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Abstract—The majority of literature for partial averaging
techniques for discrete-time systems has focused on showing the
local exponential stability properties of nonlinear time-varying
systems when the partial averaged system is uniformly locally
exponential stable. The work generalizes the existing partial
averaging techniques to a more general class of systems in which
the partial averaged system is uniformly globally asymptotically
stable (UGAS). By using closeness of solutions (Proposition 1)
between the original system and the partial averaged system,
the main result shows that the original time-varying system will
be semi-globally practically asymptotically (SPA) stable provided
that the partial averaged systems is UGAS and the tuning
parameters are sufficiently small. A few other stability results
of the original system from different stability properties of its
partial averaged system are also presented. Simulation results
support our theoretical findings.

I. INTRODUCTION

Averaging theory is one of the most widely used tools to

conclude the stability properties of a class of parameterized

nonlinear time-varying systems from stability properties of

their approximate time-invariant parameter-free averaged sys-

tem. This method has been extensively used in the stability

analysis of adaptive system [9], [19], extremum seeking con-

trol for both deterministic dynamics [20], [23] and stochastic

systems [10], [11], pulse width modulations [16], vibrational

control [3], [4], fast switching systems [12], [24], and so on.

Partial averaging technique [6] is a special case of averaged

techniques, in which the nonlinear dynamics have both slowly

time-varying components and fast time-varying components.

Partial averaging technique averages the dynamics over the fast

time-scale while treats the slow dynamics as slowly varying

system [8, Chapter 10]. In [14], when the partial averaged

continuous-time system is uniformly globally exponentially

stable (UGES), the original continuous-time nonlinear time-

varying (NLTV) system is uniformly locally exponentially

stable (ULES) when the time-scale parameters are selected

sufficiently small. A more general case can be found in [23,

Section 3], in which both stability properties and robustness

in terms of input-to-state stability were discussed.

Compared with rich literature in continuous-time systems,

there is much less literature for partial averaging techniques

for discrete-time systems. Discrete-time systems come from

discretization of continuous-time dynamics or some natural

discrete-time behaviours coming from population models [7],

inventory models [5], and so on. In particular, due to preva-

lence of digital technology, investigating the partial averaging

of discrete-time NLTV systems with two time-scales will
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greatly simplify the stability analysis of such systems. Most

partial averaging results for discrete-time system in the litera-

ture have focused on local exponential stability properties of

the original nonlinear NLTV system and its partial averaged

system [2], [17]. For example, in [17], it was shown that if the

NLTV partial averaged system is locally exponentially stable

and both the original system and its partial averaged system

have identical equilibrium points, then the original system

is also locally exponentially stable. As the partial averaged

system is NLTV, it can exhibit much richer stability properties

such as uniform global or local asymptotic stability. Hence,

the existing results cannot be directly applicable. Moreover,

sometimes, due to the existence of parameter uncertainties, the

partial averaged system might not have the same equilibria

as the original system. Under such a condition, even if the

partial averaged system is uniformly locally exponentially

stable (ULES), we cannot conclude that the original system is

also ULES. Furthermore, in [2], [17], the nonlinear mappings

are assumed to be globally Lipschitz continuous, which is

quite restrictive.

This work extends the existing partial averaging techniques

to a more general settings, which include a) the weaker sta-

bility properties of NLTV partial averaged system; b) weaker

continuity conditions for NLTV original system and its partial

averaged system; c) weaker condition in terms of equilibria

of two systems. Moreover, we also provide two versions of

the closeness of solutions between the NLTV original system

and its partial averaged system, which can be used to show

different stability properties.

The paper is organized as follows. Section 2 provides the

needed preliminaries, followed by the problem formulation.

Section 3 presents our main results including closeness of so-

lutions and three stability results. In Section 4, two illustrative

examples are used to demonstrate how the obtained results

work, followed by the summary and future work. The proofs

are given in Appendix.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let N≥0 be the set containing all non-negative integers.

The notation R represents the set of all real numbers. For any

vector x ∈ Rn, |x| represents its Euclidean norm, which is

defined as |x| ,
√
x⊺x, where (·)⊺ represents the transpose. A

continuous function α : R≥0 → R≥0 is said to be of class K if

it is zero at zero and strictly increasing. A continuous function

σ : R≥0 → R≥0 is said to be of class L if it is converging to

zero as its argument grows unbounded. A continuous function

β : [0, a) × [0,∞) → [0,∞) is said to belong to class KL
if, for each fixed s, the mapping β(r, s) belongs to class K
with respect to r and for each fixed r, the mapping β(r, s) is

decreasing with respect to s and β(r, s) → 0 as s → ∞ [8].



The following family of discrete-time NLTV systems with

two time-scales are considered:

ΣD :

{

x(k + 1) = x(k) + εf(k, εk,x(k),ν)
x(k0) = x0 ∈ Rn, k0 ∈ N≥0

, (1)

where ε ∈ (0, ε0) is a small positive parameter used to form

time-scale separation. The variable ν is a set of parameters

as the perturbation. The nonlinear mapping f(·, ·, ·, ·) : N≥0×
R≥0 × Rn × Dν → Rn satisfies some assumptions where

Dν ⊂ Rm is a compact set.

Remark 1: Although the form of discrete-time NLTV pa-

rameterized system used in (1) is quite general as it appeared

frequently in literature, for example, [1], [2], [15], [18], and

reference therein, we still can build a more general form

compared with the system (1):

Σa
D :

{

z(k + 1) = f
a(k, εk, z(k),ν),

z(k0) = x0 ∈ Rn, k0 ∈ N≥0
, (2)

which also has two time-scales. We will discuss how to link

the obtained results for the system (1) to this more general

case (see Remark 7). ◦
Remark 2: Currently, the dynamics (1) have two time-scales.

One is the fast time-varying component (k) and the other is

slowly time-varying component (εk), which is in the same

time-scale with the slow dynamics x(k). We can extend the

similar concept to discrete-time dynamics with three time-

scales, for example, the dynamical system in the following

format:
{

x(k + 1) = x(k) + ε1f(k, ε2k,x(k),ν)
x(k0) = x0 ∈ Rn, k0 ∈ N≥0

. (3)

where ε1, ε2 are two small positive parameters. The relation-

ship between ε1, ε2 are specified here. When ε1 ≪ ε2, we

can treat ε2k as a part of fast time-varying component so that

classic averaging technique [2] can be applied. When ε1 ≫ ε2,

we can treat ε2k as a slowly varying parameter to system (3),

then classic averaging technique [2] and slowly varying system

analysis [8, Chapter 9] can be applied. When ε1 = O(ε2),
system (3) is consistent with system (1). ◦

Remark 3: For system (1), different from continuous-time

setting as in [14, Equation (3)]: ẋ = f(x, t, αt), in which

α ≫ 1 is used to ensure the existence of fast time-varying

components. For a discrete-time system, the fast time-varying

components cannot be arbitrarily fast as in the continuous-

time. Hence, system (1) is defined in slow time scale, and a

small parameter ε ≪ 1 is used to separate the time-scale. ◦
The first assumption assumes some continuity properties of

the nonlinear mapping f .

Assumption 1: The nonlinear mapping f(k, s,x,ν) is locally

Lipschitz continuous with respect to s, x, ν, uniformly in k

and s. Moreover, f(k, s,x,ν) is piece-wisely continuous in k.

Also, f(k, s,0,0) is uniformly bounded in k and s. �

For partial averaging for continuous system [14], locally

Lipschitz continuity is needed to ensure the existence and

uniqueness of solutions [8, Chapter 3]. For discrete-time

nonlinear systems, the condition for existence of solutions is

much weaker than its continuous-time counterpart. And locally

Lipschitz continuity in Assumption 1 is used to guarantee the

closeness of solutions property. Also, for continuous averaging

theory, forward complete [22, Definition 3] is required due to

the possible finite time escape property. In discrete time, such

condition is not required.

It is noted that the key idea of partial averaging techniques

is to average the effect of fast time-varying components

in the original system (1), which leads to a slowly time-

varying partial averaged system. Next assumption assumes the

existence of the partial averaged system.

Assumption 2: There is a function fpa(s,x) : R≥0×Rn →
Rn locally Lipschitz in (s,x), uniformly in s, such that for any

given ε ∈ (0, ε0), there exist KL function βpa and K∗ ∈ N≥0

such that ∀k ≥ k0 ≥ 0, ∀K ≥ K∗, ∀x ∈ Rn, the following

inequality holds:

∣

∣

∣

∣

∣

fpa(εk,x)−
1

K

k+K−1
∑

i=k

f(i, εk,x,0)

∣

∣

∣

∣

∣

≤ βpa(max{|x| , 1},K).

(4)

fpa is said to be the partial average of f . Moreover, fpa(εk,0)
is uniformly bounded in k and ε. �

If Assumption 2 holds, the following family of partial

averaged systems is generated:

Σp
D :

{

xp(k + 1) = xp(k) + εfpa(εk,xp(k))
xp(k0) = x0 ∈ Rn, k0 ∈ N≥0

. (5)

Remark 4: It is noted that both the discrete-time NLTV sys-

tem (1) and its partial averaged system (5) are parameterized

by the small parameter ε. Investigating the stability of two

systems uniformly with ε is challenging, though such uniform

stability with respect to ε is relatively easier in continuous-time

by changing the time-scale. For example, in the continuous-

time averaging, the following two systems are the same system

at different time-scale.

ẋ = fc

(

t

ε
,x

)

,x(t0) = x0 ∈ Rn (6)

dx

dτ
= εfc(τ,x),x(τ0) = x0 ∈ Rn, (7)

where τ = t
ε

for some positive ε. The singularity coming from

ε → 0 can be solved by time-scale changes as indicted in [8].

The averaged system introduced in time “t” has the following

form:

ẋ = fc,a(x),x(0) = x0 ∈ Rn, (8)

where fc,a(·) : Rn → Rn. This system is both time-invariant

and parameter-invariant. Hence its stability is uniform with

the initial time and small positive parameter ε. By using the

closeness of solutions between the system (6) and its averaged

system (8), we can conclude the uniform stability of the

system (6). In discrete-time, changing time-scale is relatively

more difficult than in continuous, hence, the partial averaged

system (5) is still parameter-dependent, leading to parameter-

dependent stability properties. ◦



III. MAIN RESULTS

This section presents a family of stability results to conclude

the stability properties of the original system (1) from the

stability properties of the partial averaged system (5). The

main result (Theorem 1) shows that if the partial averaged

system (5) is UGAS, uniformly in ε, then the original system

(1) is semi-globally practically asymptotically (SPA) stable,

uniformly in ε. A few corollaries are presented as an extension

of Theorem 1. This section starts from the closeness of

solutions in a finite time interval between original system (1)

and its partial averaged system (5).

A. Closeness of solutions on a finite time interval

The closeness of solutions in a finite time interval plays

a crucial role to prove the stability results. Moreover, these

results are useful on its own since they characterize the

approximating properties of the partial averaged system.

We consider a finite interval k ∈ [k0, k0 + [N
ǫ
]]1, for any

N ∈ N≥0. We divide the interval into sub-intervals of the

form [kl, kl+1] where l is the element of the index set Iε =

{0, . . . ,
[

N
εhε

]

}. Except for the last one, each sub-interval has

same length hε which is a function of ε satisfying lim
ε→0

hε = ∞
and lim

ε→0
εhǫ = 0. With initial value x(k0) = xp(k0) = x0 ∈

Rn, we can write the solutions of the original system (1) and

its partial averaged system (5) for the interval k ∈ [kl, kl+1]
respectively:

x(k) = x(kl) + ε

k−1
∑

i=kl

f(i, εi,x(i),ν), (9)

xp(k) = xp(kl) + ε

k−1
∑

i=kl

fpa(εi,xp(i)). (10)

To prove the closeness of solutions, two auxiliary series ξ(k)
and ω(k) are used:

ξ(k) = ξ(kl) + ε

k−1
∑

i=kl

f(i, εkl, ξ(kl)), (11)

ω(k) = ω(kl) + ε

k−1
∑

i=kl

fpa(εkl, ξ(kl)), (12)

where ξ(0) = ω(0) = x0, ω(kl) = xp(kl). The result for

closeness of solutions in finite time is presented as follows.

Proposition 1: (Closeness of solutions in a finite time

interval) Suppose that Assumptions 1, 2 hold. For any positive

pair (r, δ) and any positive integer N , there exists a positive

pair (ε∗, ν∗) such that for any ε ∈ (0, ε∗), |ν| < ν∗, any

integer k ∈ [k0, k0+
[

N
ε
]
]

, the solutions of the original system

(1) and the solutions of the partial averaged system (5) satisfy

|x(k)− xp(k)| ≤ δ, (13)

for all |x(k0)| = |xp(k0)| = |x0| ≤ r.

The proof of the above Proposition is provided in Appendix.

1[N
ε
] denotes the largest integer i such that i ≤ N

ǫ

Compared with Proposition 1, if the original system (1) is

not dependent on the parameter ν and Assumption 3 holds, a

stronger closeness of solutions can be obtained.

Assumption 3: There is a function fpa(s,x) : R≥0×Rn →
Rn locally Lipschitz in (s,x), uniformly in s, such that for

any given ε ∈ (0, ε0), there exists L function σ and K∗ ∈ N≥0

such that ∀k ≥ k0 ≥ 0, ∀K ≥ K∗, ∀x ∈ Rn, the following

inequality holds

∣

∣

∣

∣

∣

fpa(εk,x)−
1

K

k+K−1
∑

i=k

f(i, εk,x,0)

∣

∣

∣

∣

∣

≤ |x|σ(K). (14)

Moreover f(i, εk,x,0) = fpa(εk,0) = 0. �

Remark 5: Compared with the Assumption 2, the Assump-

tion 3 is a stronger assumption. The Assumption 3 shows

that when the system (1) and its partial averaged system have

the same equilibrium at the origin while the Assumption 2

does not give any assumption about the equilibrium of the

two systems. This makes it possible to conclude a stronger

closeness of solutions. ◦
Proposition 2: (Strong closeness of solutions in a finite time

interval) Let ν = 0 in (1). Suppose that Assumptions 1 and

3 hold. For any positive pair (r, δ) and any positive integer

N , there exists a positive ε∗ such that for any ε ∈ (0, ε∗),
any integer k ∈

[

k0, k0 +
[

N
ε

]]

, the solutions of the original

system (1) and the solutions of the partial averaged system (5)

satisfy

|x(k)− xp(k)| ≤ |x0| δ, (15)

for all |x(k0)| = |xp(k0)| = |x0| ≤ r.

Due to space limitation, the proof of Proposition 2 is omitted.

The result can be obtained by following the similar steps used

in the proof of Proposition 1.

B. Stability results

This subsection presents several stability results for the

system (1) from the stability properties of its partial averaged

system (5). Both systems are time-varying and ε dependent,

though (1) also depends on ν. For simplicity, we define

UGAS, uniformly in ε, semi-globally exponentially stability,

uniformly in ε for the partial averaged system (5). From

stability properties of the partial averaged system, we can

conclude the stability properties of the original system.

Definition 1: System (5) is UGAS, uniformly in ε if there is

a KL function β(·, ·) such that for any ε ∈ (0, ε0), k ≥ k0 ≥ 0,

it follows

|xp(k)| ≤ β(|xp(k0)| , (k − k0)ε), (16)

for all xp(k0) ∈ Rn. ◦
In Definition 1, though the convergence speed of xp(k) de-

pends on ε, the KL function β is independent of ε. Following

the similar definition [21, Definition 1], we say such a stability

property is uniformly in ε. The definition of UGES, uniformly

in ε is similar as the Definition 1.

Definition 2: System (5) is semi-globally exponential sta-

bility, uniformly in ε if there exists λ,A > 0 such that for



any positive r, there exists a positive ε∗ such that for any

ε ∈ (0, ε∗), k ≥ k0 ≥ 0, it follows

|xp(k)| ≤ A |xp(k0)| e−λ(k−k0)ε, (17)

for all |xp(k0)| ≤ r. ◦
With the closeness of solutions in finite time (Proposition

1) and the assumption that the partial averaged system (5) is

UGAS, uniformly in ε, we can conclude a weaker stability

properties of the original system (1) as Theorem 1.

Theorem 1: Suppose that Assumptions 1 and 2 hold and the

partial averaged system (5) is UGAS, uniformly in ε, with a

KL function β, for any given positive pair (r, δ), there exists

positive ε∗, ν∗, such that for any ε ∈ (0, ε∗), |ν| < ν∗, and

k ≥ k0 ≥ 0, the solutions of (1) satisfy

|x(k)| ≤ max{β(|x(k0)| , (k − k0)ε), δ)}, (18)

for all |x(k0)| ≤ r.

A sketch of proof of Theorem 1 is presented in Appendix.

Theorem 1 shows the original system (1) is SPA (semi-global

practically asymptotically) stable, uniformly in ε, when the

partial averaged system (5) is UGAS, uniformly in ε. Corollar-

ies 1 and 2 show the stability properties of the original system

(1) when its partial averaged system is UGES, uniformly in ε

under different types of closeness of solutions.

Corollary 1: Suppose that Assumptions 1 and 2, and the

partial averaged system (5) is UGES, uniformly in ε, with a

positive pair (A, λ). For any positive pair (r, δ), there exists

positive ε∗, ν∗, such that for any ε ∈ (0, ε∗), |ν| < ν∗, and

k ≥ k0 ≥ 0, the solutions of (1) satisfy

|x(k)| ≤ A |x(k0)| e−λ(k−k0)ε + δ, (19)

for all |x(k0)| ≤ r.

When the strong closeness of solutions (Proposition 2)

holds, the original system (1) will have a stronger stability

property.

Corollary 2: Let ν = 0 in (1). Suppose that Assumption 1, 3

hold, and the partial averaged system (5) is UGES, uniformly

in ε, then the system (1) is semi-globally exponentially stable,

uniformly and ε.

Remark 6: In this work, only global stability properties are

considered. The idea can be easily extended to local stability

properties. The local version of Corollary 2 is consistent with

local exponential stability results obtained in [2], [17]. ◦
Remark 7: When a more general class of discrete-time

NLTV systems with two time-scales (2) is considered, the

concept of multi-step consistency [13, Definition 2] can be

adapted to link system (1) with system (2). If two systems

have multi-step consistency, they have some closeness of

solutions in a finite time interval as shown in [13, Definition

2]. Consequently, the stability results obtained for (1) can be

easily extended to (2) as the proof of Theorem 1 indicates. ◦

IV. SIMULATION EXAMPLES

Two simulation examples are presented to demonstrate how

partial averaging techniques can work. The first example

shows that the solutions of a discrete-time NLTV system with

two time scales are closed to the solutions of a partial averaged

system in a finite time interval, which verifies Proposition

1. The second example shows that when a partial averaged

system is UGES, uniformly in ε, under a stronger assump-

tion, the original system is semi-globally exponentially stable,

uniformly in ε as stated in Corollary 2.

A. Example 1

Let us consider the least mean square (LMS) algorithm with

time varying parameters. For a linear mapping y = x
Tωk,

where x ∈ Rn, y ∈ R are the input and output respectively,

and ωk ∈ Rn is the unknown time varying parameter that we

want to estimate using LMS algorithms. It is assumed that the

parameters ωk = ω(εk) are slowly varying and parametrized

by ε. Also the input x(k) is periodic. The following LMS

algorithm can be used [17, Chapter 4]:

ω̂(k + 1) = ω̂(k)− εx(k)x(k)T (ω̂(k)− ω(εk)), (20)

where ω̂(k) are the estimated parameters, and ε is the learning

rate. We can see that system (20) has a form of system (1)

provided that x(k) is periodic, thus the discrete-time partial

averaging method can be applied to simplify the analysis of the

original system system (20), which has the following partial

averaged system

ω̂p(k + 1) = ω̂p(k)− εR(ω̂p(k)− ω(εk)), (21)

where R = limK→∞
1
K

∑k+K−1
i=k x(k)x(k)T . Thus our re-

sults can be directly applicable.

Next we simulate a scalar case: the input x(k) = sin(π5 k),
the unknown parameter ω(k) = cos(π5 εk), ω̂(0) = ω̂p(0) = 1.

Consequently, the following original system and partial aver-

aged system are obtained:

ω̂(k + 1) = ω̂(k)− ε sin2(
π

5
k)(ω̂(k)− cos(

π

5
εk)), (22)

ω̂p(k + 1) = ω̂p(k)− 0.5ε(ω̂p(k)− cos(
π

5
εk)). (23)

It is easy to check that Assumptions 1 and 2 satisfy for the

system (22) and the system (23). We can see that system (23)

is only uniformly bounded. Hence, Proposition 1 is applicable

with ν = 0. To verify the results in Proposition 1, ε = 0.2 and

ε = 0.05 are selected. It is worthwhile to highlight that when

ε = 0.05 is selected, ω̂k updates slowly, requiring a large time

interval. As Proposition 1 indicates, a smaller ε will lead to a

smaller difference between two solutions as shown in Fig.1.

B. Example 2

To show how Corollary 2 works, a simple scalar system is

considered:

x(k + 1) = x(k)− ε(2 + sin(
π

4
εk))(1− 2 sin(

π

4
k))x(k),

(24)

where x ∈ R and k ≥ k0 = 0. This system has the following

partial averaged system:

x(k + 1) = x(k)− ε(2 + sin(
π

4
εk))x(k). (25)

By Lyapunov method, we can check that the system (25) is

UGES, for any ε ∈ (0, 2
3 ). It is also verified that the system
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Fig. 1. Distance between x and xp with ε = 0.2 and ε = 0.05

(24), (25) satisfy Assumptions 1 and 3. As ν = 0, Corollary

2 is thus applicable, indicating that the system (24) is semi-

globally exponentially stable, uniformly in ε. Both ε = 0.1 and

ε = 0.05 are used with x(0) = xp(0) = 7. Fig.2 shows the

trajectories of two systems with different choice of ε, which

is consistent with Corollary 2.
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Fig. 2. x and xp with ε = 0.1 and ε = 0.05

V. CONCLUSION AND FUTURE WORK

This work focuses on extending the existing results of partial

averaging techniques for discrete-time nonlinear time-varying

systems to more general settings when the partial averaged

system is uniformly globally stable, instead of uniformly lo-

cally exponentially stable. Two types of closeness of solutions

between the original system and the partial averaged system

are presented, leading to various stability properties of the

original system coming from different stability properties of

its partial averaged system. The obtained results can be used

to analyse the well-known LMS estimation algorithm. Our

future work will focus on extending the obtained results to

more general systems with the consideration of more general

stability properties such as input-to-state stability.

VI. APPENDIX

Proof of Proposition 1.

For the discrete-time original system (1), and its partial aver-

aged system (5), the existence and uniqueness of the solutions

for any given finite time interval can be guaranteed by the

local Lipschitz continuity properties of f , fp respectively for

bounded x0. Therefore, it is assumed that there exists R > r

such that {|x(k)| , |xp(k)|} ≤ R for any k ∈ [k0, k0 + [N
ε
]].

From Assumptions 1 and 2, there exists a positive con-

stant L, which is the largest Lipschitz constant of f for

|x(k)| ≤ R, while Lp is the largest Lipschitz constant

for |xp(k)| ≤ R. Also, there exists P > 0 such that

max|x|≤R{|f(k, εk,x,0)| , |fpa(εk,x)|} ≤ P .
Next, the difference between two solutions is considered.

|x(k)− xp(k)| ≤ |x(k)− ξ(k)|+ |ξ(k)− ω(k)|
+ |ω(k)− xp(k)| . (26)

We can bound three parts in (26) separately.
Step 1 shows the closeness of solutions between x(k) and

ξ(k). For k ∈ [kl, kl+1), using (9) and (11), it has

|x(k)− ξ(k)|

≤ |x(kl)− ξ(kl)|+ ε

k−1
∑

i=kl

|f(i, εi,x(i),ν)− f(i, εkl, ξ(kl),0)|

≤ |x(kl)− ξ(kl)|+ εL

k−1
∑

i=kl

(ε(i− kl) + |x(i)− ξ(kl)|+ |ν|)

≤(1 + εhεL) |x(kl)− ξ(kl)|+ (εhε)
2L(1 + P ) + εhεL |ν| .

(27)

Note that x(k0) = ξ(k0) = x0 and l ≤ N
ǫhǫ

, for k ∈ [k0, k0 +

[N
ǫ
]], it follows that

|x(k)− ξ(k)|

≤((εhε)
2L(1 + P ) + εhεL |ν|)

l−1
∑

i=0

(1 + εhεL)
i

≤(εhεL(1 + P ) + L |ν|)NeNL. (28)

For any given positive δ, there exists a positive pair (ε∗1, ν
∗),

such that for any ε1 ∈ (0, ε∗1) and |ν| ≤ ν∗, εhεL(1 +
P )NeNL ≤ δ

6 and L |ν|NeNL ≤ δ
6 holds. This leads to

|x(k)− ξ(k)| ≤ δ
3 .

Step 2 shows the closeness of solutions between ξ(k) and

ω(k). For k = kl+1, by using (11), (12), and Assumption 2,

it follows that

|ξ(kl+1)− ω(kl+1)|

≤ |ξ(kl)− ω(kl)|+ ε

kl+1−1
∑

i=kl

|f(i, εkl, ξ(kl),0)− fpa(εkl, ξ(kl))|

≤ |ξ(kl)− ω(kl)|+ εhεβpa(max {|x(kl)| , 1}, hε). (29)

Since ξ(k0) = ω(k0) = x0, by using induction, for l ∈ Iε,

the following inequality holds:

|ξ(kl)− ω(kl)| ≤[
N

εhε

]εhεβpa(max {R, 1}, hε)

≤Nβpa(max {R, 1}, hε). (30)



For k ∈ [kl, kl+1), using the uniform boundedness of f and

fp, it yeilds

|ξ(k)− ω(k)|

≤ |ξ(kl)− ω(kl)|+ ε

k−1
∑

i=kl

|f(i, εkl, ξ(kl),0)− fpa(εkl, ξ(kl))|

≤Nβpa(max {R, 1}, hε) + 2εhεP. (31)

And (31) holds for k ∈ [k0, k0 + [N
ε
]]. For any given positive

δ, there exists a positive ε∗2 such that for any ε1 ∈ (0, ε∗2), it

has |ξ(k)− ω(k)| ≤ δ
3 .

Step 3 shows the closeness of solutions between ω(k) and

xp(k). Using (12) and (10), for k ∈ [kl, kl+1), we have

|ω(k)− xp(k)|

≤ε

k−1
∑

i=kl

|fpa(εkl, ξ(kl))− fpa(εi,xp(i))|

≤εLp

k−1
∑

i=kl

ε |i− kl|+ |ξ(kl)− xp(i)| (32)

With the help of (12), (31) and discrete Gronwall Lemma,

we have

|ω(k)− xp(k)|
≤εLphε(εhε +Nβpa(max {R, 1}, hε) + 3εhεP )

+ εLp

k−1
∑

i=kl

|ω(i)− xp(i)|

≤εhεLp(εhε(1 + 3P ) +Nβpa(max {R, 1}, hε))e
εhεLp .

(33)

And (33) holds for k ∈ [k0, k0 + [N
ε
]]. For any given positive

δ, there exists a positive pair ε∗3 such that for any ε1 ∈ (0, ε∗3),
the following inequality |ω(k)− xp(k)| ≤ δ

3 holds.

Step 4 concludes the result by combining the previous three

steps. By selecting ε∗ = min{ε∗1, ε∗2, ε∗3}, ν∗, (13) holds. This

completes the proof. �

Sketch of Proof of Theorem 1.

If the partial averaged system (5) is UGAS, there exists

a KL function β such that for any given positive pair (r, δ)
such that for any |x0| ≤ r, there exists a positive integer

N = N(r, δ) such that |xp(k)| ≤ β(|x0| , (k− k0)ε) ≤ δ
3 , for

k = k0 + [N
ε
]. For this fixed N , by applying the closeness of

solutions on the finite time interval [k0, k0+[N
ε
]] between the

original system (1) and its partial averaged system (5), with

sufficiently small ε1, we have |x(k)− xp(k)| ≤ δ
3 . Now we

have |x(k)| ≤ 2δ
3 for k = k0 + [N

ε
].

We will show from the next step, the trajectory will stay in

δ-neighborhood of the origin.

Reinitialize xp(k) = x(k) at k = k0 + [N
ε
], with

sufficient small ε2, the closeness of solutions still holds

|x(k)− xp(k)| ≤ δ
3 , for k ∈ [k0+[N

ε
], k0+2[N

ε
]]. This implies

|x(k)| ≤ δ for k ∈ [k0 + [N
ε
], k0 +2[N

ε
]], and |x(k)| ≤ 2δ

3 for

k = k0 + 2[N
ε
].

By induction, with sufficient small ε2, we have |x(k)| ≤
δ, for k ≥ k0 + [N

ε
]. Now with ε = min{ε1, ε2}, we have

|x(k)| ≤ β(|x0| , (k − k0)ε) +
δ
3 for k ∈ [k0, k0 + [N

ε
]], and

|x(k)| ≤ δ, for k ≥ k0+[N
ε
]. Therefore, we can conclude that

inequality (18) holds.

�

REFERENCES

[1] N. O. Amelina, O. N. Granichin, and A. L. Fradkov. The method of
averaged models for discrete-time adaptive systems. Automation and
Remote Control, 80(10):1755–1782, 2019.

[2] E.-W. Bai, L.-C. Fu, and S. S. Sastry. Averaging analysis for discrete
time and sampled data adaptive systems. IEEE Transactions on Circuits
and Systems, 35(2):137–148, 1988.

[3] F. Bullo. Averaging and vibrational control of mechanical systems. SIAM
Journal on Control and Optimization, 41(2):542–562, 2002.

[4] X. Cheng, Y. Tan, and I. Mareels. On robustness analysis of linear
vibrational control systems. Automatica, 87:202–209, 2018.

[5] B. Ferguson and G. Lim. Dynamic Economic Models in Discrete Time:
Theory and Empirical Application. Routledge, London, 2003.

[6] J. K. Hale. Ordinary Differential Equations. John Wiley and Sons, New
York, 1969.

[7] F. Hinkelmann, M. Brandon, B. Guang, R. McNeill, G. Blekherman,
A. Veliz-Cuba, and R. Laubenbacher. Adam: Analysis of discrete models
of biological systems using computer algebra. BMC bioinformatics,
12:295, 07 2011.

[8] H. K. Khalil. Nonlinear systems. Prentice Hall, 3 edition, 2002.
[9] R. Kosut, B. Anderson, and I. Mareels. Stability theory for adaptive

systems: Method of averaging and persistency of excitation. IEEE
Transactions on Automatic Control, 32(1):26–34, 1987.

[10] S.-J. Liu and M. Krstic. Stochastic averaging and stochastic extremum
seeking. Springer Science & Business Media, 2012.

[11] C. Manzie and M. Krstic. Extremum seeking with stochastic perturba-
tions. IEEE Transactions on Automatic Control, 54(3):580–585, 2009.

[12] S. Meo and L. Toscano. Some new results on the averaging theory
approach for the analysis of power electronic converters. IEEE Trans-
actions on Industrial Electronics, 65(12):9367–9377, 2018.
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