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Abstract—Background: Lower back injuries are a serious
global problem. Most of these injuries occur over time with
repeated sub-acute stresses. Neuromuscular control dysfunction
could predict injury, however injuries are almost never observed
alongside this data. No labels are available to identify important
features that may be predictive of injury. While there are many
individual differences in injury development, the population
trend is that each individual’s injury tolerance decreases over
time with exposure, indicating a monotonic process.

Methods: This paper proposes a framework for identifying
key features of injury using an unsupervised technique that ex-
ploits knowledge of injury aetiology by analysing which features
contribute to the popular trend using weak monotonicity from
data segmented by task repetitions. The feature selection also
evaluates feature redundancy. The efficacy of the framework is
demonstrated through data from on-site sheep shearers over one
day using 17 wearable inertial measurement units and 16 surface
electromyography (sEMG) sensors.

Results: Consistent with literature, the results demonstrate
sEMG features derived from the erector spinae and multifidus
muscles are the most important indicators for lower back injury.

To evaluate the performance of the proposed population-
trend based unsupervised feature selection technique, the self-
reported fatigue information is treated as some ‘ground truth’
information so that this proposed technique can compare with 5
existing unsupervised feature selection techniques. Conclusion:
The proposed technique is shown to be the most consistent
with the self-reported fatigue information, demonstrating the
effectiveness of the proposed method.

Index Terms—Lower back injuries, weak monotonicity, popu-
lation trend, activity recognition.

I. INTRODUCTION

MOST people suffer from a back disorder at one time
or another [1], with back pain recently becoming the

leading cause of disability worldwide [2]. Epidemiological
studies of workplace injury data indicate that repetitive stress
is a major risk factor associated with lower back disorders [3],
and these disorders are especially prevalent among occupations
that require prolonged or repetitive spinal flexion [4].

It is proposed that time-dependent changes in kinematics
and neuromuscular control are important in the aetiology of
many back injuries [5]. It was demonstrated that the majority
of back injuries do not occur from a single large exposure, but
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from repeated and prolonged sub-acute exposure to stresses
[6], [7]. It has been suggested that motor control deficiency
is the most important factor in predicting the development
of back disorders [8]. However, this has not been proven,
and there is a clear need for studies that can confirm a
link between motor control deficiencies to pain and injury in
realistic occupational tasks [9].

Recent developments in advanced wearable sensor technol-
ogy make it possible to collect biometric data outside of the
lab. However, the collection of kinematic and neuromuscular
control data over the time-period that would lead to injury
(perhaps several months or more) is still very challenging
as usually it is difficult to record injury or ‘ground truth’,
making it difficult to link relate these factors to injury. Thus,
the collected data is not able to be labelled.

Without labels, this paper aims to identify key features that
are likely to contribute to injury through a unsupervised fea-
ture selection. Successfully identifying these features without
labelled data can connect factors that are related to injury
risk with data collected at the time-scale of the physiological
changes that lead to injury, rather than the longer time-scale
of injury development.

Extensive research has been performed on feature selection
methods with applications in healthcare [10], [11]. Especially,
recent advances of deep learning techniques, i.e. convolutional
neural networks (CNN), long short-term memory (LSTM) net-
works, have demonstrated excellent performance on learning
latent features from heterogeneous sensor data [12]. However,
the problem with these machine learning techniques are that
they either work as supervised learning, which needs labels, or
the learned results are difficult to explain and can not provide
explicit information to end-users such as clinicians or patients.
In order to understand the role of features in back injury
prevention in terms of physical variables and time-dependent
physiological changes, feature selection method needs to be
interpretable for end-users.

Typically, unsupervised feature selection defines cost func-
tions to exploit intrinsic structural properties in the data [13].
In cases with a family of processes, knowledge of similarities
between processes can be exploited [14]. In this context, a
population of workers are exposed to similar stresses, and
injuries develop in a similar way. The common information
can form part of the cost function, where features that are
similar among the population can be judged as relevant. In
terms of lower back injury, it is evident in the literature that
many injuries occur as a process where injury tolerance is
reduced over time; injury risk continually ‘gets worse’ as
this process evolves [3], [6]. When the relevant time-period
of these changes are known, it’s possible to incorporate the
concept of monotonicity in injury development into the cost
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function to help determine feature relevance [11], though this
monotonic trend may be corrupted by noises from sensors,
human variations, and repetitions of tasks.

In this paper, we present an unsupervised framework, where
labelled injury data is absent, to identify important indicators
of back injury risk in repetitive work from relevant data col-
lected from a population of workers. By utilising the concept
of weak monotonicity, we propose a new cost function that can
exploit the commonality between the population of workers,
as well as the domain knowledge of back injury aetiology to
identify key indicators of back injury, while being robust to the
periodicity inherent in repetitive work, and without requiring
the long-term collection of neuromuscular data.

The effectiveness of the framework is demonstrated in this
paper in an application identifying key features affecting lower
back injury risk in the repetitive task of sheep shearing. In
sheep shearing, injury rates are severe and injury risk worsens
throughout the working day, with 68% more injuries occurring
in the last two hours of work compared to the first two hours
of work, with lower back injuries the biggest problem [15].
In the experiments, kinematic and surface electromyographic
(sEMG) data are collected in real working conditions for
Australian sheep shearers. The data collected for one complete
day of sheep shearing from each subject is used in our
analysis. Key indicators of injury are identified. In order to
evaluate the performance of feature identification, self-reported
fatigue levels from each sheep shearer is treated as a pseudo
‘ground truth’. The performance of the proposed technique
is compared with 5 popular unsupervised feature selection
techniques, showing a superior performance. The top selected
features are also discussed in terms of the existing literature
regarding the aetiology of lower back injury.

The presented framework contributes to the state-of-the-
art as it improves the feasibility of the real-world collection
of neuromuscular control data and its relation to injury.
The application of the framework provides evidence linking
neuromuscular control features to lower back injury without
the need for data collection over the timescale of injury
development. It cannot replace the gold standard of compre-
hensive longitudinal studies in occupational settings over many
months. However, given the practical issues and the difficulty
of identifying important features that relate kinematics and
neuromuscular control to lower back injury, the proposed
framework is a useful tool in the absence of these studies.

II. PRELIMINARIES

This section introduces the key concepts used in the unsu-
pervised feature selection part of the proposed framework.

A. Weak Monotonicity
This subsection introduces a new concept of weak mono-

tonicity, which is a relaxation of strict monotonicity [16], and
we denote it as ∆-weak monotonicity. Strict monoticity of
a collected signal indicates that each measurement point is
strictly higher (or lower) than the previous. Weak monotonicity
relaxes this requirement such that measurement points must be
higher (or lower) than the measurement point minus (plus)
a small margin, calculated from the previous measurement
points. The relaxation is developed to improve the robustness
of the trend evaluation, as we seek to identify population wide

trends with the consideration of individual variations and in
the presence of measurement noises.

For simplicity, this section focuses on a scalar signal only.
Definition 1: A collected tuple {tk, zk}k∈N is ∆-weakly

monotonically increasing for a constant ∆ ≥ 0 if the following
condition holds,

tk+1 > tk, tk
k→∞−−−−→∞

zk+1 > zk −∆, k = 1, 2, · · · , (1)

where, ∆ represents the level of uncertainties. ◦
Remark 1: When ∆ = 0, ∆-weak monotonicity becomes

strict monotonicity [14]. The value of ∆ plays an important
role to characterize this weak trend. For example, a ∆-weakly
monotonically increasing signal might have a decreasing trend.
In order to avoid such an error, statistical tools such as the
Mann-Kendall (MK) test [17], for monotonic trend, can be
used to identify the presence of a trend as a prior before
analysing its strength. This leads to the definition of the trend
indicator for a given data sequence z =

[
z1 · · · zNp

]T
with

Np measurement points:

ω(z) =


1 if trend z is positive by MK test
−1 if trend z is negative by MK test
0 otherwise

(2)

where, the test significance level is typically set at p < 0.05.
Other statistical tests, or other prior knowledge of the trend
could be used to define ω as well.

The following measure ∆M is used to quantify the ∆-
weakly monotonic (increasing) trend of a finite duration signal
with Np measurement points,

∆M =
1

Np − 1

 Np∑
k=1

αk

 ,

αk+1 =

{
1 if zk+1≥ zk−∆
−1 otherwise , k= 0, . . . , Np−1 (3)

for k = 0, · · · , Np−1. The ∆M measure has a range within
[−1, 1]. When ∆M is close to 1 or −1, it indicates that the
monotonically increasing or decreasing trend of a signal is
more pronounced.

It is usually hard to find an appropriate (or less conservative)
upper bound ∆ of a signal. A possible solution of estimating
such uncertainties is to use some statistical properties of the
signal from off-line measurements or data segments through
on-line moving windows. When a group of signals or pro-
cesses or subjects is considered, it is possible to estimate
averaged variations among them.

It is worthwhile to highlight that the definition of ∆-weak
monotonicity does not require the sampling periods to be fixed,
i.e., tk+1 − tk 6= tk − tk−1, k = 1, 2, . . ., this allows for more
general cases of data sampling.

B. Correlation
For a group of subjects j = 1, 2, . . . , N , let Σj :

{
tjk,x

j
k

}
represent the set of features xjk ∈ RNf for the jth subject
at time tk, where k = 1, · · · , Nj with Nj ∈ N indicates the
samples. Here R is the set containing all real numbers, and N
is the set containing all integers. The correlation between two
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subjects p and q, where p, q = 1, 2, · · · , N , for the ith feature
is defined as follows,

ρ(xpi ,x
q
i )=

Ns∑
k=1

(xpk,i − x̄
p
i )(x

q
k,i − x̄

q
i ) Np∑

k=1

(xpk,i − x̄
p
i )

2

1/2 Nq∑
k=1

(xqk,i − x̄
q
i )

2

1/2
(4)

where, x̄pi =
1

Np

Np∑
k=1

xpk,i and x̄qi =
1

Nq

Nq∑
k=1

xqk,i are the

averaged signals with data truncation of Ns = min{Np, Nq}.

C. Feature Orthogonality
In the context of regression, orthogonality is an important

factor to investigate the existence of redundant information
between two features. Intuitively, orthogonality with inner
product is equivalent to “uncorrelatedness”. If two features
are orthogonal to each other, the second feature provides new
information that the first feature does not have.

To this end, an ordinary least squares (OLS) regression is
calculated of a new candidate feature in terms of the already
selected features.

For convenience of notation, for the ith feature of the jth
subject, we introduce the vector of Np measurements x̃ji =[
xj1,i · · · xjNp,i

]T
∈ RNp , and define a matrix X̃j

na
=[

x̃j1 · · · x̃jna

]T ∈ RNp×|na| to indicate the selected set
of na features for the jth subject.

The fraction of unexplained variance in (6), calculated from
the OLS regression of a candidate feature X̃j

na
with the

existing feature set X̃j
na

, seen in (5), will be used establish
feature orthogonality.

x̂jna+1 = X̃j
na

(X̃j
na

T X̃j
na

)−1X̃j
na

Txjna+1, (5)

provided that (X̃j
na

T X̃j
na

) is non-singular. This matrix is non-
singular if |na| is smaller than the number of data points
in each feature. The second step estimates the fraction of
unexplained variance (i.e. the complement of the coefficient
of multiple determination), which reflects the level of new
information that xjna+1 brings to the existing feature set X̃j

na

[18]. This fraction is calculated as,

ujna+1 =

Np∑
k=1

(xjk,na+1 − x̂
j
k,na+1)2

Np∑
k=1

(xjk,na+1 − x̄
j
k,na+1)2

, (6)

where x̄i = 1
Np

Np∑
k=1

xk,i.

With consideration of N subjects in the population, we have
the following averaged orthogonality index

ūna+1 =
1

N

N∑
j=1

ujna+1. (7)

It is noted that ūna+1 takes values between [0, 1], with 1
indicating that none of the new feature’s variance is explained

by the already selected features. In this paper, the averaged
orthogonality defined in (7) will be the part of the cost function
to select new features.

III. THE PROPOSED FRAMEWORK

This section presents the proposed framework which iden-
tifies key features in the collected time-series data that relate
to injury risk. The diagram is presented in Figure 1. Details
of each block in Figure 1 are presented in the following
subsections.

The overall goal is to select the desired feature set X∗
from the full set of features X across all subjects that
best represents the injury development process. Without the
availability of labelled data, unsupervised feature selection
or ranking algorithms are adapted here. A key part of any
unsupervised feature ranking algorithm is to establish feature
relevance without labels. In the proposed framework this is
achieved by analysing the individual monotonic trends with
a ∆-weak monotonicity indicator, and the commonality of
these trends across the population for the extracted features.
It is hypothesised that this is a good measure of feature
relevance under the assumption that there is an underlying
monotonic process, i.e. the risk of injury is increasing over
time. This assumption is accepted for the majority of back
injuries [6], [7], and is confirmed in [15] within the context
of the application presented in this paper.

However, there are challenges in identifying monotonic
trends in time-series data collected from many people per-
forming repetitive tasks. When performing repetitive tasks,
the repetition will be present in the time-series or signals,
showing a clear periodicity. This periodicity will interfere with
the calculation of weak monotonicity. Therefore, the influence
of task repetitions should be removed where possible. In this
work, human activity recognition (HAR) techniques are em-
ployed to remove the influence of repetitions. Such techniques
can identify the start and end point of one repetition. The
features are then extracted from a window corresponding to
one task repetition, reducing the periodicity in the extracted
feature vectors. It is noted that though the proposed framework
is general enough to handle various tasks, introducing HAR
techniques leads to task specific feature extraction algorithms,
which are consistent with the requirement of identifying motor
dysfunctions. As elucidated in [19], motor control dysfunc-
tions are task specific, and each task should be analysed
differently with a potentially different set of features.

After feature relevance is established for the candidate
features, features are selected iteratively using an indicator to
minimise feature redundancy, i.e. having multiple features that
yield the same information.

A. Pre-processing

The input to the framework is data (R) containing in-
formation of kinematics and neuromuscular signals from a
large number of sensors, collected from a number of subjects
performing repetitive work. We can sample this set of signals
at given uniform or non-uniform sampling instants, and in later
analysis, an appropriate sampling period is selected.

In general, the pre-processing step involves normalisation,
filtering, and/or data fusion to obtain a new representation
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Pre-processing HAR Feature
Extraction

Σk

Periodicity removal

Individual
trend analysis

Population
trend analysis

Trend
indicator

Feature
relevance

Feature
redundancy

ρ(xpi ,x
q
i )

∆M

ω(xpi ), ω(xqi )

Unsupervised feature ranking

SR X ∆J X∗

Fig. 1. The proposed framework consists of the periodicity removal through human activity recognition (HAR), before ranking the extracted features using
a trend based unsupervised technique to connect kinematic and neuromuscular features to injury risk. The detail of each box in this diagram is presented
throughout Section III.

of the data. The pre-processing can produce multiple streams
(channels) of data from each sensor. For the `th channel,

S` := {S`(t0), . . . , S`(t0 +m`δ`)} , ` = 1, . . . , Nc, (8)

where, S` is sampled at m` instants with sample rate δ`. Then,
the pre-processed data-set across all channels is

S := {S1, . . . , SNc} , (9)

which allows for asynchronous sampling between channels.

B. Periodicity Removal

1) Human activity recognition (HAR): As the periodicity
in the measured data should be removed, the first step is to
solve a HAR problem to identify the start and finish points
of the activities within the repetitive task. Once the data is
segmented, candidate features can be extracted from each
activity. It is assumed that this family of sensors is able to
detect the activities of interest.

In order to remove the periodicity from task repetition,
activity recognition can be used to identify the activities and
segment the data into each iteration in the segmented sequence
Σk. Features are then extracted from within each iteration to
represent the behaviour of the task. It is assumed here that
existing activity recognition techniques can well-approximate
the ideal segmentation Σk. Such HAR techniques have been
demonstrated with good accuracy in several contexts, in-
cluding workplace tasks [20], [21]. Slight error in the HAR
algorithm is generally inevitable and is captured with a larger
∆ parameter in the weak monotonicity calculation.

There are many possible approaches to solving the HAR
classification problem itself, the most successful methods tend
to incorporate a way to model temporal dependencies in the
data [20]. A person-independent classifier is able to reduce
the amount of data required for training, and to obtain a good
result for these models, it is necessary to select features that
minimise inter-individual differences [20], [22].

We represent task repetitions as a sequence, which can be
measured by the pre-processed data:

Σk : {(S1, S2, . . . , SNc) | ∀n` : t0 + n`δ` ∈ [Tk, Tk+1)} , (10)

Here the interval [Tk, Tk+1) is the time during the kth activity.

2) Feature extraction: The feature extraction takes the
segmented data (Σk) as input. For each segment of the data,
representing one task repetition, it calculates the candidate
features that can represent the behaviour in each task. The
feature extraction generates the following mapping Φ such that
it maps the measurements over one task as a set of vectors

Φ : Σk → {tk,xk}k=1,...,Np
, (11)

where, tk is representative of the time when the kth iteration
happens (e.g. time at the start of the task), with Np total
iterations. Here xk ∈ RNf is a vector of signals that are
extracted from measurements of Nc pre-processed channels,
with Nf the number of features. The features can be grouped
across each task iteration

Xj := {xj1, . . . ,x
j
Np
}, (12)

and across all subjects,

X := {X1, . . . , Xj , . . . , XNs} (13)

to give the full feature-set.
The specific features to be extracted will be entirely depen-

dent on the application; for the case study in sheep shearing,
these will be presented in Section IV.

C. Unsupervised feature ranking
1) Individual trend analysis: Most back injuries occur as a

result of repeated sub-acute stresses which lead to injury over
time. This has been clearly identified in the literature where
injury tolerance decreases over time to the point where the
risk of injury is elevated under the same workplace stresses
[6]. Injury risk continually ‘gets worse’ as this process evolves.

The proposed framework exploits this knowledge by us-
ing it to determine feature relevance. The concept of weak
monotonicity described in Section II is employed as a robust
measure of the trend of the population in the presence of
measurement noises and human variations. The individual
trend analysis receives the extracted features (X) as input and
calculates the Weak Monotonicity indicator (∆Mp

i ) for each
feature from each subject using (3).

2) Population trend analysis: The purpose of this function
is to establish the similarity between subjects within the
population with respect to each feature in order to further
identify relevant features. It is noted in [3], [6], that the trend
of increasing injury risk in repetitive work is shared across the
population. Different people in the occupation will be exposed
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to similar repetitive stresses, and injuries occur in similar
ways even though there are inter-individual differences in the
initial injury tolerance, and rate-of-onset of injury. Therefore,
to evaluate the relevance of features with weakly monotonic
trends it is useful to determine the commonality of the trends
across the population for a given feature. A feature with a
pronounced trend, that evolves similarly across the population
should be considered relevant.

As summarised in Fig 1, this module takes the extracted
features for subjects (X) as input and outputs the between
subject correlation for that feature across pairs of subjects
(ρ(xpi ,x

q
i )). For each feature, this can be calculated for each

pair of subjects using (4).
3) Feature Relevance: After calculating the ∆-weak mono-

tonicity indicator (∆Mp
i ) and the similarity between subjects

in each feature (ρ(xpi , (x
q
i )), a cost function (∆Ji) is proposed

to evaluate the relevance of each feature in terms of character-
izing the common trend of the group of subjects. The feature
set X = {Xi}i=1,...,Nf

is defined, and the relevance of the
ith feature is defined as

∆Ji =
2

N(N − 1)

N−1∑
p=1

N∑
q=p

[(
ω(xpi )

∆M
p

i + ω(xqi )
∆M

q

i

)
·

ρ(xpi ,x
q
i )

]
, (14)

where ∆Mp
i is the calculated ∆WM indicator of the ith feature

for the pth subject, the trend indicator ω(·) is defined in (2).
4) Feature Redundancy: The features are scored so far

based on their monotonic trend and the commonality of that
trend across the population. However, multiple highly relevant
features may contain redundant information. Once the features
are scored in terms of relevance, the goal is to select the
a set of most suitable features, which have less overlapping
(redundant) information. Features can be selected iteratively
by evaluating the average orthogonality index described in (7).

Given a current selection of features, na, the next best
feature is selected iteratively using a greedy approach until
the desired number of features are selected. The feature with
highest relevance score (Xk,1) is initially added to na. Then to
select each additional feature, the averaged orthogonality index
is calculated for the features not in na using (7) to give the
orthogonal part of the relevance score, and the next feature is
selected as the solution to the following optimization problem,

arg max
i/∈na

∆Ji · ūna+1, (15)

where, ūna+1 is defined in (7).
This process of adding new features is repeated until X∗

features have been selected. The feature selection process is
summarised in Algorithm 1.

IV. EXPERIMENTAL SETTING

A. Participants
Nine male sheep shearers aged 33.55± 14.44, with a range

between 21 and 61, with heights 1.83 m ± 0.093 m were
recruited for the study. All shearers provided informed written
consent and the experiment was approved by The University of
Melbourne Human Ethics advisory group (Ethics ID 1853436).
This represents a wide-ranging selection of shearers with

Algorithm 1: Feature Selection Algorithm Based on
∆WM and orthogonality index

Input : |X∗|, Features ∆Ji, as in (14)
Output: Selected X∗ features, where |X∗| ≤ |X|

1 Initialise feature set na ← X1

2 while |na| < |X∗| do
3 for Xi /∈ na do
4 for j ← 1 to N do
5 Compute x̂jna+1 according to Eq. (5).
6 Compute ujna+1 according to Eq. (6).
7 end
8 Compute the averaged correlation index ūna+1

according to Eq. (7).
9 Compute ∆Ji · ūna+1.

10 end
11 na ← na + arg max

i/∈na

∆Ji · ūna+1.

12 end

varying levels of skill, from two weeks experience to more
than 40 years. Each shearer was recorded for the entire work
day, which is eight hours split over four two-hour sessions
(shearing runs). Interruptions occur in shearing, and so for
three subjects only three of the runs took place. One shearer
was recorded over three consecutive days, to give some insight
into inter-day variations, and these data are included as two
extra subject-days, giving 11 days of data collected from nine
subjects. Some shearers use a ceiling-mounted back harness
during their regular work, a common piece of safety equipment
in sheep shearing. Five subjects made use of a harness and this
was noted for the statistical analysis.

B. Experimental Setup

Kinematic data was collected with the Xsens Awinda
portable motion capture system. The system consists of sev-
enteen inertial measurement units (IMUs), and through sensor
fusion of the accelerometer, gyroscope, and magnetometer
channels in each combined with a scaled skeletal model, the
joint kinematics were produced by the Xsens MVN Analyse
software and sampled at 60Hz. The experimental setup can
be seen in Figures 2, 3, 4, and 5. And the protocol of the
observations is shown in Figure 6.

Subjects muscle activity was collected using Delsys Avanti
wireless sEMG sensors. Sixteen sEMG sensors sampled at
2148Hz with a 10mm inter-electrode distance. The sensors
were bilaterally placed on the following muscles: Erector
Spinae at the level of the first and third lumbar vertebrae (L1 &
L3 ES), Multifidus at the level of the fifth lumbar vertebrae (L5
MF), Rectus Abdominis (RA), External Oblique (EO), Gluteus
Medius (GM), Vastus Lateralis (VL), and Biceps Femoris
(BF). The EMG sensors were placed bilaterally in accordance
with the SENIAM guidelines [23]. To hold all sensors in place
for the full work day, each sensor was additionally secured
with the kinesiology tape.

The sEMG sensors were calibrated using a series of maxi-
mum voluntary contractions (MVCs) [24]. For the L1 ES, L3
ES, and L5 MF sensors, a standing isometric back extension
exercise was performed with the torso flexed at 45◦, manually
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Fig. 2. Catch and drag activity with
instrumented shearer

Fig. 3. Shearing activity with instru-
mented shearer

Fig. 4. EMG Sensor placement and features extracted from each sensor.
Features - (1) Spectral indices from filtered EMG, (2) Shannon entropy
filtered EMG, (3) Auto-correlation filterd EMG, (4) EMG envelope co-
contraction ratio, (5) EMG envelope-Joint angle average inner product, (6)
EMG envelope mean, (7) EMG envelope variance, (8) EMG envelope skew,
(9) EMG envelope kurtosis, (10) EMG envelope auto-correlation, (11) EMG
envelope percentiles (10th, 25th, 50th, 75th, 90th, 100th).

braced by a researcher. For the RA, and EO muscles, a sit-
up position was adopted, again with a 45◦ torso angle with
manual bracing provided by a researcher. The subject was
instructed to flex initially as if completing the sit-up, then
attempt to twist right and left. For the GM muscle the subject
was instructed to lie on each side and abduct their hip, against
the provided bracing. For the VL and BF muscles the subject
was instructed to sit in a chair or on the raised shearing boards,
grasp the edge of the surface and sequentially flex and extend
each knee against the bracing provided at the ankle. The sEMG
activation was normalised to the highest activation for each
muscle achieved in any of the exercises.

For the motion capture set-up, the subjects’ body-segment
lengths were measured. The IMUs were then placed using
Xsens provided velcro straps and tight-fitting shirt; with the
lower body sensors placed under the shearers’ clothes, and
additionally secured with the tape. The IMUs were placed
according to the Xsens guidelines, with the exception of the
lower leg sensors. The recommended placement on the shin-
bone was not suitable for sheep shearers, as the inside of both
legs are required to hold and manoeuvre sheep during the
work. This would expose the IMUs to large external forces
and cause significant discomfort for the shearer. Thus, these
IMUs were re-positioned to the outside of the leg.

Fig. 5. Shearing motion capture output and features extracted from full body
kinematic model. Features - (12) Joint angle (JA) approximate entropy, (13) JA
Discrete relative phase, (14) EMG envelope-JA average inner product, (15) JA
Mean, (16) JA Variance, (17) JA Skew, (18) JA Kurtosis, (19) JA percentiles
(10th, 25th, 50th, 75th, 90th, 100th), (20) JA Shannon Entropy, (21) Joint
angular velocity (JAV) SPARC, (22) Dimensionless jerk from JAV, (23) JAV
RMS, (24) Dimensionless jerk from joint angular acceleration (JAA), (25)
JAA RMS, (26) JAA Mean, (27) JAA Variance, (28) JAA Percentiles, (29)
Position XY Norm, (30) JV Approximate entropy, (31) JA RMS, (32) shearing
time.

The motion capture system was calibrated using the pro-
cedure recommended by Xsens. This involves the subject
standing in a static-pose before naturally walking a short
distance forward, before returning to the original location and
position. The calibration is achieved by minimising errors over
the dynamic movement.

The motion signals and sEMG data were synchronised using
the Delsys Trigger Module, with data recording initiated from
the commercial Xsens MVN Analyse software.

C. Protocol
As the study involved instrumenting shearers who were

undertaking their regular work activities, the regular shearing
rest-work periods were followed. The standard shearing day
starts at 7:30am, and shearing takes place in four two-hour
sessions (shearing runs), with a one hour lunch break between
run 2 and 3, and two 30-minute breaks between runs 1 and
2, and runs 3 and 4. This is illustrated in Figure 6. At the
start and end of each run, shearers were asked to rate their
perceived level of fatigue using a modified Borg CR10 scale,
seen in Appendix B.

Shearers were asked to be at their shearing stand 45 minutes
early at the start of the day to allow for sensor placement and
calibration of the motion capture and sEMG sensors. Before
the start of the other runs, shearers were required at their
stand 15 minutes before the run to allow for re-calibration
of the motion capture system. The motion capture IMUs were
recharged during the lunch break, and were re-placed and re-
calibrated in the 15 minutes prior to run 3.

One shearer was instrumented each day for the full working
period. Some disruptions occur during regular shearing (e.g.
running out of sheep), and these disruptions meant that for
three subjects the final shearing run did not occur. A minimum
of six hours of data was collected for each subject.
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Run 1 SB 1 Run 2 LB Run 3 SB 2 Run 4

Catch
and

Drag
Shear ......

Fig. 6. The rest-work period for sheep shearing: four two-hour shearing sessions (‘runs’) starting at 7:30am, 10:00am, 1:00pm, and 3:30pm, with two short
30 minute breaks (SB1, and SB2), and a one-hour long break (LB) in the middle of the day. Shearing consists of the catch & drag and shearing activities
(shown in Figures 2 and 3) which are repeated throughout each of the runs.

D. Pre-processing

Two sets of data were collected from each subject, sEMG
sampled at 2148 Hz and motion capture sampled at 60 Hz. The
data were synchronised at the collection stage, and a different
pre-processing step was required for each to produce the pre-
processed data S, as shown in Figure 1.

1) Signal Pre-processing for sEMG Measurements: The
raw sEMG signals were filtered with a 2nd order Butterworth
filter with a pass-band between 20 − 450Hz. Further to this,
the sEMG envelope (ENV) was calculated by rectifying the
filtered sEMG signal and low-pass filtering with a cutoff
frequency of 6Hz [25]. This envelope signal was normalised
to the maximum value of the envelope from the MVCs
collected for that days shearing. This produced the filtered
signal and the EMG envelope from each sEMG sensor.

2) Signal Pre-processing for Kinematic Measurements: The
signal pre-processing for the kinematic data is largely achieved
with MVN Analyse software, which produces full-body joint
angles, body-segment poses, and velocities. Additionally, joint
angular accelerations were derived from this data, and sensor
raw accelerations were also extracted. This produced several
channels of data from each pair of sensors.

E. Periodicity Removal

To allow for the task based sampling, and provide context
to the feature extraction, the periodicity in the pre-processed
data S is removed by solving an HAR problem to efficiently
identify the different shearing activities.

1) Human Activity Recognition: During sheep shearing,
there are two main activities that make up the shearing task,
(i) the catch and drag phase (CD), where a shearer walks
into the holding pen and gains control of a sheep which
typically weighs around 70 kg before dragging it backwards
to the shearing stand; (ii) and the shearing activity (SH),
where the shearer must stand with a fully flexed spine holding
the sheep between their legs and manoeuvre the sheep into
several positions while removing the wool with the handpiece.
The kinematic and sEMG data were segmented into non-
overlapping sequences of uneven length corresponding to the
shearing (SH) and catch and drag (CD) activities of the task
for each sheep, as seen in Figure 6. The combination of two
adjacent segments represents the full shearing task which is
repeated over the day. Each shearer will shear at a different
level of skill, and each will therefore potentially complete a
different number of task iterations.

The data was segmented into the shearing, and catch and
drag phases of the task using a person-independent sheep

shearing human activity recognition algorithm requiring only
two IMUs for implementation developed in [21]. A Hidden
Markov Model (HMM) was chosen as it is a simple classifi-
cation method that is capable of modelling temporal dependen-
cies in the data and is less sensitive to human variations. An
HMM based person-independent activity recognition model
was trained using half of the data from 6 subjects that was
manually labelled from the motion capture video output, seen
in Figure 5.

The task was modelled using the two activity states (CD,
and SH), the emission probability distributions for each state
were assumed to be jointly Gaussian over the features. The
initial emission distribution parameters were calculated with-
out temporal information, and the state transition matrix was
initialised with uniform probabilities. The performance of the
classification can be evaluated by the F1 score [20], which
incorporates both the standard precision and recall metrics.
A higher F1 score indicates a better performance. The F1

score for identifying the shearing cycle was established from
6 subjects as 96.47%, using a 75/25 train test split [20]. Leave-
one-person-out cross validation was also performed, which
evaluates the model’s ability to generalize to unseen subjects as
required for a person-independent model. For this, the model
achieved an F1 score of 95.10%.

2) Feature Extraction: To generate the mapping Φ, and
determine Σk for each shearer, data analysis is done for
each task iteration. Assuming that there are Ns numbers of
segments corresponding to the number of sheep shorn, and
each segmentation has Np,s measurements, then we compute
one point of the feature signal, leading to a time-series data. A
search of the literature was performed to identify a broad range
of candidate features that are suspected to relate to injury. In
addition, a number of common statistical features were also
extracted as candidates. The feature signals used in this work
are listed in Figure 4 for the sEMG sensors, and Figure 5 for
the kinematic features; the calculation and literature basis for
each feature can be found in Appendix A.

Most of the features were extracted from the shearing
activity. Some features were extracted from the last 5 seconds
of the catch and drag activity. It is noted that the last 5 seconds
of the catch and drag is important as it represents the drag.
This is the most significant manual handling portion of the
task, where the highest muscle forces occur. However, none
of these features were represented in the top 10.

The candidate features are extracted from the segmented
data channels as per Figures 4 and 5 for the sEMG and
kinematic features respectively.
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F. Unsupervised Feature Ranking
Candidate features that may contribute to an increased risk

of lower back injury in sheep shearing are identified from the
literature, and included in the analysis. Additionally, common
statistical features are also included to widen the search.
Altogether, there are 376 features from the measurements of
33 wearable sensors.

With the candidate features (Σk) extracted, ω(xji ) for each
feature was calculated using the Mann-Kendall test. Then the
∆WM indicator (∆Mp

i ) was calculated using (3) for each
subject and each feature. For each feature the population trend
analysis was performed by calculating the correlation between
pairs of subjects using (4) to establish ρ(xpi ,x

q
i ).

With input from the individual trend analysis and the
population trend analysis, the relevance (∆J) was calculated
for each feature using the cost-function presented in (15). The
top 10 features by relevance (∆J , prior to accounting for
redundancy) for ∆ = 0.15 and ∆ = 0.10 are presented in
Table I. It can be seen from Table I, that lower back sEMG
features from the shearing activity are dominant.

Then using Algorithm 1, the final X∗ features are iteratively
selected. The top 10 selected features are presented in Table
II for ∆ = 0.15 and ∆ = 0.10. It can be seen from Table II,
that lower back sEMG features are again dominant, with the
addition of sEMG spectral features and some lumbar kinematic
features present.

G. Statistical Analysis of Identified Features
The features proposed by Algorithm 1 were statistically

analysed using the procedure in [26] (which evaluated hand-
picked features from the same data-set) with a Linear Mixed
Model (LMM), shown in (16). The LMM was chosen to model
the hierarchical, and unbalanced nature of the observational
study. For the jth subject, the mth run, and the kth measure-
ment, the data points in the ith feature xijmk can be predicted
as

x̂ijmk = β0 + αhj + δr + γhjr + aj + bjm + ejmk (16)

where i ∈ X∗ is the feature, r is the run number (r ∈
{1, 2, 3, 4}), and hj ∈ {0, 1} indicates the jth shearer’s
harness usage. Here β0 is the model intercept and δ is the
run fixed effect. The α parameter is the harness fixed effect
and γ is the harness/run interaction fixed effect. The REs
(aj , bjm, ejmk) are Gaussian distribution, characterized by
zero mean and their corresponding variances. The random
variable aj ∼ N (0, σ2

j ) is subject dependent and the random
variable bjm ∼ N (0, σ2

m) is run-dependent with variance
which is assumed to be same across subjects. The residual
ejmk ∼ N (0, σ2

k) is assumed to have the same variance across
subjects and runs. By fitting the data to this model in (16), we
can compute these parameters (β0, α, δ, γ, σ

2
j , σ

2
m, σ

2
k), and a

P value for each fixed effect is returned via a Wald test. The
δ parameter is the time-of-day effect and so P < 0.05 here
indicates that the fitted linear trend over the day is significant
across the sampled population.

V. RESULTS AND DISCUSSION

The purpose of this work is to present a population-trend
based data-driven unsupervised feature selection framework

TABLE I
TOP 10 FEATURES BY RELEVANCE SCORES (∆J )

FOR ∆ = 0.15 AND ∆ = 0.10
† INDICATES P < 0.05, ‡ INDICATES P < 0.01 FOR δ PARAMETER

Feature
∆J

Feature
∆J

∆=0.15 ∆=0.10

L3 ES-R env P10%
‡ 0.4970 L3 ES-R env P10%

‡ 0.4364
L3 ES-R env P25%

‡ 0.4252 L3 ES-R env P25%
‡ 0.3680

L3 ES-R SHEN‡ 0.3574 L3 ES-R SHEN‡ 0.3359
L5 MF-L env P10% 0.3481 L5 MF-L env P10% 0.2971
L1 ES-R env P10%

† 0.3279 L1 ES-R env P10%
† 0.2812

L3 ES-R env P50%
‡ 0.3037 L5 MF-L SHEN 0.2665

L5 MF-R env P10%
† 0.3006 L5 MF-R env P10%

† 0.2620
L5 MF-L env P25% 0.2881 L3 ES-R env P50%

‡ 0.2503
L5 MF-L SHEN 0.2774 L5 MF-L env P25% 0.2476
L5 MF-R SHEN 0.2546 L5 MF-R SHEN 0.2373

TABLE II
TOP 10 SELECTED FEATURES (X∗) USING THE PROPOSED METHOD

FOR ∆ = 0.15 AND ∆ = 0.10
† INDICATES P < 0.05, ‡ INDICATES P < 0.01 FOR δ PARAMETER

Feature
Score

Feature
Score

∆=0.15 ∆=0.10

L3 ES-R env P10%
‡ 0.4970 L3 ES-R env P10%

‡ 0.4364
L5 MF-L env P10% 0.2553 L5 MF-L SHEN 0.2300
L1 ES-R µFreq. 0.1621 L1 ES-R Auto-C 0.1632
L5 MF-R SHEN 0.1535 L5 MF-R env P10%

† 0.1292
Pel-T8 flex-vel RMS† 0.1375 L3 ES-R µFreq.‡ 0.1179
L3 ES-R µFreq.‡ 0.1329 Pel-T8 Flex. RMS 0.0983
RA-L env P10% 0.1174 RA-L EMG Auto-C 0.0956
RA-L env Auto-C† 0.1017 L1 ES-R env P10%

† 0.0884
L1 ES-R env P10%

† 0.0948 EO-R SHEN 0.0806
Pel-T8 flex. Auto-C 0.0760 Pel-T8 Flex. Auto-C 0.0737

to identify key indicators of lower back injury for repetitive
work where injury risk is known to worsen with repeated
exposure to stresses. This is achieved by first segmenting the
data into separate tasks by solving a HAR problem, and then
selecting features using a filter based unsupervised approach.
The feature selection method incorporates domain knowledge
of injury aetiology to determine feature relevance, and a
measure of feature orthogonality to eliminate redundancy, as
described in Section III.

The results of the feature relevance module are displayed
in Table I, presenting ∆J without considering the overlapping
information between features. These are shown for ∆ values
of 0.1, and 0.15. Table II presents the selected features X∗
after the iterative selection procedure to minimise redundancy.
The top selected features were analysed statistically, with the
significance of the trend parameter (δ) annotated in Tables I
and II. In order to evaluate the effectiveness of the proposed
feature selection technique, we first discuss the importance
of the selected features from the existing literature, followed
by the discussion of information overlapping. Finally, we use
the self-reported fatigue levels collected after each run as
a “ground truth” to compare the proposed method with the
existing 5 methods in literature in terms of consistency with
respect to the self-report fatigue level.
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A. Validation against the Literature

Table I identifies features selected by the proposed method
with the highest relevance scores (∆J), which occur before
accounting for redundancy. Six of the ten features for both
reported ∆ values are found to have a significant trend across
the population in the time-of-day variable (δ). In Table II, five
and four of the ten features have a significant trend over the
day for ∆ values of 0.1 and 0.15 respectively after feature
redundancy is considered.

The 10th percentile of the sEMG envelope magnitude at
the L3 ES muscle is identified as the most suitable feature.
The ES muscles are responsible for lumbar extension, and are
very relevant in stooped work. This trend is more pronounced
for the lower percentiles, compared to the higher percentiles.
In sheep shearing, higher level contractions are required to
manoeuvre the sheep, or counter-act disturbances from a
struggling sheep, while less muscle activation is required to
counter gravity. A decrease in lower level muscle activity
here likely indicates that some load shifting is occurring to
other muscles or passive tissues for the consistent low level
contractions, while intermittent higher level active contractions
are still required. By itself, this load sharing could indicate
muscle fatigue, and as this feature decreases, this would
indicate increased stresses on passive tissues or deeper muscles
that are not observed with sEMG sensors; evidence of this is
seen in [26]. Both of these processes have evidence to suggest
they lead towards injury as pointed out in [27]. This indicates
our result is consistent with previous evidence around possible
indications of lower back injury. Example data of this feature is
shown in Figure 7 from an expert, intermediate, and beginner
shearer. The similarities between subjects, and trend over the
day can be seen. There is a noted ‘warm-up’ period where
the feature initially increases, before starting to decrease, and
periods of recovery coinciding with the rest-periods in shearing
can be seen for some subjects, which aligns with expected
recoveries in fatigue and visco-elastic creep effects [5], [7].

Consistent with the literature, the multifidus (MF) muscle
is also identified in Tables I and II. It was pointed out in [28]
that it is a key muscle in the development of lower back pain,
attracting a significant clinical focus [29]. The MF muscle is
known to be responsible for stabilizing the lumbar spine, and
is shown to be affected by prolonged static lumber flexion [5].
A pronounced trend was identified for this muscle bilaterally,
with the left side having higher relevance. These key features
are consistent with the literature, showing that the proposed
method, even though it is data dominant, can contribute to
the understanding of lower back injuries. Example data of this
feature is also presented in Figure 8, again with similarities and
decreasing trend present. Periods of ‘warm-up’ and ‘recovery’
can also be seen in this feature.

The mean frequency of the L1 and L3 ES muscles also
features in Table II. Mean frequency in the sEMG signal
is commonly used to measure muscle fatigue, and muscle
fatigue is well known to lead to injury [30]. This is interesting
as it occurs despite the flexion-relaxation phenomenon being
observed in the task [31].

Interestingly, our results suggest some statistical features
that are not commonly discussed in the literature around low
back injuries feature should be used to characterize low back
injuries for sheep shearing. For example, Shannon entropy of

sEMG features is ranked 3rd in Table I. Shannon entropy
is an indication of the level of information encoded in the
signal, and a reduction would indicate a loss of complexity of
neuromuscular control. This might be related to dysfunction
of muscles. For example, in [32], Shannon entropy is found
to differentiate between healthy and LBP individuals, and in
[33] it was found to be influenced by muscle fatigue. Shannon
entropy at multiple time-scales is investigated in [34], showing
its ability of classifying healthy individuals from those with
neuromuscular disorders.

The results in Table I provide evidence that sEMG data
should play an important role in wearable sensors for the
prevention of occupational lower back injuries in the context
of stooped work. In particular, features extracted from the
shearing part of the segmented data also outperform the
features from the catch and drag phase of the task. This is
consistent with literature that highlights the importance of
prolonged and repetitive poor postures as an avenue to injury
and poor performance [5], [11], [35]. However, it was also
noted that sEMG features that measured low level muscle
contractions performed well, and the shearing task contains
lower level muscle contractions overall when compared to the
catch and drag activity.

B. Validation against Existing Unsupervised Feature Ranking
Techniques using Self-Reported Fatigue

As the data was collected from shearers for one day, there
are no observed injuries and therefore no proper ground truth
available. This makes an evaluation of the proposed method
difficult. Self-reported perceived fatigue data (annotated 1-10
scale) was collected from the subjects at the start and end of
each shearing run. However, this is not a proper ground truth as
this is perception based, and each individual may perceive the
‘same amount’ of fatigue differently. Additionally, while it is
known that fatigue influences lower back injury, self-reported
fatigue has not been directly linked to back injury risk; e.g.
a change in reported fatigue from 5 to 6 is likely to increase
injury risk, but by an unknown amount.

It is assumed that the self-reported fatigue is related to the
ground-truth for injury risk. The feature selection methods are
then evaluated based on this self-reported fatigue as a pseudo-
ground-truth. More precisely, self-reported fatigue labels are
used to train an ordinal classifier with sets of selected features.
The performance of the feature selection will determine the
accuracy of this classifier. This type of evaluation has the
benefit of utilising the relative information of the self-reported
fatigue scores, and better aligns with domain knowledge
around self-reported fatigue and injury risk.

1) Model for Evaluation: The model used to evaluate the
selected feature is seen in (17). It takes the selected X∗

features as input, and predicts the self-reported fatigue score
Yk ∈ {1, 2, ..., 10} using a nonlinear mapping f(·) to have the
predicted fatigue score Ŷk,

Ŷk = f(X∗), (17)

where the nonlinear mapping f is to be approximated from
the measured data.

It is noted that our proposed method selected the repre-
sentative features shown in Table II, the evaluation procedure
in (17) is only used to show that the selected features are
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consistent with the self-reported fatigue. Therefore, we do not
use other powerful machine learning methods such as deep
learning [12], to learn latent features from the datasets. Instead,
we employed the widely used random forest, modified as an
ordinal classifier (RFOC) to find the approximate mapping.

A random forest classifier was developed to incorporate the
ordered nature of the categories using the method in [36].
Given the ordered nature of the categories, the mean absolute
error (MAE) was used to score the classifier’s performance,

MAE =

Nk∑
k=1

|Yk − Ŷk|

Nk
, (18)

where, Yk is the reported fatigue score, Ŷk is the predicted
value, and Nk is the number of segments. A small MAE
value indicates that the selected features match well with the
self-reported fatigue. Therefore, such an index will be used to
evaluate various unsupervised feature ranking techniques.

A subset of 75% of the data was randomly sampled for
model training, with the remaining 25% hold-out for testing.
In order to compare the best model for each set of features,
a grid search over the random forest hyper-parameters was
performed with 5-fold cross-validation over the training data-
set, using available high performance computing resources
[37]. The hyper-parameters with the best average MAE were
then used to train another RFOC using all of the training data.

In order to verify the effectiveness of the proposed frame-
work, it is compared with 5 existing unsupervised feature
ranking techniques using MAE score using the test data-set, as
reported in Table III for different numbers of selected features
N∗f = 1, 2, . . . , 10. It is noted that unsupervised methods
usually define cost functions to learn local or global structures
of the datasets, and then select representative features. Here,
we compare the developed method with the following 5
popular unsupervised feature selections methods.
Distance Correlation (DC) [38]

The Distance Correlation measure evaluates the similarity of
two random variables, that is capable of capturing non-linear
dependencies. This can be used to rank features based on their
similarity across the family of processes.
Laplacian Score (LS) [39]

The Laplacian Score is an unsupervised feature selection
method that ranks features based on their ability to preserve
the local manifold structure in the data.
Strict Monotonicity (SM) [14]

Strict Monotonicity ranks features based on how well they
exhibit a strict monotonically increasing or decreasing trend
across a family of processes.
SPEC [40]

This method presents a framework for selecting features
based on how consistent the feature is with the structure of
the spectral graph created from the data.
Spearman’s Rho Correlation (SRC) [41]

The Spearman’s Rho correlation is a non-parametric as-
sessment of statistical dependence between two variables,
measuring both linear and non-linear relationships using a
monotonic function. This can be used to rank features based
on their similarity across the family of processes.

The comparison results are presented in Table III, the mean
and standard deviation are calculated from the absolute error

across the data-points in the test-set. It can be seen from the
table that the proposed weak-monotonicity based method has
small prediction errors, with the minimum MAE values in
almost all cases compared to other unsupervised techniques.
There are three techniques choosing the best initial feature,
and the distance correlation (DC) based method outperforms
when exactly 8 features are chosen. This supports the claim
that when an underlying monotonic process is present, feature
selection techniques that exploit this knowledge will outper-
form in the unsupervised case. Additionally, the relaxation to
weak monotonicity is able to capture important features missed
by the SM method and improve performance. The averaged
MAE scores for 10 cases of the proposed method outperforms
the other 5 methods in literature, showing effectiveness of the
proposed method.

C. Discussion

This work proposes a framework to utilize a common trend
in a population to provide guidance in unsupervised feature
ranking techniques. Hence, this technique is not limited to
lower back pain, or sheep shearing, but any family of processes
that have a common trend. As a special class of cases, this
technique is applicable to repetitive activities where injuries
are typically not brought on by acute musculoskeletal stress,
and the injury risk is known to increase over time.

It is understood that recent advances of artificial intelligence
demonstrate the promising performance of machine learning
methods for data regression analysis, especially deep learning
methods [12], [42]. However, these methods typically require a
large amount of training datasets, and the learned features are a
combination or transformation from the original data, making
the results hard to interpret. In particular, if we want to find
a minimal number of wearable sensors to capture the injury
information, the identified features should be measurable from
sensors. Thus, deep learning methods are difficult to satisfy
the requirements in this application. As demonstrated in Table
II, our proposed method efficiently identified representative
features from a large set of feature candidates. More impor-
tantly, the identified features have clear physical meaning with
corresponding muscle locations, which is helpful to provide
explicit implication to practitioners.

The framework has limitations in that it is not a general
method for feature selection, and relies on the assumption
of an underlying shared monotonic process. The calculation
of weak monotonicity also does not allow for the use of
categorical features. The accuracy of the feature selection also
relies on the success of the activity recognition.

In the context of a wearable device, identifying important
features is not the end of the discussion, because features
do not exhibit a one-to-one mapping with the number of
sensors required. For example, to extract joint angles and
velocities from IMUs a sensor on the two adjacent body
segments is required. But once the signal is derived, many
features can be extracted from the same signal. It is also
worth mentioning that in this case, there are two sensors
required for the HAR process; IMUs on the pelvis and rib-
cage. The inclusion of these sensors increases the minimum
complexity of a wearable device, but also allows for kinematic
features to be extracted from the lumbar flexion angle. Any
chosen human activity recognition method should consider the
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number of sensors required, as this can impact the practicality
in the wearable device context. Table II indicates that it
may be possible to further reduce sensors if the activities
could be recognised using only the sEMG signals. This has
been previously demonstrated in recognising some repetitive
activities [43], [44].
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VI. CONCLUSIONS

This paper presents a novel population-trend based unsu-
pervised framework to rank the key features that contribute
to lower back injury in repetitive stooped work occupations
from a large amount of collected data, with application in on-
site sheep shearing. Overall, the proposed feature selection
method allows for identifying indicators of injury risk by
exploiting specific problem domain knowledge in terms of the
population, which provides guidance of unsupervised feature
ranking and improves the effectiveness of feature ranking.
With the practical consideration of reducing the number of
wearable sensors, the redundancy between features is also
considered as a part of the performance index. The identified
key features are consistent with the understanding of back
injuries reported in literature, showing the effectiveness of the
proposed technique. Furthermore, comparing with five popular
unsupervised feature selection techniques in literature, the pro-
posed technique shows better performance on the regression
analysis of sheep shearers’ self-reported fatigue levels.
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APPENDIX A
CANDIDATE FEATURES

1) sEMG signals: There are a few features coming from
sEMG measurements.
A: Spectral indices For measured sEMG signal
xsEMG(k), k = 0, . . . , Np,s − 1, by using appropriate
Fourier Transform, we can obtain its frequency components
with the frequency range [f0, f1]. We denote the power
density spectrum of this signal is PsEMG(f), then the sth

spectral moment is defined as:

Ms =

∫ f1

f0

fs · PsEMG(f)df, s = . . . ,−2,−1, 0, 1, 2, . . . .

(19)
The mean frequency is defined as Fmean := M1

M0
, which

is the ratio between M1 and M0. The FInmsk := M−1

M5
is

ratio of M−1 and M5. The mean frequency is commonly used
as a measurement of muscle fatigue, with the ratio of higher
spectral indices developed to better indicate fatigue in dynamic
contractions [45].
B: Muscle co-contraction ratios Muscle co-contraction ratios
were also calculated for agonist-antagonist muscle pairs. These
ratios have been used to assess trunk muscle synergies, and
are altered under lower back pain [46]. This is defined as the
average ratio of the sEMG envelope for the two muscles over
the segment. For the amplitude of the EMG envelope for a
muscle ηa(k) > 0, k = 0, ..., Np,s − 1 with an antagonist
muscle ηb(k) > 0 we define the CCR:

CCR =
1

Np,s

Np,s−1∑
k=0

ηa(k)

ηb(k)
. (20)

2) Kinematic measurements: There are several features
related to Kinematic measurements.
A: Mean lumbar-hip Ratio During forward bending, both the
hip and lumbar spine can contribute to the movement. The rel-
ative contribution of these joints is known as the lumbopelvic
rhythm, and this is known to vary between individuals, and
with pain and fatigue, making it potentially useful as an
indicator of injury in stooped work [47].

For measured the angle of spine and angle of hip, denoted as
θspine(k), θhip(k), k = 0, . . . , Np,s−1 respectively, we define
LHR as

LHR =
1

Np,s

Np,s−1∑
k=0

θspine(k)

θhip(k)
. (21)

B: Modified Spectral Arc Length (SPARC) The modified
measure of spectral arc length with an adaptive choice of
cutoff frequency ωc are used to describe the smoothness
of the movement indicative of good neuromuscular control,
which is not biased by the length of the movement [48]. For
a given joint angle θ(k) and its angular velocity v(k), where
k = 0, . . . , Np,s − 1, the appropriate Fourier Transform is
V (ω) with the cut-off frequency ωc.

In this context, it is important as each sheep may require a
different length of time to shear for a single shearer, and each

shearer will shear sheep at different speeds. Hence the cut-off
frequency will be adaptive based on each shearer’s speed.

SPARC = −
∫ ωc

0

[(
1

ωc

)2

+

(
dV (ω)

dω

)] 1
2

dω, (22)

where the cut-off frequency is selected as

ωc , min
{
ωmaxc ,min

{
ω, |V (r)| < V̄ ∀ r > ω

}}
, (23)

where ωmaxc is a given bound for the cut-off frequency. Here
V̄ is the threshold on the magnitude of the Fourier Transform
at the frequency when the magnitude permanently drops below
this threshold.
C: Dimensionless Jerk Another smoothness measure is dimen-
sionless jerk [48]. For a movement starting at t1 and finishing
at t2 with the maximum angular velocity vpeak during this
period, it is defined as joint

DLJ =
(t2 − t1)5

v2
peak

∫ t2

t1

∣∣∣∣d2v

dt2

∣∣∣∣2 dt, (24)

where v()̇ is the smooth or smooth approximations of the
angular velocity of the movement.
D: Approximate entropy (ApEn)

An approximation of Kolgomorov-Smirnov (KS) entropy
(the sum of all positive Lyapunov exponents) for a finite
duration signal that is practical for short duration data [49].
A related measure, the calculation of the largest positive Lya-
punov exponent has been used as a measure of spinal stability
for repetitive dynamic movements [50], and is expected to
relate to injury risk.

This calculation is more involved and the details can be
found in [49, p. 2298-2299].
E: Discrete relative phase This is the time (samples) delay
between the same event in two synergistic joint angles (here
the peak angle during shearing is used) [51]. For example, for
two joint angles θa(k), θb(k), k = 0, 1, 2, ..., Np,s − 1, it is
defined as

DRPa,b =
1

Np,s

(
arg max

k=0,1,2,...,Np,s−1
θa(k)−

arg max
k=0,1,...,Np,s=1

θb(k)

)
, (25)

which can be either positive or negative.
3) Combined sEMG and kinematic measurements (lumbar

spine angle and lumbar muscles): The interaction between
the lumbar kinematics and lumbar muscles in flexion has been
shown to have potential implications for injury [5]. In the lab
the flexion-relaxation phenomenon has be extensively studied.
This is difficult to measure in working environments due to
numerous confounding factors, such as movement speed, and
foot placement and orientation [47]. As the EMG-off angle
moves further into flexion, this measure would be expected to
increase.

This is applied to a combination of a joint angle xa(k), k =
0, . . . , Np,s−1 of lumbar spine and sEMG envelope ηb(k), k =
0, . . . , Np,s − 1 measured for lumbar muscles.

Crossk,m =
1

Np

Np,s−1∑
k=0

xa(k)ηb(k), (26)
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where appropriate re-sampling techniques are used to ensure
these two signals have the same sampling rate.

4) Statistics of signals: Other than a measured signal,
statistics of the signal can be also used as features. For
generality, the following statistic features of a finite duration
signal x(k) ∈ R, k = 0, . . . , Np,s − 1, (the kinematic, or
the filtered sEMG signal, or the sEMG envelope signal) are
defined. The mean and variance are represented as x̄, and σ
respectively, and the standard definitions are not reprinted here.
A: Skew

Fisher-Pearson coefficient of skewness of the signal
x(k), k = 0, . . . , Np,s − 1 is defined

b =

1
Np,s

∑Np,s−1
k=0 (x(k)− x̄)3

σ
3
2

. (27)

B: Kurtosis
Fisher kurtosis is defined as follows κ =
1

Np,s

∑Np,s−1

k=0 (x(k)−x̄)4

σ4 − 3.

C: Auto-correlation Auto-correlation is the correlation of a
sequence with the same sequence delayed by a time. In this
case, this is calculated with a one-step delay:

r = ρ (xk, xk−1) , (28)

where ρ(·, ·) is defined in (4).
D: Percentiles

A notion of percentile can be used to characterize a random
signal satisfying standard normal distribution. A percentile is
a value in the distribution that holds a specified percentage of
the population below it. The general definition is that the pth
percentile is the value that holds p% of the values below it.
The 10th, 25th, 50th, 75th, 90th, and 100th (max) percentiles
are calculated.
E: RMS and Norm

RMS =
1

Np,s

√√√√Np,s−1∑
k=0

x(k)2. (29)

For a vector of signals {x(k)}k=0,...,Np,s∈Rm0 , we can define
it norm as

norm =
1

Np,s

√√√√Np,s−1∑
k=0

m0∑
i=1

xi(k)2. (30)

F: Shannon entropy
For a random process x(k), its Shannon entropy can be

computed as

H(x) = −
Np,s−1∑
k=0

P (x(k)) log2 (P (x(k))) , (31)

where P (x(k)) is the probability of x(k), which can be
approximated by the relative frequency.

APPENDIX B
SELF-REPORTED FATIGUE SCALE

TABLE IV
MODIFIED BORG CR10 SCALE FOR MUSCLE FATIGUE

Score Explanation

1 Very weak
2 Weak - Fatigue is barely noticeable
3 Some fatigue

4 Some fatigue - Muscle fatigue is notable, it would be nice to
slow down a bit

5 Strong fatigue - Tired and hard. It would be nice to take a
rest, but you could shear another run

6 Strong fatigue - Tired and hard. You would like a rest, but you
still do not have difficulties going on

7 Very strong fatigue - The muscle fatigue is so strong that you
wish to stop and rest

8 Very strong fatigue - You have a strong desire to rest

9 Very strong fatigue - The muscle fatigue is nearly the worst
you’ve experienced

10 Extremely strong fatigue - The muscle fatigue is the worst you
have ever experienced before


