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Abstract— This paper extends the existing singular perturba-
tion results to a class of nonlinear discrete-time systems whose
fast dynamics have limit cycles. By introducing the discrete-time
reduced averaged system, the main result (Theorem 1) shows
that for a given fixed time interval, the solutions of the original
system can be made arbitrarily close to the solutions of the
reduced averaged system and the boundary layer system. From
this result, the stability properties of the original system are
obtained from the stability properties of the reduced averaged
system and the boundary layer system. Simulation results
support the theoretical findings.

I. INTRODUCTION

Singular perturbation techniques [1, 13, 12] have been
widely used in engineering applications when a dynamic
system consists of a fast subsystem and a slow subsystem,
see, for example, observer-based feedback control systems
[13], the nonlinear high gain observers [12], and extremum
seeking control [21], and references therein. The key idea
of singular perturbation is time scale separation. More pre-
cisely, the slow sub-system can only observe the steady-state
behaviors of the fast sub-system while the fast dynamics will
treat the slow sub-system as a “constant”. This leads to a
boundary layer system and a reduced order system, which
can be designed independently. Due to its nonlinear nature,
the steady-state behaviours of the fast subsystem can have
multiple equilibria or multiple limit cycles [12, Chapeter
1], making the stability analysis more complicated for the
original system.

There are many existing results for a large class of
engineering systems. For continuous-time nonlinear systems,
the fast subsystem can converge to equilibrium [13, 12, 9]
or limit cycles [1, 10, 25, 6]. However, for discrete-time
nonlinear systems, the existing results have only focused on
the case when the fast subsystem has a unique equilibrium
point [20, 4, 3, 19, 28, 27]. To the best of authors’ knowledge,
the existence of limit cycles in the fast subsystem has not
been considered, though many engineering systems exhibit
limit cycles. The study of limit cycles has “long history”
for discrete-time systems with applications from population
models and Lienard systems [24, 8], digital filters [14, 15],
digital phase-locked loops [18], discrete-time systems with
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power rule [26, 16] and so on. Thus it is important to
extend the existing singular perturbation results for nonlin-
ear discrete-time dynamics, which have the fast subsystem
admitting limit cycles.

This work extends the singular perturbation techniques for
a class of discrete-time nonlinear systems whose the fast
subsystem admits a limit cycles. The main result (Theorem
1) presents the closeness of solutions between the original
system, the boundary layer system, and the reduced system
on a finite time interval. With the help of Theorem 1,
Corollary 1 concludes the stability property of the singularly
perturbed system from the stability properties of the reduced
system and the boundary layer system.

This paper is organized as follows. Section 2 presents the
needed preliminaries and the problem formulation. Section 3
provides the main results. Two simulation examples validate
the obtained results in Section 4.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Let Z+ be the set containing all non-negative integers.
The notation R represents the set of all real numbers. For
any vector x ∈ Rn, |x| represents its Euclidean norm,
which is defined as |x| ,

√
xᵀx, where (·)ᵀ represents

the transpose. |x|A represents the distance from a point x
to a closed set A that |x|A = infζ∈A |ζ − x|. dH(A,B)
is the Hausdorff distance between two subsets A and B.
The set Br is defined as Br := {x ∈ Rn ||x| ≤ r}. The set
containing all essentially bounded measurable functions is
denoted as L∞. For any w(·) ∈ L∞ its norm is defined
‖w‖∞ = supk≥0 |w(k)|, k ∈ Z+.

A continuous function γ: R≥0 → R≥0 belongs to class-K
if it is strictly increasing and γ(0) = 0. It is of class-K∞ if it
belongs to class-K and becomes unbounded as its argument
becomes unbounded. A function β : R≥0 ×R≥0 → R≥0 is
of class-KL if β(·, t) belongs to class-K for each t ≥ 0 and
β(s, ·) decreases to zero as its argument → ∞ for each s
[12, Chapter 3].

The following class of discrete-time nonlinear systems are
considered:

x(k + 1) = f(x(k)), (1)

where state x(k) ∈ Rn, and for all k ∈ Z+. Next the
definition of limit sets is provided, followed by the stability
properties defined when (1) exhibits limit cycles.

Definition 1: (Limit set) [11] A point P ∈ D is a limit
point of the trajectory sk(x) of (1) if there exists a monotonic
integer sequence {kn}∞n=0, with kn → ∞ as n → ∞, such



that skn → P as n → ∞. The set of all limit points of
sk(x), k ∈ Z+ is the limit set w(x) of sk(x) for system (1).

Definition 2: (Periodic orbit) [17] An orbit O(x0) =
{x0, x1, x2, ...} of (1) is said to be periodic with a period
of p ≥ 2 if the following holds

xp = x0 and xi 6= x0, for 1 ≤ i ≤ p− 1.
Definition 3: (Limit cycle) [17] An orbit O(x0) of (1) is

said to be asymptotically periodic if its limit set is a periodic
orbit.

Remark 1: The limit set defined in Definition 3 is an
asymptotically stable limit cycle. If a compact set H, which
contains the limit cycle, is defined, such a compact set
satisfies the following inequality:

|x(k)|H ≤ β(|x(0)|H, k), (2)

for some β ∈ KL. ◦

B. Problem formulation

This paper focuses on the following discrete-time nonlin-
ear system with two time scales for any k ∈ Z+:

x(k + 1) =x(k) + εf(x(k), z(k)), x(0) = x0 ∈ Rn,
z(k + 1) =g1(x(k), z(k)), z(0) = z0 ∈ Rm, (3)

where the positive small parameter ε satisfies ε ∈ (0, ε0) for
some positive constant ε0.

The system (3) has both fast dynamics (z-subsystem) and
slow dynamics (x-subsystem) when ε is sufficiently small.

For the convenience of further analysis, we denote that
g(x(k), z(k)) = g1(x(k), z(k))− z(k). Now system (3) can
be re-written as:

x(k + 1) =x(k) + εf(x(k), z(k)), x(0) = x0,

z(k + 1) =z(k) + g(x(k), z(k)), z(0) = z0. (4)

The following assumption is widely used for the nonlinear
mappings f and g in (4).

Assumption 1: The nonlinear mappings f : Rn ×Rm →
Rn and g : Rn × Rm → Rm are locally Lipschitz with
respect to x, z.

Remark 2: For continuous-time nonlinear systems, this
assumption is always needed to ensure the existence and
uniqueness of solutions [12, Chapter 3]. For discrete-time
nonlinear systems (4), the condition for existence of solutions
is much weaker than its continuous-time counterpart. In this
work, we use this assumption to show the closeness of
solutions. Our future work will relax this assumption. ◦

Remark 3: For continuous-time nonlinear systems [22,
10], the condition of forward completeness [23, Definition 3]
is required to prevent the possible finite escape phenomenon
from happening. Such a condition is not needed for discrete-
time dynamics. ◦

Similar to the standard singular perturbation technique [12,
2], we first ”freeze” x, i.e., ε = 0, in (4), x(k+1) = x(k) =
x. That is, the slow state x(k) becomes a constant vector
x ∈ Rn. This leads to the following boundary layer system:

zb(k + 1) = zb(k) + g(x, zb(k)), zb(0) = z0. (5)

It is assumed that the boundary layer system (5) admits the
limit cycle parameterized by the constant x with some nice
boundedness property as shown in the following assumption.

Assumption 2: For any R > 0, the set Hx that contains
the parameterized limit cycle is bounded for any x ∈ BR.
For a given positive constant rb, we define a compact set
Mx

rb
as Mx

rb
:=
{
z ∈ Rm

∣∣|z|Hx ≤ rb}. It is assumed that
the boundary layer system has local asymptotic stability.

Assumption 3: Let (r, rb) be any given positive pair. The
trajectories of (5) represented as zb(k, x, z0) asymptotically
converge to the parameterized limit cycle Hx for all x ∈ Br.
More precisely, there exists a βb ∈ KL such that for any
k ∈ Z+, the following holds:

|zb(k, x, z0)|Hx ≤ βb(|z0|Hx , k), (6)

for all z0 ∈ Mx
rb

. Moreover, for any r ≥ 0 and x1, x2 ∈
Br, there exists LH > 0 such that the distance measure
dH(Hx1

,Hx2
) satisfies the following condition:

dH(Hx1
,Hx2

) ≤ LH |x1 − x2| . (7)
Remark 4: The condition (6) states that the fast dynamics

asymptotically converge to a limit cycle. Such an assumption
has been used for singularly perturbed systems in continuous-
time when the fast dynamics admits limit cycles, for ex-
ample, [10, 1, 22]. Similarly, similar to its continuous-time
counterpart, condition (7) requires that the distance between
two limit cycles (x = x1 and x = x2) needs to have some
Lipschitz continuity as discussed in [6]. ◦

Similar to continuous-time cases [22, 10, 6], when
fast discrete-time dynamics have limit cycles, the reduced
discrete-time dynamics might have fast time-varying compo-
nents. Thus the averaging techniques can be used to simplify
the stability analysis of the reduced system. Assumption
4 admits the existence of a well-defined average fav with
respect to f .

Assumption 4: For the trajectory of the system (5)
zb(k, x, z0) starting from any x ∈ Rn, z0 ∈ Rm, there is
a locally Lipschitz continuous function fav(x) : Rn → Rn
such that there exist βav ∈ KL and N∗ ∈ Z+ such that for
all N ≥ N∗, the following inequality holds:∣∣∣∣∣fav(x)− 1

N

N−1∑
k=0

f(x, zb(k, x, z0))

∣∣∣∣∣
≤ βav(max{|x| , ‖zb‖∞ , 1}, N). (8)

With this assumption, the following reduced averaged system
is obtained:

xr(k + 1) = xr(k) + εfav(xr(k)), xr(0) = x0. (9)

Sometimes, we also call (9) as the reduced system when no
confusion will arise.

Remark 5: In general, when a family of limit cycles exist,
we should define the reduced system (9) using difference
inclusion xr(k + 1) ∈ xr(k) + εFav(xr(k)) where

Fav(x) =
⋃

z0∈Mx
rb

{fav(x)}. (10)

For the simplicity of presentation, this paper only considers
the case when only one limit cycle exists and the set



value map Fav(x) is singleton. The similar analysis can be
extended to multiple limit cycles. ◦

Remark 6: A speical case of our result is that the bound-
ary layer system (5) converges to a unique equilibrium as
shown in [7, 20, 3].

III. MAIN RESULTS

This section discusses the closeness of solutions between
the discrete-time nonlinear system (4) (solutions denoted as
(x(k), z(k))), its reduced system (9) (solutions denoted as
xr(k)), and its boundary layer system (5) (solutions denoted
as zb(k)) on a finite interval k ∈ [0, [Nε ]]1, for any N ∈ Z+.

We divide the interval [0, [Nε ]] into sub-intervals of the
form [kl, kl+1] where l is the element of the index set
Iε = {0, . . . , [ Nεhε ]}. Except for the last sub-interval, each
sub-interval has the same length hε. The nonlinear mapping
hε is a function of ε satisfying lim

ε→0
hε =∞ and lim

ε→0
εhε = 0.

With an initial value (x0, z0) ∈ Rn × Rm, the solutions
of (4) for the interval k ∈ [kl, kl+1) are:

x(k) = x(kl) + ε

k−1∑
i=kl

f(x(i), z(i)), (11)

z(k) = z(kl) +

k−1∑
i=kl

g(x(i), z(i)), (12)

while the solutions of (9) take the following form:

xr(k) = xr(kl) + ε

k−1∑
i=kl

fav(xr(i)). (13)

Let ξ(0) = x0, η(0) = z0, and ω(0) = x0, three auxiliary
series ξ(k), η(k) and ω(k) are used in the analysis:

ξ(k) = ξ(kl) + ε

k−1∑
i=kl

f(ξ(kl), η(i)), (14)

η(k) = η(kl) +

k−1∑
i=kl

g(ξ(kl), η(i)), η(kl) = z(kl), (15)

ω(k) = ω(kl) + ε

k−1∑
i=kl

fav(ξ(kl)), ω(kl) = xr(kl). (16)

It is noted that for each k ∈ [kl, kl+1), η(k) is the solution
of the boundary layer system (5) with a fixed x = ξ(kl) and
an initial value of η(kl) = z(kl).

The main result is presented as follows.
Theorem 1: Assume that Assumptions 1− 4 hold for the

system (4). For any positive real triple (r, rb, δ) and any
positive integer N , there is a positive ε∗ such that for any
ε ∈ (0, ε∗), any integer k ∈

[
0,
[
N
ε

]]
, the solutions of (4),

(5), and (9) satisfy

|x(k)− xr(k)| ≤ δ, (17)
|z(k)|Hx(k) ≤ βb(|z0|Hx0 , k) + δ, (18)

where x0 ∈ Br, z0 ∈Mx0
rb

.

1[N
ε
] denotes the largest integer i such that i ≤ N

ε

This proof follows a similar steps used in [22, 6] for
continuous-time systems.

Proof: For the discrete-time system (4), its boundary
layer system (5), and its reduced system (9), the existence
and uniqueness of the solutions for any given finite time
interval are guaranteed by the local Lipschitz continuity
properties of f , g, and fav respectively when the initial
conditions x0, z0 are bounded. Consequently, there exist
R > r, Rb > rb such that x(k), ξ(k), ω(k), xr(k) ∈ BR,
z(k), η(k) ∈

⋃
x∈BR

Mx
Rb
∈ M for any k ∈ [0, [Nε ]], where

M is a compact set.
From Assumption 1, L is denoted as the largest Lipschitz

constant of f and g on BR × M while Lav is the Lip-
schitz constant of fav on BR. Also, there exists P > 0
that max

x∈BR,y∈M
{|f(x, y)| , |g(x, y)| , |fav(x)|} ≤ P . From

Assumption 2, the constant LH is the Lipschitz constant from
the inequality (7).

The first part will prove (17)
For convenience, the following notations are used

α(k) = |z(k)− η(k)| , ᾱ = max
0≤k≤[Nε ]

α(k), (19)

φ(k) = |x(k)− ξ(k)| , φ̄ = max
0≤k≤[Nε ]

φ(k). (20)

The difference between two solutions is considered

|x(k)− xr(k)| ≤ |x(k)− ξ(k)|+ |ξ(k)− ω(k)|
+ |ω(k)− xr(k)| . (21)

We can bounded three parts in (21) separately.
Step 1 shows the closeness of solutions between z and η.

For k ∈ [kl, kl+1), using η(kl) = z(kl), by using (12),
(15) and (19), it follows that

α(k) =

k−1∑
i=kl

|g(x(i), z(i))− g(ξ(kl), η(i))|

≤
k−1∑
i=kl

L (|x(i)− ξ(kl)|+ |z(i)− η(i)|)

≤
k−1∑
i=kl

L(|x(kl)− ξ(kl) + x(i)− x(kl)|

+ |z(i)− η(i)|)

≤
k−1∑
i=kl

L(|x(kl)− ξ(kl)|+ |x(i)− x(kl)|) (22)

+

k−1∑
i=kl

Lα(i), (23)

where (22) can be further bounded by
k−1∑
i=kl

L(|x(kl)− ξ(kl)|+ |x(i)− x(kl)|)

≤ L

(
k−1∑
i=kl

φ(kl) +

k−1∑
i=kl

i−1∑
s=kl

εf(x(s), z(s))

)
≤ Lhε (φ(kl) + hεεP ) , (24)



from the continuity of f .
The second term of α(k), i.e. (23), by (24) and discrete-

time Gronwall lemma [5], for k ∈ [kl, kl+1), we have

α(k) ≤Lhε (φ(kl) + hεεP ) eLhε ≤ ᾱ, (25)

where

ᾱ = Lhε
(
φ̄+ hεεP

)
eLhε . (26)

Step 2 shows the closeness of solutions between x and ξ.
For k ∈ [kl, kl+1), using (11) and (14), we have

φ(k) ≤φ(kl) + ε

k−1∑
i=kl

|f(x(i), z(i))− f(ξ(kl), η(i))|

≤φ(kl) + ε

k−1∑
i=kl

L(|x(i)− ξ(kl)|+ |z(i)− η(i)|)

≤φ(kl) + εL

k−1∑
i=kl

(|x(kl)− ξ(kl)|

+ |x(i)− x(kl)|+ α(i)), (27)

which can be further bounded by using (24) and (25):

φ(k) ≤φ(kl) + εLhε (φ(kl) + hεεP

+ Lhε(φ(kl) + hεεP )eLhε

=(1 + εLhε(1 + Lhεe
Lhε))φ(kl)

+ εLhε(hεεP + LhεhεεPe
Lhε)

=(1 + εhεa)φ(kl) + εhεεb, (28)

where

a =L(1 + Lhεe
Lhε),

b =L(hεP + LhεhεPe
Lhε). (29)

As φ(0) = |x(0)− ξ(0)| = 0, by using Induction, for
k ∈ [kl, kl+1), it yields

φ(k) ≤(1 + εhεa)lφ(0) +
(1 + (1 + εhεa)l−1)εhε · εl · b

2

≤ (1 + (1 + εhεa)l−1)εhε · εl · b
2

. (30)

Now we define mapping hε such that limε→0 εhεa = 0.
Since l ∈ {0, ..., [ Nεhε ]}, we have

φ̄ ≤
(1 + (1 + εhεa)[ Nεhε ]−1)εhε[

N
εhε

]εb

2

≤ (1 + (1 + εhεa)
1

εhεa
Na)εNb

2

=ε
(1 + eNa)Nb

2
. (31)

By (31), for a given δ, there is a ε∗1 that for any ε ∈ (0, ε∗1),
φ̄ ≤ δ

3 .
Also, with the consideration of (30) in (26), with small

small ε, ᾱ will approach to 0. This property will be used for
the proof of (18).

Step 3 shows the closeness of solutions between ξ and ω.
For k ∈ [kl, kl+1), using (14) and (16), we have

|ξ(k)− ω(k)| ≤|ξ(kl)− ω(kl)|

+ε

k−1∑
i=kl

|f(ξ(kl), η(i))− fav(ξ(kl))| . (32)

Since η(k) is the solution of (5) with fixed x = ξ(kl) and
initial η(kl) = z(kl), we can direct use (8) in Assumption 4
for (32).

Let us check k = kl. By (6) in Assumption 3 and (8) in
Assumption 4, by choosing hε > N∗, it results in

|ξ(kl+1)− ω(kl+1)| ≤ |ξ(kl)− ω(kl)|
+ εhεβav(max{|ξ(kl)|, ‖η‖∞}, hε). (33)

Since ξ(0) = ω(0) = x0, by Induction, for l ∈ Iε, the
following inequality holds:

|ξ(kl)− ω(kl)| ≤[
N

ε
]εβav(max{R, d}, hε)

≤Nβav(max{R, d}, hε), (34)

where d = maxη∈M |η|.
Next will check k ∈ (kl, kl+1). Using (32) and the

boundedness of f and fav yields

|ξ(k)− ω(k)| ≤Nβav(max{R, d}, hε) + 2εhεP. (35)

And (35) holds for k ∈ [0, [Nε ]].
For a given δ, we choose a sufficiently large hε, and there

exist an ε∗2 such that for (0, ε∗2), |ξ(k)− ω(k)| ≤ δ
3 .

Step 4 shows the closeness of solution between ω and xr.
Using (16), (13), ω(0) = xr(0) = x0, and ω(kl) = xr(kl),

for k ∈ [kl, kl+1), it can be shown that

|ω(k)− xr(k)| ≤ε
k−1∑
i=kl

|fav(ξ(kl))− fav(xr(i))|

≤εLav
k−1∑
i=kl

|ξ(kl)− xr(i)|

≤εLav
k−1∑
i=kl

(|ξ(kl)− ω(kl)|

+ |ω(kl)− ω(i)|+ |ω(i)− xr(i)|). (36)

With the help of (16), (34), it follows that

|ω(k)− xr(k)| ≤ εLav
k−1∑
i=kl

(
Nβav(max{R, d}, hε)

+ε

i−1∑
s=kl

|fav(ξ(kl))|
)

+ εLav

k−1∑
i=kl

|ω(i)− xr(i)|

≤ εLavhε(Nβav(max{R, d}, hε) + εhεP )

+εLav

k−1∑
i=kl

|ω(i)− xr(i)|. (37)



By using discrete-time Gronwall Lemma [5], we have

|ω(k)− xr(k)| ≤εLavhε
(
Nβav(max{R, d}, hε)

+ εhεP
)
eεhεP . (38)

And (38) holds for k ∈ [0, [Nε ]]. The analysis for (38) is
similar to (35), leading to a ε∗3 for a given δ.

Step 5 concludes the result by combining (31), (35), (38)
from steps 2− 4, leading to

|x(k)− xr(k)| ≤φ̄+ max |ξ(k)− ω(k)| |
+ max |ω(k)− xr(k)|

≤δ. (39)

The second part will prove (18)
It is noted that for each k ∈ [kl, kl+1], the notion

of η(k) are the solutions of boundary layer system (5)
zb(k, ξ(kl), η(kl)) with a fixed x = ξ(kl) and the initial
value of zb[0] = η(kl). Using (6) in Assumption 3 and
η(kl) = z(kl), for k ∈ [kl, kl+1), the trajectories of η[k]
satisfy

|η(k)|Hξ(kl) ≤ βb(|z(kl)|Hξ(kl) , k − kl). (40)

By α(k) = |z(k)−η(k)| and ᾱ = max0≤k≤[Nε ] α(k), this
results in

|z(k)|Hξ(kl) ≤ |η(k)|Hξ(kl) + |z(k)− η(k)|

≤ |η(k)|Hξ(kl) + ᾱ. (41)

By (7) in Assumption 3 and triangle inequality, the fol-
lowing inequality is obtained:

|z(k)|Hx(k) ≤ |z(k)|Hξ(kl) + dH(Hx(k),Hξ(kl))

≤ |z(k)|Hξ(kl) + LH |x(k)− ξ(kl)|

≤ |z(k)|Hξ(kl) + LH(|x(k)− x(kl)|

+ |x(kl)− ξ(kl)|)
≤ |z(k)|Hξ(kl) + LH(εhεP + φ̄). (42)

By combining (40), (41), (42), we have

|z(k)|Hx(k) ≤|η(k)|Hξ(kl) + ᾱ+ LH(εhεP + φ̄)

≤βb(|z(kl)|Hξ(kl) , k − kl) + γ

≤βb(|z(kl)|Hx(kl)
+ dH(Hx(kl),Hξ(kl))), k − kl) + γ

≤βb(|z(kl)|Hx(kl)
+ LH |x(kl)− ξ(kl)| , k − kl) + γ

≤βb(|z(kl)|Hx(kl) + LH φ̄, k − kl) + γ

≤βb(|z(kl)|Hx(kl) , k − kl) + γ1, (43)

where γ = ᾱ+LH(εhεP + φ̄), γ1 = γ + κ(LH φ̄), and κ(·)
is a class-K function.

As being discussed, with large enough hε, and small
enough ε, (γ, γ1) can be selected to approach to 0, by using
similar induction method used in [22, Theorem 1], for any
δ > 0, the following inequality holds:

|z(k)|Hx(k) ≤βb(|z0|Hx0 , k) + δ, (44)

which completes the proof.
Remark 7: Theorem 1 indicates that for a given distance

δ > 0, by tuning the parameter ε sufficiently small, the
solutions of (4), and its reduced system (9), boundary layer
system (5) can be made close within this distance for a
given finite time interval. This result is similar to [23, 22].
Alternatively, this result shows that if ε is selected sufficiently
small, the ”error” δ will be a function of ε. A smaller ε leads
to a smaller δ(ε) as shown in Example 1 in simulation. ◦

Theorem 1 shows the closeness of solutions in finite time.
Such closeness of solutions play a key role in analyzing the
stability properties of (4). Corollary 1 summaries the stability
result. The proof of this corollary is based on Induction
method which can be found in [22, 10, 6], and it is omitted
due to space limitation.

Corollary 1: Assume that Assumption 1 and Assumption
4 hold for the system (4). And assume that the reduced sys-
tem (9) is locally or globally asymptotically stable, uniformly
in small ε, i.e., ∃βr ∈ KL such that there exists ε∗r > 0 such
that the solutions of reduced order system satisfy

|xr(k)| ≤ βr(|x0| , εk), (45)

for ε ∈ (0, ε∗r) and |x0| ≤ ∆r for some ∆r > 0 (in global
case, ∆r = Rn). For given r = ∆r, Assumption 2 and
Assumption 3 hold for some constant rb. For any positive
constant ν, rb and 0 < ∆ < ∆r, there exists a positive
ε∗ > 0 such that for any ε ∈ (0, ε∗), then solutions of (4)
satisfy

|x(k)| ≤ βr(|x0| , εk) + ν, (46)
|z(k)|Hx(k) ≤ βb(|z0|Hx0 , k) + ν, (47)

for any x0 ∈ B∆ and z0 ∈Mx0
rb

.
For the local stability property in Corollary 1, Assump-

tions 1 − 4 can be further relaxed, and they only need to
hold in some local regions.

We can further extend our results to more general cases,
for example, the input-to-state stability property of the orig-
inal system (4) based on the input-to-state stability property
of its limiting systems (5) and (9) using the similar ideas in
continuous singular perturbation presented by [22]. This will
be part of our future work.

IV. SIMULATION RESULTS

In order to illustrate our theoretical findings, two simu-
lation examples are provided. In two examples, the same
boundary layer system, which has exponential stability prop-
erty, is used while the reduced systems have different stabil-
ity properties. First example shows the closeness of solutions
(Theorem 1), in which the reduced system is stable, but
not attractive. Second example shows the stability properties
of overall system when the reduced system is globally
exponentially stable (Corollary 1).



A. Example 1

First we show that ε in (4) can affect the closeness of
solution in finite time. We consider a continuous-time system

ẋ = εz1

ż1 = −z1 + z2 +
xz1√
z2

1 + z2
2

ż2 = −z1 − z2 +
xz2√
z2

1 + z2
2

. (48)

After sampling system (48) with sampling period T = π
4 ,

we write the exact discrete-time system in the format of (4).
The exact discrete-time system can be obtained by switching
(48) to the polar coordinates [12, Chapter 2]. In the polar
coordinate, system (48) will be linear, which has the exact
discretization model.

x(k + 1) =x(k) + εTz1(k)

z1(k + 1) =(eT r(k) + (1− eT )x(k)) cos(θ(k)− T )

z2(k + 1) =(eT r(k) + (1− eT )x(k)) sin(θ(k)− T ), (49)

where r(k) =
√
z2

1(k) + z2
2(k), θ(k) = arctan z2(k)

z1(k) . This
leads to the following boundary layer system:

z1b(k + 1) =(eT r(k) + (1− eT )x) cos(θ(k)− T )

z2b(k + 1) =(eT r(k) + (1− eT )x) sin(θ(k)− T ). (50)

In polar coordinates, we can find out that for the
boundary layer system (50), the exponentially stable
limit cycle parametrized by x contains eight limit points
{(x cos(kT ), x sin(kT ))} for k = 1, 2, ..., 8. Here Hx in
Theorem 1 contains this limit cycle. The reduced order
system is stable but not attractive:

x(k + 1) = x(k). (51)

Now we check the property when ε = 0.1 and 0.04. Note that
when ε = 0.04 is selected, a large time interval is needed
since the speed of x is parametrized by ε. As Remark 7
indicates, a smaller ε will lead to a smaller distance between
solutions of original system (4), its reduced system (9) and
its boundary layer system (5). Fig. 1 shows the trajectories
of original system and its reduced system with ε = 0.1 and
ε = 0.04 respectively. On the other hand, Fig. 2 shows the
closeness of solutions between the fast system and its limit
cycles by using the distance measure |z|Hx . The simulation
results are consistent with the result presented in Theorem
1.

B. Example 2

Next we will show how ε in (4) can affect the stability
properties of the original system when the slow dynamics
have nice stability properties.

The discrete time system has the form:

x(k + 1) =x(k) + εT (−x(k) + z(k))

z1(k + 1) =(eT r(k) + (1− eT )x(k)) cos(θ(k)− T )

z2(k + 1) =(eT r(k) + (1− eT )x(k)) sin(θ(k)− T ). (52)
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Fig. 1. Solutions of the slow variable x(k) and its reduced order variable
xr(k) for different choices of ε
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Fig. 2. Distance from fast variable z(k) to its limit cycle for the difference
choices of ε

While two examples share the same boundary-layer sys-
tem, the following reduced system of (52) is globally expo-
nentially stable with small enough ε:

x(k + 1) = x(k)− εTx(k). (53)

Fig.3 shows both trajectories of the slow variable x(k)
in (52) and (53) are convergent with different choices of ε,
which is consistent with the result in Corollary 1.
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Fig. 3. Solutions of the slow variable x(k) and its reduced order variable
xr(k) for different choices of ε



V. CONCLUSIONS

In this paper, we studied the property of a class of discrete-
time nonlinear systems with two time-scales when the fast
dynamics admit limit cycles. The main result shows that the
solutions of the original system, its boundary layer system,
and its reduced order system can be made arbitrarily close
on a finite interval by tuning time-scale separation parameter
ε sufficiently small with appropriate assumptions. This result
also lead to conclusion of stability properties of the original
system from appropriate stability properties of its boundary
layer system and its reduced order system, Our future work
will consider input-to-state stability property of such system.
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