζs + ξs

)
. (20)

Let denote J(ũa
i ) as Ji. By using summation by parts, the

second term in (20) becomes:

K−1∑
s=0

ξs = cos(JK−1)

K−1∑
s=0

qs

−
K−2∑
s=0

( cos(Js+1)− cos(Js)

) s∑
j=0

qj


= cos(JK−1)

K−1∑
s=0

qs

−
K−1∑
s=0

( cos(Js+1)− cos(Js)

) s∑
j=0

qj


+

(
cos(JK)− cos(JK−1)

)K−1∑
j=0

qj

= cos(JK)

K−1∑
s=0

qs

−
K−1∑
s=0

( cos(Js+1)− cos(Js)

) s∑
j=0

qj

 .(21)

Due to the second item in Assumption 5, the first term in (21)
is zero. By using Taylor’s expansion in [38], the second term
in (21) can be written as:

Js+1 − Js = ∇J⊺
s

√
εΓ
(
ζs + ξs

)
+O1(ε), (22)

where O1(ε) is the residue. Using Taylor’s expansion again,
it leads to

cos(Js+1)− cos(Js) (23)

= −
√
εΓ sin(Js)∇J⊺

s

(
sin(Js)ds + cos(Js)qs

)
+ O2(ε),

Substituting(24) back to equation (21), we have:

K−1∑
s=0

ξs =
√
εΓ

K−1∑
s=0

( sin(Js)2∇J⊺
s ds

) s∑
j=0

qj


+

√
εΓ

K−1∑
s=0

( sin(Js) cos(Js)∇J⊺
s qs

) s∑
j=0

qj


+ O3(ε). (24)

Similarly, we can compute
∑K−1

s=0 ξs, resulting in the fol-
lowing bound of the solutions (12) at i = K

ũa
K = ũa

0

+ εΓ

K−1∑
s=0

(− sin(Js) cos(Js)∇J⊺
s ds

) s∑
j=0

dj


+ εΓ

K−1∑
s=0

(− cos(Js)
2∇J⊺

s qs

) s∑
j=0

dj


+ εΓ

K−1∑
s=0

( sin(Js)2∇J⊺
s ds

) s∑
j=0

qj


+ εΓ

K−1∑
s=0

( sin(Js) cos(Js)∇J⊺
s qs

) s∑
j=0

qj


+O4(ε

3
2 ). (25)

For convenience, we denote χ1,s =
− sin(Js) cos(Js), η1,s =

∑s
j=0 djd

⊺
s , χ2,s =

− cos(Js)
2, η2,s =

∑s
j=0 djq

⊺
s , χ3,s = sin(Js)

2, η3,s =∑s
j=0 qjd

⊺
s , and χ4,s = sin(Js) cos(Js), η4,s =

∑s
j=0 qjq

⊺
s .

By repeating the above procedure, at any (n + 1)K,n ∈ N ,
with the initial condition ũ0, the solutions of updating law
(10) can be re-written as

ũa
(n+1)K = ũa

0 + εΓ

(n+1)K−1∑
i=0

h(i, ũi, ε), (26)

where

h(i, ũi, ε) =
( 4∑

s=1

χs,iηs,i +O5(ε
1
2 )
)
∇Ji. (27)

As pointed out in the [32], for a given positive integer K1 the
trajectory of ũa

i is O(ε) close to its averaged system trajectory
ũav
i , for any i ∈ ⌊K1

ε ⌋. The averaged system is defined as:

ũav
i+1 = ũav

0 + εΓhav(ũ
av
i ), (28)

hav(ũ) =
1

K

K−1∑
i=0

h(i, ũ, 0). (29)



By using the properties from Assumption 5 term 3, it has

hav(ũ) = − C1

K
sin(J(ũ)) cos(J(ũ))∇J(ũ)

− C2

K
cos(J(ũ))2∇J(ũ)

− C2

K
sin(J(ũ))2∇J(ũ)

+
C1

K
sin(J(ũ)) cos(J(ũ))∇J(ũ)

= − C2

K
∇J(ũ), (30)

where C1, C2 come from Assumption (5). Note that the
averaged system is equivalent to the gradient descent ILC

algorithm (10) with Γ =
K

C2
. In the sequel, we can show

the closeness between the trajectories of (10) and (12) , i.e.,

|ũa
i − ũi| = O(ε), (31)

for all i ∈ [0, 1, . . . , ⌊K1

εK ⌋K]. The completes the proof.
With the closeness result in Theorem 1, if (10) is UGA,

uniformly in small ε, next result can conclude the convergence
property of the system (12). The proof follows the standard
trajectory-based analysis as shown in [39]. Due to space
limitation, the proof is omitted.

Theorem 2: Considering the gradient descent algorithm (10)
and its approximation (12)–(14). If Assumptions 1– 5 hold, for
any positive pair (∆, δ), there exists positive ε∗2, such that for
any ε ∈ (0, ε], the solution of (12) satisfies

|ũa
i − ũr| ≤ max{β1 (|ũ0 − ũr| , εi) , δ}, (32)

for all i ∈ N and |ũ0 − ũr| ≤ ∆. Here the class KL function
comes from Assumption 4.

IV. SIMULATION RESULTS

Consider a nonlinear single-input-single-output discrete sys-
tem:

x[k + 1] = sin(x[k]) + u[k]

y[k] = x[k] + u[k], (33)

with a reference input ur[k] = sin(2k),∀k ∈ [0, 1, . . . , 6],
initial condition x[0] = 0.8. The corresponding reference
output yr is generated via the system (33). A specific choice
of the dithers which satisfy the Assumption 5 is selected as

di,l =



1, if mod (i,Kl) ∈
[
0,K

′

l − 1
]

0, if mod (i,Kl) ∈
[
K

′

l , 2K
′

l − 1
]

−1, if mod (i,Kl) ∈
[
2K

′

l , 3K
′

l − 1
]

0, if mod (i,Kl) ∈
[
3K

′

l , 4K
′

l − 1
]
, (34)

qi,l =



0, if mod (i,Kl) ∈
[
0,K

′

l − 1
]

1, if mod (i,Kl) ∈
[
K

′

l , 2K
′

l − 1
]

0, if mod (i,Kl) ∈
[
2K

′

l , 3K
′

l − 1
]

−1, if mod (i,Kl) ∈
[
3K

′

l , 4K
′

l − 1
]
,

where Kl = 4K
′

l = 2l+1,∀l ∈ [1, 2, . . . , 7] and K = 28, it
can be checked that the term 3 in Assumption 5 is satisfied
with c1,l =

Kl

4 ,c2,l = KKl

16 .
In order to illustrate the role of ε in Theorem 1, different

choices of ε are selected: ε = 0.0002 and ε = 0.00005. In
this case, an unconstrained tracking problem is considered,
such that

J(ũ) = ẽ⊺ẽ (35)

It can be seen that the cost J converge to its minimum
as shown in Fig.1. Moreover, by selecting a smaller ε, the
convergence speed of the cost J is slowing down while the
ultimate bound is getting smaller. This clearly shows the
performance trade-off in terms of convergence speed and the
accuracy or the ultimate bound.

Fig. 1. Unconstrained cost Ji with ε = 0.0002, 0.00005

An upper bound for input ub = 1.05 and a lower bound of
output yb = 0.3 are considered, such that:

ub − u[k] ≥ 0, ∀k ∈ [0, 1, . . . , 6]

y[k]− yb ≥ 0, ∀k ∈ [0, 1, . . . , 6]. (36)

Considering the limitation of the space, the figures are omitted
here, but it can be checked that both the input and output
constrains are violated at some trails when the parameter ε is
selected as ε = 0.00005.

When constraints are considered, the parameter is selected
as ε = 0.00005. It is assumed that the boundedness of the
reference input b1 = 1. The simulation results demonstrate
the effectiveness of the proposed algorithm.

Fig. 2. Cost J(ũi) with constraints considered



V. CONCLUSION AND FUTURE WORK

This work provides a framework for ILC to handle input and
output hard constrains by formulating the tracking task into
a constrained optimization problem. A data-driven gradient
estimation algorithm, which utilizes the dither signals to
estimate the gradient, is proposed find the optimal solution.
The main result shows that the proposed algorithm can semi-
globally practically asymptotically converge to the optimal
solution, under appropriate conditions. Our future work will
focus on how to reduce the complexity coming from data-
driven gradient estimation.
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