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Abstract— There is evidence to suggest that changes in
kinematics and neuromuscular control in activities that take
place over long periods of time lead to increased injury risk. The
collection of biometric data over long time periods could provide
insight into these injuries. However, it is difficult to analyse
long period biometric data for occupations as the analysis
depends on the activity being performed, and it is not practical
to manually label the amount of data required. A sufficiently
accurate human activity recognition algorithm can provide a
means to segment the activities and allow this analysis, but the
classification must be robust to the inter-individual differences,
as well as the intra-individual variations in movement over time
that are the target of analysis. This work presents a person-
independent human activity recognition algorithm for sheep
shearing using a Hidden Markov Model with physical features
that are identified to be relevant to spinal movement quality.
The classifier achieved an F1 score of 96.47% in identifying the
shearing task.

I. INTRODUCTION
Repetitive and prolonged spinal flexion (stooping) remains

a task common to many occupations and sporting activities.
It is a continuing ergonomic challenge, having been identified
as an important risk factor in lower back injuries, a condition
estimated to impact 80% of people during their life [1].
Stooped work is especially common in industries where
workplace modifications are difficult, such as in agriculture
and construction; and it is estimated that 100s of millions
of workers are at risk of lower back injuries from stooped
work globally [2]. In sheep shearing, where workers spend
upwards of 6 hours in a stooped working posture each day,
injury rates are severe [3] and lower back injuries account
for 50% of the cost of all injuries [4].

Research in sheep shearing indicates that injury risk in-
creases throughout the day, and 68% more injuries occur
in the last two hours of work than in the first two hours
of work [4]. As the task remains the same, any changes in
kinematics or neuromuscular control that occur over the day
are potentially important factors in injury risk. It is accepted
that muscle fatigue increases injury risk, and results in altered
kinematics [5], and changes in neuromuscular control [6].
There is evidence to suggest that prolonged and repetitive
spinal flexion also changes neuromuscular control [7] and
movement [8], and leads to lower back injury and pain [9],
[10]. In the recent research relating to sheep shearing back
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injuries [11]–[14], there is no study that collected kinematic
data from workers shearing more than 5 sheep (per case).
The collection and analysis of data over an entire working
day or longer could provide a significant insight into the
factors leading to injury.

While improvements in sensor technology enable the
collection of longer term biometric data outside of the lab,
the processing of such data is challenging for real working
scenarios. One reason for this is in complex activities,
different sub-activities may require different analyses. Other
methods require cyclic activities [1], [15]; in a complex
task this requires identifying the start and end points of
each repetitive activity. Sheep shearing is repetitive work,
containing two main parts, (1) the catch and drag—which
consists of a significant manual handling effort where a sheep
(typically weighing 70 kg) is dragged to the shearing stand,
and (2) shearing the sheep—stooped work with complex 3D
spinal movement with comparatively much lower forces on
the spine. This cycle is repeated upward of 200 times per
day for an experienced shearer [3].

In order to more easily label the large amount of collected
data, we need an activity recognition algorithm that can
distinguish these two sub-tasks by identifying the start and
end points of shearing cycles. To do this across many subjects
without labelling data for each person, the model should be
person-independent.

The most important aspect of human activity recognition
might be the selection of appropriate features from the data
[16]. For a person-independent model [17] suggests that
joint-angle-based features outperform features derived from
raw sensor data. As different people are likely to differ in
the way that they perform tasks, features that are consistent
between people are necessary [16]. In forward bending,
differences in lumbo-pelvic rhythm are known to contribute
to movement differences between people [1]. It is expected
that selecting features to minimise this difference will be
successful in a person-independent classifier.

In this work, 50 hours of motion capture data is collected
from working shearers and a person-independent Hidden
Markov Model (HMM) activity recognition method was
selected As it can model temporal dependencies between
activities with the consideration of stochastic human vari-
ations, it is suitable for this application [18]. The results
show that HMM is effective with a small number of joint-
angle-based features to classify the distinct parts of the shear-
ing task, enabling the analysis of longer term data. Other
machine learning methods could also provide avenues for
improvement. We will investigate various machine learning
techniques in our future work.



Fig. 1. Sheep shearer with XSens
portable motion capture

Fig. 2. Motion capture output used
for data labelling

II. METHODS

A. Participants

Six male sheep shearers aged between 21 and 54 (mean
29.3 ± 11.75) years were recruited for the study. Informed
consent was obtained from each participant and the experi-
ment was approved by the University of Melbourne human
ethics advisory group (Ethics ID 1853436). This represents
a wide-ranging selection of shearers with varying levels of
skill, from two weeks experience to more than 30 years.
One shearer was also recorded in two different sheds, and
this data is included as an extra subject.

B. Experimental set-up

A portable wireless inertial measurement unit (IMU) based
motion capture system (Xsens Awinda) was used to collect
kinematic data. The system consists of 17 IMU sensors.
Through sensor fusion of the accelerometer, gyroscope, and
magnetometer channels in each IMU, combined with a scaled
skeletal model, joint kinematics were produced by the Xsens
MVN Analyze software, sampled at 60Hz. The experimental
setup can be seen in Figure 1.

The subjects’ body-segment lengths were measured, and
the IMUs were then placed using velcro straps and tight-
fitting shirt; with lower body sensors placed under the
shearers’ clothes, and secured with tape. The IMUs were
placed according to the Xsens guidelines, with the exception
of the lower leg sensors. The recommended placement on the
shin-bone was not suitable for sheep shearers, as the inside
of both legs are required to hold and manoevure sheep during
the work. This would expose the IMUs to large external
forces and cause significant discomfort for the shearer. These
IMUs were re-positioned to the outside of the leg.

C. Protocol

The experiment involved instrumenting shearers perform-
ing their regular work activities. The data was therefore
collected in alignment with the typical rest-work schedule for
sheep shearing. Shearing takes place in four two-hour ses-
sions (shearing “runs”), with start times at 7:30am, 10:00am,
1:00pm, 3:30pm, with a one hour lunch-break after run 2,
and 30 minute breaks after run 1 and run 3. One shearer was

Fig. 3. A segment of data from three subjects showing lumbar flexion,
and combined lumbar and hip flexion with catch and drag sections shaded

instrumented each day, and data was collected for the entire
working day. Shearers were required to be at their station
30 minutes early at the start of the day, during which time
the sensors were attached and calibrated. For the other runs,
shearers were required 10 minutes early for calibration.

A total of 50 hours of data was collected across seven
days, as occasional disruptions occurred during shearing.
Two shearing runs, one from the start and end of the day
for each subject were exported to video as seen in Figure
2 and manually labelled with custom software as being in
either the catch and drag, or the shearing phase of the task.

D. Feature selection and activity recognition

For discriminating between stooped work and other ac-
tivities, features based on spinal flexion are likely to be
successful. However, while stooping, rotations of both the
lumbar spine and the pelvis contribute to trunk motion [19].
The relative contribution of each, and the co-ordination
between the two segments are known to change between
individuals, as well as over time with muscle fatigue [1],
and between cohorts symptomatic and non-symptomatic with
lower back pain [20], which is common among shearers.

It was expected that by combining these two angles, the
inter- and intraindividual differences over time would be
reduced, and this can be seen in Figure 3. The sum of
the right hip and lumbar flexion angles and velocities were
selected as features. The lumbar and hip joint angles were
extracted from the motion capture, and downsampled to 20
Hz to speed up training. The joint angles were smoothed
with a third-order Savitzky-Golay (S-G) filter with a window
size of approximately 7.5 seconds, corresponding to half the
length of a typical catch and drag. The S-G filter was also
used to numerically differentiate the joint angles to obtain the
corresponding velocities, without overly amplifying noise.
The extracted features and labels for each subject were
separated into a training set to parameterise the HMM, and



Fig. 4. Activity recognition performance evaluation for subjects (S1-S7)
using test data with metrics proposed in [23]

testing set with 75% and 25% of the data respectively.
HMMs are the simplest dynamic bayesian network, and

a good introduction to HMMs can be found in [21], among
others. A two-state HMM, with multivariate Gaussian state
emission probability distributions, was used with shearing,
and catch and drag states. Initial state distributions were
calculated from the labelled data without temporal informa-
tion, with a uniform transition matrix. The model was trained
using a supervised expectation maximisation algorithm with
the labelled training data with a machine learning library in
Python [22]. A NULL class was not used for this application,
as all the data was taken from the shearing runs where it was
assumed all activities would be relevant.

E. Analysis

The performance of the classifier was calculated for each
participant from the test data set using standard precision and
recall metrics [16]. Precision is the ratio of true positives
to all positives returned by the classifier, and recall is the
ratio of true positives to all positives. The F1 score, which
is the harmonic mean of precision and recall scores is also
reported. The errors are further investigated using the method
presented in [23], which categorises the errors to provide
additional insight. In order to evaluate the generalisation of
the classifier to an unseen user, leave-one-person-out cross
validation is also performed [16]. Where the HMM is re-
trained on data from all but one subject and evaluated on the
remaining subject.

III. RESULTS

The precision, recall, and F1 scores are calculated for each
subject, and can be seen in Table I.

Further detail is presented for each subject in the test
data set in Figure 4, with error types classified frame-by-
frame using the method in [23]. This shows small amounts
of underfill, overfill, and fragmentation errors, as well as
significant insertion errors in some subjects.

Precision, recall, and F1 scores for each subject for the
leave-one-person-out cross validation can be seen in Table
II.

TABLE I
TEST DATA PERFORMANCE EVALUATION

Shearing Catch & Drag

Prec. Recall F1 Prec. Recall F1
S-1 98.87 97.89 98.38 87.08 92.71 89.80
S-2 97.95 98.23 98.09 92.47 91.37 91.92
S-3 77.97 91.86 84.35 80.36 56.22 66.15
S-4 98.05 98.52 98.22 92.39 90.15 91.25
S-5 98.00 99.01 98.50 93.28 87.16 90.12
S-6 96.53 95.82 96.17 84.39 86.77 85.56
S-7 92.53 98.64 95.49 95.32 77.73 85.63

Total 95.26 97.71 96.47 89.95 80.86 85.16

TABLE II
LEAVE-ONE-PERSON-OUT CROSS VALIDATION

Shearing Catch & Drag

Prec. Recall F1 Prec. Recall F1
S-1 98.51 97.33 97.92 85.33 91.36 88.24
S-2 96.96 98.31 97.63 93.19 88.26 90.66
S-3 92.83 91.00 91.91 70.09 75.00 72.46
S-4 98.49 98.22 98.35 94.01 94.87 94.44
S-5 97.13 90.80 93.86 62.75 85.24 72.29
S-6 96.96 94.62 95.78 82.30 89.40 85.70
S-7 95.80 98.73 97.24 94.52 83.50 88.67

Mean 96.67 95.57 96.10 83.17 86.80 84.64

IV. DISCUSSION

The motivation for this activity recognition is to enable
longer term biometric data analysis through the automatic
labelling of data. The primary goal is to accurately identify
the shearing cycle in the data. Doing this can allow for cyclic
analyses, for example, calculating an ensemble average and
comparing across the day. For this reason, the results for
the shearing category are considered more important. The
classifier achieved an F1 score of 96.47% for the shearing
class, with a person-independent classifier. While the catch
and drag class is less important, it performs worse with an F1
score of 85.16%. The leave-one-person-out cross validation
results are similar with a shearing F1 score of 96.10%,
indicating that the person-independent classifier should also
generalise well to new data.

There are still problems with the classifier, and these errors
are categorised using the method in [23], shown in Figure
4, to provide further insight and direct improvements. Four
types of errors are identified: underfill, overfill, insertions,
and deletions. Under- and overfill errors relate to the timing
of the state transition itself. Underfill indicates that the
transition occurs too early, and overfill that it occurs too
late. These errors less severe, because timing errors are often
present in the labelling of the data. In this case, the data was
labelled manually from the motion capture, and it is likely
that timing of the labels are slightly offset from the true
transition point. If these are neglected then the classifier can
be seen as 100% accurate for three of the seven subjects.

There are only two other types of errors generated by the
classifier presented here: fragmentations, and insertions. A
fragmentation error occurs where a false negative segment



is surrounded by two true positives; serving to split the
correctly identified segment in two. For this application, even
a small error here would have increased impact analysing the
data as it would introduce two incorrect cycles.

An insertion error occurs where a false positive is returned
that has no overlap with an actual positive [23]. It indi-
cates that the classifier is identifying an activity that isn’t
happening at all. The insertion errors seen in Figure 4 all
occur within the catch and drag part of the task, and this
is the likely reason for the lower classifier performance in
that category. Subject 3 appears to have significantly worse
performance than the others. This is perhaps misleading,
as upon further inspection of the insertion errors, in all
cases they can be seen to occur while the shearer takes a
break during a shearing run and is sitting down and leaning
forward with a poor posture. As this occurs consistently
among different subjects, this indicates a problem with
the activity recognition to discriminate between sitting in
high spinal flexion, and the shearing task—rather than poor
performance in a particular subject. These periods of rest
should more accurately be considered part of a NULL class,
which was excluded in the classifier design. This is a problem
that should be addressed in future iterations and could be
improved by including additional features targeted at dis-
criminating between stationary and non-stationary activities,
such as features derived from raw sensor acceleration [24].

No other types of errors were found in the evaluation. The
success of the use of combined hip and lumbar flexion as a
feature indicates that while there are differences in forward
bending between individuals and in a single individual over
the course of a day, these differences are likely a result of
altered lumbopelvic rhythm.

While this data was collected using a full body motion
capture system, the physical features selected only required
data from two joints. The small number of selected features
helps to reduce the chance of over-fitting the data, as well as
making the algorithm more practical. Because only two joint
angles and velocities have been used, it is possible that this
work could be replicated using only two IMUs placed on the
pelvis and thoracic spine, making it practical for a wearable
sensor application. IMUs placed on the pelvis and thoracic
spine have also been used in other work to quantitatively
assess the quality of spinal movement [1], [15]. The classifier
presented here could therefore be incorporated to add context
to a quantitative movement assessment over a long period.

V. CONCLUSIONS

This paper presents an HMM based person-independent
human activity recognition method to classify kinematic
data from sheep shearers into the separate sub-tasks in
shearing, and identify the start and end points of the shearing
cycle. This is useful to allow biometric data analyses to be
extended to long term data collected from sheep shearers
in real working conditions. It also provides evidence that
kinematic differences (both between individuals and after
fatigue) in forward bending in shearing is a result of altered
contributions from hip and lumbar flexion.
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