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Haptic perception is one of the key modalities in obtaining physical information of objects
and in object identification. Most existing literature focused on improving the accuracy of
identification algorithms with less attention paid to the efficiency. This work aims to
investigate the efficiency of haptic object identification to reduce the number of grasps
required to correctly identify an object out of a given object set. Thus, in a case where
multiple grasps are required to characterise an object, the proposed algorithm seeks to
determine where the next grasp should be on the object to obtain the most amount of
distinguishing information. As such, the paper proposes the construction of the object
description that preserves the association of the spatial information and the haptic
information on the object. A clustering technique is employed both to construct the
description of the object in a data set and for the identification process. An information gain
(IG) based method is then employed to determine which pose would yield the most
distinguishing information among the remaining possible candidates in the object set to
improve the efficiency of the identification process. This proposed algorithm is validated
experimentally. A Reflex TakkTile robotic hand with integrated joint displacement and
tactile sensors is used to perform both the data collection for the dataset and the object
identification procedure. The proposed IG approach was found to require a significantly
lower number of grasps to identify the objects compared to a baseline approach where the
decision was made by random choice of grasps.

Keywords: haptic based object identification, identification efficiency, object description, clustering, information
gain

1 INTRODUCTION

Haptics is one of the important sensingmodalities used to perceive object physical properties, surface
properties, and interaction forces between the end-effectors and the objects (Shaw Cortez et al., 2019;
Scimeca et al., 2020; Mayer et al., 2020). Object identification is one of the most important
applications of haptics, particularly, in cases where the identification process needs to rely on
the information provided only through the physical interaction between the end-effector and the
objects, or when it cannot be conveniently achieved by other means (Dargahi and Najarian, 2004).
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While haptics is most likely used in conjunction with other
sensing modalities in practice (e.g. with vision) (Liu et al.,
2017; Faragasso et al., 2018), it is also important for haptic-
based object identification to be studied in isolation to understand
the extent of its capabilities. It should be noted that haptics refers
to the description of an object through all the information
obtained by touching the object (Overvliet et al., 2008;
Grunwald, 2008; Hannaford and Okamura, 2016). In this
work, the haptic information involves not only the tactile
information at the contact points/surface but also the
proprioceptive information such as the pose of the fingers
upon touching the objects.

Accuracy and efficiency are two important evaluation
metrics in object identification in general as well as in haptic
object identification. In haptic-based object identification,
multiple grasps of the object presented are often required to
identify it from the given set of objects. This is also naturally
observed in human efforts of object identification when relying
on handling the object without vision (Gu et al., 2016; Luo et al.,
2019). The efficiency of the identification process is therefore to
do with identifying the object in as few numbers of grasps as
possible. Most existing literature focuses on improving the
accuracy. Examples include histogram-based methods (Luo
et al., 2015; Schneider et al., 2009; Pezzementi et al., 2011;
Zhang et al., 2016) and various supervised learning techniques
(such as random forest and neural network) (Spiers et al., 2016;
Schmitz et al., 2015; Liu et al., 2016; Funabashi et al., 2018;
Mohammadi et al., 2019). Relative to the accuracy, the
efficiency of haptic object identification techniques has been
less investigated with only a few reported studies (Kaboli et al.,
2019; Xu et al., 2013). In (Xu et al., 2013), an efficient
exploratory algorithm was presented specifically for texture
identification. In (Kaboli et al., 2019), a method was
presented to improve the efficiency of the learning process of
object physical properties for the purpose of constructing object
descriptions, not object identification.

The objective of this paper is to provide a systematic method
for analysing and quantifying the efficiency of haptic object
identification. The process affects both stages of the exercise:
the object dataset construction process and haptic object
identification process based on information gain technique. An
approach for the object dataset construction is proposed to
preserve the association of the spatial information on the
objects and the haptic information they yield. During the data
set construction, the clustering technique is employed to reduce
the dimensionality and complexity of the object descriptions,
such as in (Pezzementi et al., 2011). Based on the preserved spatial
information (haptic object description), the haptic information
associated with each pose on the object is available to the
algorithm. In contrast, histogram-based approaches (Luo et al.,
2015; Schneider et al., 2009; Pezzementi et al., 2011; Zhang et al.,
2016) construct object descriptions by counting how many times
each grasp cluster appears in each object, but not which poses
they belong to, thus cannot be utilised to determine where to
grasp the objects to obtain specific information.

The proposed object label construction in the object dataset is
then combined with a proposed information gain based

technique to calculate the amount of information at each pose
that can be obtained to distinguish the object to be identified from
the rest of the objects in the object set. Efficiency in haptic object
identification is pursued in this algorithm by selecting the pose
that contains the largest amount of information. This leads to a
significant reduction in the number of grasps required to
correctly identify the object out of a given object set compared
to the conventional practice where such object information is not
utilised in the identification process.

2 PROPOSED METHODOLOGY

Given a set of objects O � {o1, . . . , ol}, l ∈ N , where N is the set
of integers, and a set of poses P � {p1, . . . , pn}, n ∈ N , it is
assumed that for grasping each object oi ∈ O (where
i≤ l, i ∈ N ), at all n poses is sufficient to fully capture its
characteristics and thus uniquely define the object. Figure 1
shows an object with coordinate frames 1 to n representing
the finite number of predefined poses where a robotic grasper
with relevant tactile and proprioceptive sensors is placed to grasp
the objects to gather measurements. These poses are specified
only as the angle of approach to the object at each increment in
object height (the example in Figure 1 shows three levels of object
heights and the poses defined at every π/2 rad for each height).
These predefined poses are consistent across all objects in the
object set and assumed to be known a priori.

The objective of this work, therefore, is to identify an object
presented to the algorithm, among possible objects in the object
dataset, with the fewest number of grasps, where the possible
grasp poses (the location and orientation that a robotic hand is

FIGURE 1 | The characteristics of an object are regarded to be fully
captured by grasping the object at n different poses. The n poses are spread,
if possible uniformly, across the surface of the object.
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used to grasp the object, relative to the object) are common for all
objects.

The process involved in this exercise includes the construction
of the object dataset (that incorporates the grasp pose
information to the corresponding haptic information) and the
object identification. Once the object dataset is established
according to the proposed method, the problem is to identify
which object (out of the object set) is being presented to the
algorithm.

2.1 Object Dataset Construction
The object dataset construction procedure is presented in three
steps: Data acquisition and normalisation, categorising the grasp
clusters and, constructing the object description. The details of
each step are presented below.

2.1.1 Data Acquisition and Normalisation
Haptic measurements for all objects are taken at the predefined
poses and the signals are processed. Each grasp on the object will
yield a M dimensional measurement, corresponding to the
number of sensors on the robotic hand. To collect the data,
the robotic hand grasps each object at n different poses covering
the object for all ℓ objects in the object set. The grasp at each pose
is repeated T times to account for the expected amount of
uncertainty associated with the grasping process, for example,
the sensor noise and the robot hand pose uncertainties. Due to the
different dimensions associated with the different types of
physical variables involved (joint displacement and pressure), a
normalisation method is needed to remove the influence of the
dimension and the unit. In this work, the “Min-Max”
normalisation method (Jain et al., 2005), which scales the
values of all variables to the range of zero and one, is employed.

2.1.2 Categorising the Grasp Clusters
An unsupervised learning technique is then utilised to cluster all
theM dimensional normalised measurements for all n poses in an
object for all objects in the dataset into K grasp clusters. In this

paper, the well-established K-Means approach is adopted due to
its high-speed performance. Details of the K-Means algorithm
can be found in (Parsian, 2015). To determine the number of
clusters, the ‘elbow method’ is used (Bholowalia and Kumar,
2014).

As an illustrative example, a 2-dimensional plot representing
the clustering results is shown in Figure 2. Each point on Figure 2
represents 1M dimensional normalised measurement (for ease of
reading, theM dimension plot is conceptually represented in a 2-
dimensional plot). Therefore, in order to focus the study on the
efficiency of the algorithm, it is assumed that the object dataset is
well designed with distinguishable objects, and noise/uncertainty
in the haptic measurements are bounded in a range that is clearly
smaller than the variance in the distinguishing information
between distinct grasps. Therefore, grasping an object at a
given pose repeated multiple times will result in measurements
that should all be categorized into the same cluster, which
guarantees the identification accuracy can be decoupled from
the efficiency. Furthermore, for each cluster, the spread of
measurements will be completely bounded (represented by the
red circles in Figure 2) and the minimum distance between the
centroids of distinct clusters (inter-cluster distance) should be
much larger than the radius of this bound (intra-cluster distance).
Note that this assumption is only used for the object dataset
construction. During the object identification step, practical
uncertainties are included in the test, where the effect of such
uncertainties is evaluated in the experiment.

2.1.3 Constructing the Object Description
After categorisation, an object can be labelled uniquely by the
string (of length n) for the n poses across the object. Each pose p1
. . . pn is assigned a cluster number, which is the cluster that the
haptic measurements at that pose for that object have been
categorised into. An example of the label of an object in the
set is represented in Figure 3. In this example, when grasped at
Pose 1, the object yields haptic measurements across the M
sensors on the robotic grasper that has been categorised into
grasp cluster number seven through the clustering process. The
resulting object description therefore preserves the information of
which pose yields which grasp measurement, which is now
represented as the grasp cluster number.

2.2 Object Identification
The proposed object identification approach in this paper utilises
the information gain based (IG-based) technique. In this paper, it
would be compared to a baseline approach, where the knowledge
of the characteristics in the object dataset is not utilised. In this
work, any objects presented to be identified should belong to the
object set. If a new object (which does not belong to the object set)
is presented, it should first be added to the object data set, by
undergoing the Object Dataset Construction step.

It should be noted that when performing the object
identification, the relative pose between the robotic grasper
and the object is assumed to be known within the bound of
uncertainties. This is a common assumption made in the studies
of haptic-based object identification techniques, such as in
(Madry et al., 2014; Luo et al., 2015; Schmitz et al., 2015; Liu

FIGURE 2 | An illustration of a 2D projection of the clusters formed by the
M-dimensional normalised measurements (represented by each point on the
plot) for all n poses in an objects for all ℓ objects in the dataset. The points are
categorised into K grasp clusters.
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et al., 2016; Spiers et al., 2016), to simplify the analysis and to
keep the paper focused on the main question at hand. In
practice, the relative displacements of subsequent poses
grasped by the robotic end-effector are known to the
algorithm that commands the robot. Only the pose of the
initial grasp (the first grasp the robot makes contact with the
object) is unknown. This, however, can be obtained as the robot
makes its subsequent grasps, in a technique analogous to the
well established simultaneous localisation and map building
(SLAM). This technique, adapted to the haptic-based object
identification problem, is established in the literature and was
presented in (Lepora et al., 2013).

2.2.1 Information Gain Based Approach (The
Proposed Approach)
Information gain is a commonly used concept to represent the
amount of information that is gained by knowing the value of a
feature (variable) (Gray, 2011). Specifically, IG assigns the most
distinguishable feature with the highest information value.
Currently, IG has been developed and applied to decision
trees, simultaneous localization and mapping (SLAM), and
feature selection techniques (Kent, 1983; Lee and Lee, 2006)
and in object shape re-construction by improving the
exploration efficiency (Ottenhaus et al., 2018).

2.2.1.1 Background on Information Gain Approach
For a random variable X with a possible outcomes, xα, α � 1, . . . ,
a, assume that each outcome has a probability of p(xα). The
information entropy H(X) is defined as:

H(X) � −∑
a

α�1
p(xa)log2( p(xa)). (1)

Conditional entropy is then used to quantify the information
needed to describe the outcome of a random variable X given the
value of another random variable Y. Assume that there are b
possible outcomes of the random variable Y. Each outcome yβ of
the random variable Y has a probability of p(yβ), β � 1, . . . , b. Let
p(xα|yβ) be the conditional probability of xα given yβ. H(X|Y)
represents the information entropy of the variable X conditioned
upon the random variable Y, which can be computed as:

H(X|Y) � ∑
b

β�1
p(yβ)H(X|yβ)

� −∑
b

β�1
p(yβ)∑

a

α�1
p(xα|yβ)log2(p(xα|yβ))

(2)

Information Gain represents the degree to which uncertainty in
the information is reduced when the random variable Y happens,
which is defined as

G(X,Y) � H(X) −H(X|Y). (3)

2.2.1.2 IG-Based Approach for Haptic Object Identification
An IG-based approach is proposed here that estimates the degree
to which the information uncertainty is reduced by each choice of
the pose in the haptic identification applied to a set of ℓ candidate
objects.

At each iteration, the algorithm will calculate the information
gain for each pose for every remaining object in the set. Firstly, the
information entropy is calculated for each object. Considering
that N remaining objects in the set, the given object will be
sequentially indexed as o1, o2, . . . , oN. Note that at the first
iteration, N � ℓ. When the object to be identified is assumed to be
oi, all other remaining objects in the set will then be named ¬oi
(i.e., not oi). Therefore, the object set for object oi can be
represented as two possible outcomes: Ooi � {oi, ¬oi},
representing the random variable. The probability of each
possible outcome can then be calculated as:

p(oi) � 1
N
; (4)

p(¬ oi) � N − 1
N

. (5)

Therefore, the information entropy for the object oi can be
calculated as:

H(Ooi) � −p(oi)log2(P(oi)) − p(¬ oi)log2(p(¬ oi)). (6)

A second variable considered here is Cpj � {cpj,1,...,cpj,gi} containing
non-repeating grasp cluster numbers at pose pj for all remaining
objects in the set, while gj is the number of non-repeating
grasp cluster numbers in the set Cpj. At pose pj, each possible
outcome cpj,t ∈ Cpj (where t ≤ gj, t ∈ N ) has a probability
p (cpj,t). Defining a set Dpj � {dpj, 1, ...,dpj,gj} to represent
the frequency of occurrence of each non-repeating grasp
cluster number cpj,t at pose pj (for example, at pose pj, the
occurrence frequency of cpj,1 is dpj,1), the probability of the
outcome cpj,t can be calculated as:

p(cpj,t) � dpj,t
N

. (7)

Therefore, the conditional entropy for object oi at pose pj can be
computed as

FIGURE 3 | The description of an arbitrary object in the object set.
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H(Ooi|Cpj) � ∑
Npj

t�1
p(cpj,t)H(Ooi|Cpj,t)

� −∑
Npj

t�1
p(cpj,t)[p(oi|cpj,t)log2(p(oi|cpj,t))

+p(¬oi|cpj,t)log2(p(¬oi|cpj,t))]. (8)

The p(oi|cpj,t) and p(oi|cpj,t) are the conditional probability of oi
given cpj,t and ¬oi given cpj,t, respectively. Specifically, if the grasp
cluster number of oi at pj is cpj,t, the conditional probability can be
calculated as:

p(oi|cpj,t) � 1
dpj,t

. (9)

p(¬oi|cpj,t) � dpj,t−1
dpj,t

. (10)

otherwise, if the grasp cluster number of oi at pj is not cpj,t, then
p(oi|cpj,t) � 0 and p(¬oi|cpj,t) � 1.

The information gain (IG) for object oi at pose pj can be
calculated as:

G(oi, pj) � H(Ooi) − H(Ooi|Cpj)
� −p(oi)log2(p(oi)) − p(¬oi)log2(p(¬oi))

+∑
Npj

t�1
p(cpj,t)[p(oi|cpj,t)log2(p(oi|cpj,t))

+p(¬oi|cpj,t)log2(p(¬oi|cpj,t))]. (11)

The information gain can be calculated for all remaining objects
for each pose. The algorithm then selects the pose that contains
the highest IG. In other words, the algorithm will grasp the object
at the pose that would provide the most information gain. For
each pose, each object has its IG value, representing the degree of
distinction of this object from all other remaining objects in the
set at this pose. At a given pose, the greater the IG value of an object,
the greater the degree of distinction between this object and other
remaining objects at this pose. Theremay be a fewways to quantify the
measure of the “highest information gain”. In this paper, the algorithm
first selects the pose with the largest value of minimum information
gain (MIG). When the largest value of MIG is shared by more than
one pose, the algorithm then chooses the posewith the highest value of
average IG (AIG) out of these poses. If the highest value of AIG is yet
shared by more than one pose, any of these poses can be chosen since
they all have the same amount of information for the object
identification purpose. If such situation arises, in this paper, the
pose selection will follow the order of poses.

The summary of the proposed method is shown in Algorithm
1. Note that for a given object dataset, the first pose in the
identification process is always the same, as the algorithm will go
first for the pose with the largest value of minimum IG for the
entire object dataset. After the first grasp, depending on the
measurements encountered on the object to the identified, the
appropriate candidate objects are eliminated from consideration
and a “reduced object set” is generated, containing the remaining
possible options (of objects) that could not be eliminated. The
proposed algorithm will be repeated until the number of objects
in the set is less than or equal to one. The outcome of the object

identification process can be one of the following: 1) the object is
correctly identified, or 2) the object is misidentified (as another in
the object set). It is also possible in the case of misidentification
that the resulting object description does not match any in the
object dataset. In this case, 3) the object is considered as
unidentified. Note that this does not imply that the new object
is not contained in the object dataset. It simply means that the
uncertainties in the measurements resulted in an object
description that cannot be matched to the dataset.

2.2.2 Baseline Approach
In this paper, a baseline approach is constructed to be comparedwith
the proposed IG based approach, and the summary of it is shown in
Algorithm 2. By baseline approach, we mean that the decision on
where to grasp next in the haptic object identification process does
not consider the information content of the object dataset. The
procedure of the baseline approach is similar to the IG based
approach (it still eliminates inadmissible candidates following the
grasps performed), but the subsequent grasp pose is selected at
random. The grasp poses where measurements are already taken are
removed from the set p, which means this grasp pose can not be
chosen in the following identification iterations. The baseline
approach has also been utilised in (Corradi et al., 2015; Vezzani
et al., 2016; Zhang et al., 2016) where efficiency is not the focus of
their study.
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3 EXPERIMENTAL EVALUATION

3.1 Experimental Setup
To evaluate the performance of the proposed object
identification algorithm, the following experimental setup is
used in this paper:

3.1.1 Object Set
To represent a wide range of objects with different values of
stiffness and shapes, 23 objects are selected in this study (as
shown in Figure 4). Objects used for this study are: 1) Glass
bottle, 2) Cylindrical can, 3) Peppercorn dispenser, 4) Mug, 5)
Spray bottle, 6) Cuboid can, 7) 3D printed cylinder, 8) Arbitrarily
shaped 3D-printed object, 9) Pepsi bottle, and 10) Pepsi bottle
otherwise identical to Object 9) but with a bump on the bottle cap,
11) Tennis ball (soft), 12) Silicone ball (hard), 13) Oral-B blue
bottle, 14) Oral-B white bottle, 15) Soft drink bottle, 16) Sports
drink bottle (full), 17) Sports drink bottle (empty), 18)
Assembled Lego blocks, 19) Assembled Lego blocks with a
specific part at Height 1, 20) Assembled Lego blocks with
a specific part at Height 2, 21) Assembled Lego blocks with a
specific part at Height 3, 22) Assembled Lego block with a
specific part at Height 4, 23) Assembled Lego blocks with
a shorter height. All selected objects satisfy the assumption
on distinguishability of the objects.

Objects in the set are intentionally selected to have a high level
of similarity, such as Objects 9 and 10 which are identical except
for the bump on the bottle cap on Object 10. Object 11 and 12
have the same shape of their main body, with stiffness difference
overall. Object 13 and 14 have similar size and shapes but with
different stiffness at Pose 1. Therefore, when grasping these two,
the joint angle will be similar, but the tactile map will be different.

Object 15 and 16 have similar object convex envelopes, such that
they result in similar finger displacements when grasped.
However, they differ in that one has clearly defined edges
while the other shows a rounded shape. The tactile
measurements upon grasping these two objects are
significantly different, while the finger displacements of the
grasps are similar. Object 15 and 17 are the same object
(identical plastic bottles), but one is filled full with water while
the other is empty. Object 18–23 have similar shapes on the
majority of the portions of the objects, except on one specific part
on each object.

3.1.2 Robotic Hand and Tactile Sensors
The experimental platform is shown in Figure 5. The ReFlex
TakkTile (Right Hand Robotics, US), which consists of three
under-actuated fingers, is used in the study. The ReFlex hand has
4 Degrees of Freedom (DoFs): the flexion/extension of each finger
and one coupled rotation between the orientation of finger No.1
and No.2). In this work, only the three DoFs of finger flexion/
extension are used. Each under-actuated finger is controlled by an
actuator that can drive the tendon spanning both the proximal
and distal joint. The proximal joint connects the proximal link to
the base, and the distal joint connects the distal link to the
proximal link. For each finger, there are one proximal joint
encoder, one tendon spool encoder, and nine embedded
Takktile pressure sensors arranged along with the finger. The
reading of the tendon spool encoder represents the angular
displacement of the whole finger (the sum of the angular
displacement of proximal joint and distal joint), representing
the proprioceptive information. Therefore, the degree of flexion
of the distal joint can be calculated from the difference between
the tendon spool decoder and the proximal joint encoder.

FIGURE 4 | Consists of 23 objects in a variety of shapes, sizes and stiffness.
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In this work, the ReFlex hand is mounted on a steel frame and
its three fingers are positioned parallel to the horizontal direction.
The height of the robotic hand can be determined by adjusting the
vertical position of the steel frame. All the data is collected at
40Hz sampling. During each grasp, all fingers are commanded to
move 3 rad over 6 s. A torque threshold is also set for each motor.
For each finger, once this threshold is reached, this finger will stop
moving and keep that pose as the final pose for measurements.

3.1.3 Software
Robotic hand operation and data collection are all performed via
Robot Operating System (ROS), version ‘ROS-indigo’, under Linux
Ubuntu 14.04 computer system. The information (joint angle and
pressure value information) is recorded via ‘rosbag’ command and
is saved in the ‘comma-separated values’(’.csv’) file.

3.2 Object Dataset Construction
Each object oℓ ∈ O, ℓ � 1, . . . , 23 is grasped at 16 different poses,
n � 16, divided across four grasp heights (with 55mm
increments). The object is grasped in four different
orientations about the vertical axis at each height setting (with
90o increments). For each object, the grasp is repeated 10 times at
each pose. The collected data are then normalised using the “Min-

Max” normalisation method. To categorise the data, fifty-three
grasp clusters are identified through the ‘elbow method’. Since
each object is grasped at n � 16 different poses, the label for each
object is made up of a series of n � 16 grasp cluster numbers.

3.3 Object Identification
Using the established data set, the object identification procedure with
IG-based algorithm for efficiencywas validated for two scenarios, where
themeasurements taken for the object identification process were done:

• Scenario 1: without uncertainty. This represents a sanity check,
representing the theoretical-best-possible outcome, evaluating
only the ability of the IG-based algorithm in utilising the
information of the objects in the dataset to make decisions on
where tomake the subsequentmeasurement grasp. Note that the
sensor measurement errors (of the robotic grasper encoders and
tactile sensors) are still present in this case butwere not significant
to cause any false outcomes in identifying the grasp types.

• Scenario 2: with an amount of uncertainties approximated
to a typical practical process. In this paper, the amount of
practical uncertainties was realised as the positioning error
of the grasper relative to the object, bounded within ±20
degrees of grasping orientation uncertainty (with respect to

FIGURE 5 | Experimental platform. (A) The physical experimental setup. (B) The schematic of the experimental setup (side view).
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TABLE 1 | The list of the constructed labels for the object dataset used in the experiment.

Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7 Pose 8 Pose 9 Pose 10 Pose 11 Pose 12 Pose 13 Pose 14 Pose 15 Pose 16

Object 1 (0) (0) (0) (0) (1) (1) (1) (1) (2) (2) (2) (2) (3) (3) (3) (3)
Object 2 (4) (4) (4) (4) (5) (5) (5) (5) (3) (3) (3) (3) (3) (3) (3) (3)
Object 3 (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (7) (7) (7) (7)
Object 4 (8) (8) (8) (9) (10) (11) (12) (13) (3) (3) (3) (3) (3) (3) (3) (3)
Object 5 (14) (9) (14) (9) (14) (9) (14) (9) (14) (15) (14) (15) (16) (16) (16) (16)
Object 6 (17) (9) (17) (9) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
Object 7 (18) (18) (18] (18) (19) (19) (19) (19) (3) (3) (3) (3) (3) (3) (3) (3)
Object 8 (18) (18) (18) (18) (20) (20) (20) (20) (3) (3) (3) (3) (3) (3) (3) (3)
Object 9 (21) (21) (21) (21) (22) (22) (22) (22) (23) (23) (23) (23) (24) (24) (24) (24)
Object 10 (21) (21) (21) (21) (22) (22) (22) (22) (23) (23) (23) (23) (25) (24) (24) (24)
Object 11 (26) (26) (26) (26) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
Object 12 (27) (27) (27) (27) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
Object 13 (28) (29) (28) (29) (30) (31) (30) (31) (32) (33) (32) (33) (34) (34) (34) (34)
Object 14 (35) (29) (35) (29) (30) (31) (30) (31) (32) (33) (32) (33) (36) (36) (36) (36)
Object 15 (37) (37) (37) (37) (38) (38) (38) (38) (39) (39) (39) (39) (40) (40) (40) (40)
Object 16 (39) (41) (39) (41) (42) (43) (42) (43) (44) (44) (44) (44) (45) (45) (45) (45)
Object 17 (39) (41) (39) (41) (46) (43) (46) (43) (44) (44) (44) (44) (45) (45) (45) (45)
Object 18 (47) (48) (47) (48) (47) (48) (47) (48) (47) (48) (47) (48) (47) (48) (47) (48)
Object 19 (49) (50) (47) (48) (47) (48) (47) (48) (47) (48) (47) (48) (47) (48) (47) (48)
Object 20 (47) (48) (47) (48) (49) (50) (47) (48) (47) (48) (47) (48) (47) (48) (47) (48)
Object 21 (47) (48) (47) (48) (47) (48) (47) (48) (49) (50) (47) (48) (47) (48) (47) (48)
Object 22 (47) (48) (47) (48) (47) (48) (47) (48) (47) (48) (47) (48) (49) (50) (47) (48)
Object 23 (47) (48) (47) (48) (47) (48) (47) (48) (47) (48) (47) (48) (51) (52) (51) (52)
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the object). This scenario evaluates the performance of the
proposed method in a practical situation where
measurement and grasp positioning noise are present.

Two tests are conducted in both scenarios: the accuracy evaluation
and the efficiency evaluation. In the accuracy evaluation, ten sets
of identification trials for each object are conducted, and the
identification accuracy of each object will be recorded. The
procedure is shown in Algorithm 3. In the efficiency evaluation,
each object presented is to be correctly identified ten times. The
procedure of the efficiency evaluation is summarised in Algorithm 4.
The measure of evaluation is defined as the number of grasps used to
correctly identify the presented object. When uncertainties are
involved in the identification, where there is a possibility of the
algorithm misidentify the grasp type when measuring one of the
poses, this definitionmeans that in each (of the ten attempts per object
presented) to identify an object correctly, the number of grasps made
on the object when a correct identification is not achieved are also
counted towards calculating the efficiency. Each time the algorithm
misidentify the presented object, the algorithm starts a new attempt by
identifying the object from the beginning.

4 RESULTS AND DISCUSSION

4.1 Object Dataset Construction
The result of the object dataset construction used in the
experimental evaluation is represented in Table 1. In the
resulting object dataset, each of the 23 objects is described as a
16-number long string, representing the 16 cluster numbers for
that specific object from the measurements taken at the 16
grasping poses performed on the object.

4.2 Object Identification
4.2.1 Scenario 1 (Without Uncertainties)
Accuracy Evaluation
Ten sets of identification trials for each object are conducted. In
this scenario where no uncertainties were included, it was
confirmed that all trials yielded a 100% accuracy for both the
IG-based approach and the baseline approach, as expected.

Efficiency Evaluation
The number of grasps required to correctly identify the presented
object, using the baseline approach and the proposed IG-based
approach, are shown in Figure 6. Using the constructed object
dataset, the IG value for each object at each pose can be calculated
for the first iteration. The IG values for all the objects for all

FIGURE 6 | The number of grasps required to correctly identify each of 23 objects using the proposed approach and the baseline approach: Scenario 1 (without
uncertainty).
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TABLE 2 | IG value for each object at each pose: first iteration.

Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7 Pose 8 Pose 9 Pose 10 Pose 11 Pose 12 Pose 13 Pose 14 Pose 15 Pose 16

Object 1 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.07 0.07 0.07 0.07
Object 2 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
Object 3 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
Object 4 0.26 0.26 0.26 0.14 0.26 0.26 0.26 0.26 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
Object 5 0.26 0.17 0.26 0.14 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
Object 6 0.26 0.17 0.26 0.14 0.14 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
Object 7 0.17 0.17 0.17 0.17 0.26 0.26 0.26 0.26 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
Object 8 0.17 0.17 0.17 0.17 0.26 0.26 0.26 0.26 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
Object 9 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.26 0.17 0.17 0.17
Object 10 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.26 0.17 0.17 0.17
Object 11 0.26 0.26 0.26 0.26 0.14 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
Object 12 0.26 0.26 0.26 0.26 0.14 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
Object 13 0.26 0.17 0.26 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.26 0.26 0.26 0.26
Object 14 0.26 0.17 0.26 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.26 0.26 0.26 0.26
Object 15 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
Object 16 0.17 0.17 0.17 0.17 0.26 0.17 0.26 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Object 17 0.17 0.17 0.17 0.17 0.26 0.17 0.26 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Object 18 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.12 0.12 0.10 0.10
Object 19 0.26 0.26 0.09 0.09 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.12 0.12 0.10 0.10
Object 20 0.10 0.10 0.09 0.09 0.26 0.26 0.09 0.09 0.10 0.10 0.09 0.09 0.12 0.12 0.10 0.10
Object 21 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.26 0.26 0.09 0.09 0.12 0.12 0.10 0.10
Object 22 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.26 0.26 0.10 0.10
Object 23 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.26 0.26 0.26 0.26
AIG 0.20 0.19 0.19 0.17 0.19 0.19 0.18 0.18 0.15 0.15 0.14 0.14 0.16 0.15 0.14 0.14
MIG 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
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possible poses are shown in Table 2. To decide on the pose for
the first grasp, the algorithm looks at the largest minimum IG
(MIG) values for all the poses in Table 2. In our example, a
MIG value of 0.10 can be found for Pose 1 and 2, and Pose 5
and 6 (see the last row of Table 2). The algorithm then selects
out of these poses, the one with the highest averaged IG (AIG)
value, which is 0.20 for Pose 1. Therefore, for the first grasp, Pose 1 is
selected. Note that once the first grasp is made, depending on the
grasp type identified, inadmissible candidates are removed and the
IG values for the subsequent grasp will need to be calculated with the
set of the remaining objects.

The experiment results of the number of grasps required
to correctly identify the object through the IG-based
approach are shown in Figure 6. It is observed that the
IG-based approach outperforms the baseline approach in
general, even if the difference in performance differs from
object to object. The average number of grasps needed for the

baseline approach is 4.81 while the IG-based approach
was observed to correctly identify the object on average
in 1.65 grasps. As expected, the number of grasps required
by the baseline approach to identify an object varies
widely between different attempts due to the random
selection in deciding the subsequent grasps. The IG-based
approach is repeatable for all objects in the same set in the
absence of practical uncertainties. This demonstrates the
theoretically achievable performance of the proposed
approach.

The advantage of the proposed approach is highlighted in the
more challenging cases, where objects are more similar to others
in the object set. Objects 9 and 10 are identical except for a dent in
one of the two bottle caps - and the baseline approach struggled to
identify the object without exploiting the knowledge of the objects
in the dataset. Similar observations can be made to Objects 18 to
23 (See Figure 4).

FIGURE 7 | The accuracy of identifying each of 23 objects through the proposed approach: Scenario 2 (with uncertainty).

FIGURE 8 | The number of grasps required to correctly identify each of 23 objects using the proposed approach: Scenario 2 (with uncertainty).

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 68649011

Xia et al. Determining Where to Grasp

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


4.2.2 Scenario 2 (With Uncertainty)
This section explores how the proposed object identification
approach performs when the measurement includes a level of
uncertainty typical to that seen in practical conditions. The
identification procedure remains the same as shown in Section
4.2.1 where the first grasp is carried out at Pose 1.

Accuracy Evaluation
The resulting percentage accuracy of the proposed approach in
the presence of practical uncertainties is shown in Figure 7.
The percentage of misidentification (when an object identified
as another) and unidentified (when the resulting descriptor
does not match any object in the dataset due to the
uncertainties involved) are also shown. It can be seen that
some objects are more susceptible to uncertainties. In general,
more cylindrical objects are less susceptible, while objects with
sharp, angular features are more prone to misidentification.
This is due to the nature of the tactile sensors on the robotic
grasper used in our experiment, where individual sensors are
embedded in the fingers. A change in the grasping pose will
cause a sharp angular feature on an object to press on the
adjacent tactile sensor, activating a completely different sensor
in the resulting reading.

Efficiency Evaluation
The effect of the inclusion of the practical uncertainties in the
performance of the proposed approach is shown in Figure 8, where
it is compared to the performance without practical uncertainties.
The average number of grasps required for correct identification
increases from 1.65 Scenario 1 to 4.08 in this Scenario.

As seen in the outcome of the accuracy evaluation, the
identification efficiency of rectangular-shaped objects - objects
with sharp angular features on their surface (such as Object 5, 6,
13, 14, and 18) are the most affected, due to its poor accuracy,
thus requiring, on average, more attempts (thus more grasps) to
make a correct identification. It is also demonstrated that the
constructed measure of efficiency is successful in capturing/
accounting for the accuracy of the identification approach in
reflecting the efficiency performance of the approach.

5 CONCLUSION

This paper presents an approach to utilise the information in the
object dataset in improving the efficiency of a haptic object
identification approach. It is shown that compared to an
equivalent haptic-based object identification approach that does
not exploit such information (representative of the conventional
approaches), the number of grasps required to correctly identify
the presented object was significantly reduced. In the experimental
evaluation with 23 objects in the object set, the proposed approach
required on average 1.65 grasps to 4.81 grasps in the baseline
approach. The presence of uncertainties in any practical
applications, such as in the positioning inaccuracies of the pose
of the robotic grasper upon the object or the sensor noise in haptic
sensors onboard the robotic grasper, affects the performance of the
approach. This is because inaccuracies in the identification
approach require the algorithms more attempts to achieve the
same number of correct identification of the objects. It was
observed that the shapes of the objects and their interaction
with the robotic grasper used in the task also determine the
susceptibility of the object to these uncertainties.
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