1955

&
Society  cerwe rus srawours

Ws &7‘:5%?:33; 7;\%@”5 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 27, NO. 4, AUGUST 2022
it

Beta Mixture Model for the Uncertainties in
Robotic Haptic Object Identification
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and Denny Oetomo

Abstraci—Robotic haptic object identification is the pro-
cess to identify objects out of a given object set using
a robotic hand equipped with tactile and finger-joint dis-
placement sensors. When taking measurements by grasp-
ing the object, the uncertainties in the pose of the object
relative to the hand will adversely affect the identification
accuracy. Each tactile sensor measures contact in its lo-
cality, thus, a change in object contact locations relative to
the robotic grasping hand significantly affects the tactile
measurements. In object identification, statistical proper-
ties of the uncertainties in the collected measurements are
generally obtained a priori, allowing the probabilities of an
object to be estimated for improved accuracy. The prob-
lem of object pose uncertainty typical in robotic grasping
results in multiple peaks in the probability distribution of
the resulting tactile measurements. The peaks are associ-
ated with whether or not the (locality of) tactile sensor on
the robotic hand is in contact with the object due to the
variations in object pose. As such, in this article, a Beta
mixture model allowing multiple peaks in the distribution is
proposed to represent this object pose uncertainty (relative
to the robotic hand) in place of the conventional Gaussian
model used in the literature. The method was experimen-
tally validated and demonstrated to be effective in capturing
the uncertainties and improving the accuracy of the haptic
object identification.

Index Terms—Beta mixture model, haptic object identifi-
cation, robotic grasping, tactile sensing.
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[. INTRODUCTION

APTICS is an important sensing modality for perceiving
H the physical and surface properties of objects and the
interaction forces between the end-effectors and the objects [1],
[2]. Haptic object identification, which is often used in object
manipulation learning [3], [4], industrial assembly [5], [6], and
underwater applications [7], is one of the applications of haptics.
It plays an important role when the identification process needs
to rely on the information provided only through the physical
interaction between the end-effector and the objects, or when the
process cannot be conveniently achieved by other means [8].
While haptics is most likely used in conjunction with other
sensing modalities in practice (e.g., with vision) [9], [10], it
is also important for haptic object identification to be studied in
isolation to understand the extent of its capabilities. This article
focuses on performing object identification using a robotic hand
equipped with tactile and finger-joint displacement sensors with-
out other sensing modalities. Such a setting can also be found
in[11] and [12].

Since haptic information can only be obtained by contacting
the objects, itis essential to consider the exploratory procedure of
haptic identification [14]. In the literature on robotic haptic iden-
tification, different procedures are adopted. Specifically, [12]
and[15]-[19] did the enclosure (such as grasping or touching)
with the objects, [20]-[23] performed the lateral motion on the
surface of the objects to obtain the surface information, [11] and
[24] pressed the object to identify the stiffness, [25] and [26]
collect the haptic information using the static contact and un-
supported holding respectively.

Among the exploratory procedures, the enclosure is one of
the most commonly used procedures as it is informative and
relatively fast to be executed [27]. However, the information
collected by grasping/touching objects has the problem that
for the fixed locations of tactile sensors on the robotic hand,
the measurements are dependent upon the contact pose of
the object relative to the hand at grasping, such as shown in
Fig. 1. In other words, the measurements of each sensor (em-
bedded on specific locations the robotic hand/grasper used to
perform the grasping and touching) will be susceptible to the
error in the relative pose between the object and the grasper.
Given the high likelihood of the uncertainties in this relative
pose, it introduces a significant source of uncertainties in the
problem.
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Sensor 1: ¥ Sensor 1: i
Not activated / 1 Activated % ‘ (
Sensor 2: /&> t Sensor 2: /7 &

Activated Not activated

Fig. 1. lllustrative example showing the impact of uncertain contact po-
sitions in the measurements (The finger model is referenced from [13]).
(a) In the first grasp, Sensor 1 is not activated while Sensor 2 is acti-
vated. (b) In the second grasp, Sensor 1 is activated while Sensor 2 is
not activated.

To address the challenges introduced by the above mentioned
uncertainties, three methodologies have been proposed in the
literature on haptic identification. The first is machine learning-
based methods (such as neural networks) [15], [17], [28]-[30],
though the performance of machine learning techniques relies on
the selected structure and parameters, which usually are selected
by trial-and-error. Using inappropriate parameters or structures
might lead to a poor identification performance as indicated
in [31] and [32]. Moreover, as a typical black-box identification
technique, the results are lack of interpretability, which might
limit the scope of the methods in some applications, such as
medical, in which interpretability plays an important role in
diagnosis as pointed out in [33].

The second method extracts features, which are less sensitive
to uncertainties, in haptic object identification, see, for exam-
ple, [12], [18], [26], [34]-[36], and references therein. However,
with different end-effectors and different types or numbers of
embedded sensors, the features that can be extracted are dif-
ferent. Therefore, finding features, which keep the majority of
information from sensors and are less sensitive to uncertainties,
might be challenging sometimes [32].

The third is to use statistical modeling techniques to perform
haptic object identification from measured data [20], [25]. Given
a set of collected haptic measurements, the statistical model
can characterize the distribution of measurements offline. This
information can be utilized to understand the patterns within this
dataset. Consequently, this statistical model is used to interpret
the likelihood that a testing measurement belongs to an object,
based on the prior knowledge of the dataset [37]. Compared to
machine learning-based techniques, the statistical approach pro-
vides interpretable results from physical measurements. Com-
pared to feature extraction techniques, this technique utilizes
all information measured from sensors and further reduces the
subjective human involvement in the selection of appropriate
features, making it more systematic.

One of the challenges of the statistical approach is to se-
lect the model of measurements. The Gaussian model has
been used to account for the tactile sensor noise [20], [25].
However, it is questionable that a Gaussian model is able to
cope with uncertainties. When a robotic hand is grasping an
object, the probability density function (pdf) of tactile sensor
measurements generally has more than one peak. As shown in

Fig. 1, for objects other than perfect cylinders or spheres in
shape, when grasped at different postures, tactile sensors on
a given location of the robotic hand may or may not come
into contact with the object. With a slight amount of uncer-
tainties between the hand and the object, the resulting pdf of
the measurement of a tactile sensor will peak around the “no
contact” case and the “firm contact” case. The Gaussian model,
which is typically used in many existing algorithms, is not a
good candidate to characterize the pdf of tactile sensors as it is
symmetrically distributed and only works when most data are
around the central peak.

The Beta model is a family of continuous probability distribu-
tions defined for a normalized random variable parameterized by
two positive shape parameters. The Beta mixture model (BMM)
is an extension of the Beta model. It combines multiple Beta
models to accommodate pdf with multiple peaks, presenting
the advantage of characterising the uncertainties in the haptic
measurements.

In order to test the effectiveness and practicability of the
BMM, the Reflex TakkTile robotic hand with integrated joint
displacement and tactile sensors is used to perform the object
identification from the set consisting of 20 objects. In particular,
to provide insight of choosing the parameters of the proposed
algorithm, the experiments analyze the balance between model
complexity [the number of BMMs (or segments) used to describe
the haptic information of an object], the number of repetitions
of each grasp, and identification accuracy.

By investigating the nature of uncertainty distribution in hap-
tic information typical in object grasping for object identifica-
tion, it was found that the distribution is not typical Gaussian
but has multiple peaks associated with whether the locality of
the tactile sensors onboard the robotic hand is in contact with
the object due to the variation in object pose. Incorporating a
BMM to account for this uncertainty distribution was shown
experimentally to increase the accuracy of object identification.

[I. PRELIMINARIES

This section provides preliminaries, including the introduc-
tion of the Beta mixture model, problem formulation, and the
procedure of haptic object identification.

A. Beta Mixture Model

1) Beta Model: For x € [0, 1], the probability density func-
tion (pdf) of a Beta model [38] is defined as

o oz (1—2)ft e (1= )P |
fbeta(m) - B(Oz,ﬂ) o fol Ua71(1 o u)lg,ldu M

where « and §3 are positive shape parameters of pdf. B(«, f)
is the function that ensures the total probability is one. Here,
6 = [, 5] represents the parameter vector.

2) Beta Mixture Model: The BMM is a combination of K
Beta models, where K € N~ is called the number of compo-
nents of the BMM. Here, NV~ is the set of positive integers. The
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pdf of the BMM can be represented as
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where 0) = [ag, B]T is the parameter vector of the k™
component of pdf, m; is the mixture coefficient of the
k™ component which satisfies 7, > 0 and Zszﬂrk =1.
I (), Opir = [m,07,m,67,. .. Te Lp3K
is the lumped parameter LP3E =

T T 71T K
{[771,01 ,772,02,...,7TK,0K] P e T = 1,m >0,

2

T
yTTK 0 K ]
vector, where

ar > 0,8, > Ofork =1,..., K

3) Maximum Likelihood Estimation (MLE): For a set of mea-
surements (zy, . . ., &, ..., zy ) (or the dataset D), it is assumed
that the measurements satisfy the BMM with the unknown 6.,
The maximum likelihood estimation (MLE) method [39] has the
following cost function:

is the parameter space.

maximize L£(0.iz) 3)
Ominc€LPPK
where £(0,,;.) = Z 1n fm’;;” (z.). Itis noted that the higher
dimension of 6,,;,, the more data are needed to accurately
estimate the parameters using the MLE. If the dataset is not
rich enough, there will be a nonnegligible bias in the parameter
estimation.

B. Problem Formulation of Haptic Object Identification

For a given set of objects O, defined as O = {oy,...,0¢},
¢ € N, the aim of haptic object identification is to identify an
object presented to the algorithm, among possible objects in the
object set.

It should be highlighted that this article works on haptic
identification (identify the specific object from a given object
set) rather than haptic classification. This is currently the case as
haptic is relatively less advanced than computer vision research
and the information content in haptic is more sparse.

C. Procedure of Haptic Object Identification

The procedure involved in haptic object identification in-
cludes the object dataset construction and object identification.
1) Object Dataset Construction: To construct the dataset,
each object 0; € O (where i < £,7 € N) will be grasped in
different poses multiple times depending on the tasks, and the
corresponding haptic measurements of each object at different
poses will be recorded in the dataset. The collected measure-
ments then will be used for further processing to represent the
characteristics of each object.

2) Object Identification: In this step, the identification algo-
rithm is presented with an object randomly selected from the ob-
jectset O. By grasping the object, the haptic measurements will
be acquired and subsequently be processed to compare with the

Interval 1: [0°, a®)
Interval 2: [a°, 2a°)
Interval 3: [2a°, 3a°)

Segment 1: [0°,3a°)

Fig. 2. Characteristics of an object are regarded to be captured by
grasping the object at different intervals (only three intervals are shown).
In this illustrative example, one segment contains three intervals.

haptic characteristics of each object in the constructed dataset.
The identification algorithm will output the predicted label of
the tested object, and a binary identification result (correctly
identified or misidentified) will be obtained by comparing the
predicted label of the object with its ground truth label. The
performance of the haptic identification will be evaluated by
running the process multiple times and taking the average of the
number of times the algorithm correctly identifies an object out
of the total number of attempts.

Each object identification attempt can be an iterative process.
During each iteration, once the haptic measurements are ob-
tained, the identification algorithm will calculate the similarity
between the object under test and each object o; in the object
set O. When the identification procedure satisfies the stopping
rule, the algorithm will stop, and the label of the object in the
set O with the maximum probability of similarity will output as
the predicted label.

There are two stopping rules used in the literature. 1) The
similarity between the object under test and one of the objects
in the object set O reaches a predefined threshold 7, [25],
[26]. 2) The number of grasps performed in one identification
trial reaches the threshold 7, [19], [20]. These thresholds are
subjectively defined according to different needs or tasks. Both
rules can be used to stop the process.

[ll. PROPOSED METHODOLOGY
A. Object Dataset Construction

1) Data Acquisition and Normalization: Each object will be
split into N, uniform distributed orientation intervals along the
vertical axis (42 axis), as shown in Fig. 2 (e.g., interval 1 is
[0, a®), referring to the first o degrees of the object, rotating
on the +Z axis). Therefore, after grasping at IV, intervals, all
parts of the object, at all angular displacements measured from
areference frame attached to the object, have been encapsulated
by the grasp of the robotic hand. In other words, the robotic hand
would collect all the haptic information necessary to describe the
object. Each grasp on the object will yield an M dimensional
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measurement z = [2', ..., 27, ... 2 , corresponding to the

number of sensors on the robotic hand. To account for the
expected amount of uncertainty associated with the grasping
process, in each interval, the grasp will be carried out N times,
and each time the grasp orientation relative to the object will be
randomly determined.

In this article, the grasps are performed on a single height of
the object for simplicity of the experimental procedure, such as
practised in [11] and [35], where all objects are distinguishable
from the haptic information at this height. In general, the grasp
poses of objects can be extended to different heights as per the
information requirement of the dataset [40].

Due to the different dimensions associated with the different
types of physical variables involved (joint displacement and
tactile pressure), a normalization method is needed to remove
the influence of the dimension and the unit. In this article, the
“Min-Max” normalization method [41], which scales the values
of all variables to the range of zero and one, is employed. It is
highlighted that such a normalization process is compatible with
the requirement of the BMM for a normalized random variable
supported on [0,1]. In summary, for ¢ objects in the object
set, the dataset consists of £ X Ny x Np total measurements.
Each measurement is a M -dimensional vector, representing M
sensors used.

2) Estimation of Parameters of Beta Mixture Model: For
each interval of the object, the measurements of each sensor
should have a statistical model to capture the uncertainties for
Nr repetitions. Therefore, ¢ x N, x M BMMs are required
in total. In this article, we fix N to simplify the data col-
lection. Therefore, to have enough measurements to estimate
the parameters of each BMM, the concept of the segment is
introduced. A segment combines the measurements collected at
a few intervals to estimate the parameters of one BMM. The
number of segments is defined as Ny = % for some n € N.
Fig. 2 shows an example of a segment containing three intervals.

a) Reorganizing data into segments: The measure-
ments in the dataset are reorganized in terms of N segments. For
each object, each segment will contain all measurements from
n intervals (as shown in Fig. 2), leading to S measurements for
the parameters estimation, where S = Nz x n. For the r seg-
ment s, of object o;, a dataset D, ; := {Zi)i, S AT Zfl ,
where 2 € RM | represents the readings of M sensors in the
collected dataset. As the subset of D,.;, D’ ., which represents
the measurements of the jth sensor, will be utilized to identify
the parameters of the BMM of the j™ sensor.

b) Determining the parameters in Beta mixture
model: Given the dataset D ;, parameters ;" of the BMM
can be estimated using (3). More precisely, the optimal param-
eters are select to fit Dii to maximize the following cost:

M}T

maximize L£(6777) 4)

ornicLp
where L is defined in (3) for the dataset Dﬁz

In this article, the MLE procedure is achieved by us-
ing the constrained optimization by linear approximation
(COBYLA) algorithm which is integrated into Python’s

“scipy.optimize.minimize” package. It is noted that this pack-
age is only for minimizing rather than maximizing a function,
therefore, a simple mathematical transformation will be made,
and (4) will then become

minimize —L(677). )
6, cLP3K
Itis noted that for a fixed N, if the number of the segments is
small, fewer BMMs will be used. This will reduce the complexity
of the identification algorithm, at the cost of lower identification
accuracy. On the other hand, each dataset Dii will have suffi-
cient measurements to properly estimate the parameters of the
BMM in LP3¥ | leading to better estimation.

B. Object Identification

In this section, the Bayesian-based method is adopted as
the identification approach for testing the effectiveness of the
proposed BMM.

Given the object to be identified, a testing measurement
z=[2',...,27,...,2M]T can be obtained when a random
grasp is performed. We can form a sequence of grasps z;.; =
{2z1,...,2z:} in the iterative identification procedure.

1) Updating the Posterior Probability the Object o;: Given
the t" grasp in the identification stage, by applying Bayesian
equation in an iterative process, the probability of object o; is
computed as

max
Sy, r=1,...,Ng

[p(0i787"|z1:t)]

p(z¢ |0i7 ST)P(Ou Sp |Z1:t—1)
P(Zt)

p(0i|zl:t) -

= max
Sp,r=1,...,Ng

(6)

where p(o;, s,-|z1.¢) is the posterior probability of the object o; at
segment s, given z.;, p(z¢|o;, s,.) is the likelihood of observing
z; given o; and s, p(0;, $-|21.t—1) is the prior probability and
p(z+) represents the marginal likelihood.

The likelihood p(z¢|o;, s,) is calculated using the pdf of
the BMM. Assuming each dimension of the measurement is
independent, according to the conditional independence [42],
p(z¢|o;, s;) can be calculated by

p(z¢|oi, sr) =p <zt1, .. .,zg, .. .,zf”|oi, sr>

3,ryi

M ) M 0 )
= [Ip (dlows) =TT s D)~
j=1 j=1

where fff;; (27) is calculated using (2). Parameters Oﬁnx are
identified from the constructed dataset using the MLE.

The prior probability of the current iteration ¢ can be con-
sidered as the posterior probability of the last iteration ¢ — 1.
For t = 1, the prior probability of each object at each segment
will be considered as a uniform distribution. Therefore, the prior

probability of the first iteration is set as p(o;, s, |20) = 7.
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Algorithm 1: Bayesian haptic object identification (pre-
sented in Section III.B).

I: Input: The constructed object dataset (in Section
IL.A)

2: The estimated parameters (in Section III.A)
3: Initialize: The iteration ¢: t <— 0
4: The stopping rule: Rule < 7, or 7,
5: The condition of stopping rule: Stop < false
6: while Stop ! = true: do
7 t+—t+1
8: Do the ™ grasp and get the haptic measurements z;
9: for each o; € |01, 0¢] do

10: for each s, € [s1,sy,] do

11: Calculate likelihood p(z¢|o;, s, ) using (7)

12: Update prior probability p(o;, $,|2z1.t-1)

13: end for

14: end for

15:  Calculate marginal likelihood p(z) using (8)
16:  for each o; € [01,0/] do

17: Calculate posterior probability p(o;|z.;) using (6)
18: end for

19: if Rule == 7, and p(0;|z¢) > 75: then

20: Stop < true

21:  elseif Rule == 7, and t > 7,: then

22: Stop <— true

23: end if

24: end while
25 predicted_object_label < argmax,, c(,, o, P(0i|Z1:t)
26: Output: predicted_object_label

The marginal likelihood p(z;) is calculated as

{ N,

p(Zt) = Zzp(ztlo'hSr)p(0i78r|z1:t71)~ (8)

i=1 r=1

The algorithm of Bayesian haptic object identification is
summarized in Algorithm 1.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

1) Object Set: To represent a wide range of objects with
different stiffnesses, sizes, and shapes, 20 objects are selected in
this article (as shown in Fig. 3). Objects 1 — 3, 7 — 10, and 12
are the cylindrical/spherical objects, while objects4 — 6, 11, and
13 — 20 are with well-defined edges. The objects are selected
with reference to the Yale-CMU-Berkeley (YCB) object and
model set [43].

The descriptions of the objects will be presented in the for-
mat [explanation of the object - the material]. The material
description is included to provide the physical property of the
objects, while the shape is evident from Fig. 3. Objects used
for this study are the following: 1) a soft drink bottle—glass;
2) a can of beetroot—metal; 3) a peppercorn dispenser—hard
plastic; 4) a bottle of handwash—soft plastic; 5) a drinking

>

) (©) @

I
\ 4

12) (13) 14

SPAM
(eSS

(15) (16) 17) (18) (19) (20)

2 3)

®) (©)] (10

®) ©)

o
8)

Fig. 3. List of the object set with 20 objects.

Tactile sensors
Finger 3 (Reading 8-11)
. Distal angle
e (Reading 2)
~ Finger | Tactile Sensors
. (Reading 3-7)
Proximal angle
(Reading 1)

Rotating disc:
The setting that can

Object 3 in
the object set
(see Fig. 4)
Proximal joint
Rotating Disc

Reference line
for orientations

Distal joint

Robotic hand: /| adjust orientations of
The robotic hand " | the object.

is mounted on

the workbench. Workbench:

It is stationary with
respect to the inertial
coordinate frame.

(b)

Fig. 4. Experimental platform. (a) Experimental setup. (b) Schematic
of the experimental setup (side view).

mug—ceramic; 6) another drinking mug—ceramic; 7) an arbi-
trarily shaped 3-D-printed object—PLA plastic; 8) a second soft
drink bottle—soft plastic; 9) a tennis ball—uniform felt-covered
rubber compound; 10) a silicone ball—hard silicone; 11) a
bottle of mouthwash—medium stiffness plastic; 12) a sports
drink bottle—soft plastic; 13) a Lego block—hard plastic; 14)
another drink bottle of a different shape—soft plastic; 15) a milk
bottle—soft plastic; 16) a 3-D-printed apple—PLA plastic; 17) a
stain remover spray bottle of nonaxisymmetric shape—medium
stiffness plastic; 18) a cleaning spray bottle of nonaxisymmetric
shape—medium stiffness plastic; 19) a can of meat—metal; 20)
another Lego block—hard plastic.

2) Robotic Hand and Sensors: The experimental platform
is shown in Fig. 4. The ReFlex TakkTile (Right Hand Robotics,
US), which consists of three under-actuated fingers, is used in
the study. The ReFlex hand has 4 degrees of freedom (DoFs): the
flexion/extension of each finger and 1 DoF of coupled rotation
between the orientation of finger No.1 and No.2). In this article,
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only the 3 DoFs of finger flexion/extension are used. Each under-
actuated finger is controlled by an actuator that can drive the
tendon spanning both the proximal and distal joints. For each
finger, there is one proximal joint encoder, one tendon spool
encoder, and nine Takktile pressure sensors arranged along with
the finger.

The ReFlex hand is mounted on a steel frame and its three
fingers are positioned parallel to the horizontal direction. When
grasping an object, the object will be placed on the workbench
and close to the robotic hand. The hand is positioned such that
it grasps the objects 15 mm above the surface of the workbench.
This height was found appropriate (sufficient) to differentiate
objects in the selected object set (as shown in Fig. 4). During
each grasp, all fingers are commanded to move 3 rad over 6 s to
ensure that the tactile sensors mounted on the fingers properly
touch the surface of the object. A torque threshold is also set for
each motor. For each finger, once this threshold is reached, this
finger will stop moving and keep that finger posture as the final
posture for measurements.

3) Software: The robotic hand operation is performed via
Robot Operating System (ROS), version “ROS-indigo,” under
Linux Ubuntu 14.04 system. The measurements (joint angle and
pressure value) are recorded via “rosbag” command and is saved
in the “comma-separated values”(*“.csv”) file.

B. Object Dataset Construction

1) Data Acquisition and Normalization: Each object o; €
0O,i=1,...,20in the object set is grasped in 36 different inter-
vals about the vertical axis (from O to 360° with the resolution
of 10°). Hence, the number of intervals to cover the surface
is Ny = 36. It is noted that the reason for choosing N, = 36
is that collecting the haptic measurement with 10° interval of
the grasping pose of the robotic hand around the object allows
comparing the performance of the algorithm at the different
number of segments (as 36 is divisible by a good few numbers:
36, 18,9, 6,4 and 2). At each interval, the grasp is repeated three
times (/Np = 3), and during each grasping, the object will be
rotated to make the interval faces the robotic hand. The collected
data are then normalized using the “Min—Max” normalization
method.
2) Estimation of Parameters of Beta Mixture Model: As dis-
cussed in Section III, the parameter estimation step starts by re-
organizing the measurements into segments. In the experiments,
six different segment arrangements are evaluated.
1) Case 1: 36 segments (n = 1) with 3 measurements in
each segment (S = 3).

2) Case 2: 18 segments (n = 2) with 6 measurements in
each segment (S = 6).

3) Case 3: 12 segments (n = 3) with 9 measurements in
each segment (S = 9).

4) Case 4: 6 segments (n = 6) with 18 measurements in
each segment (S = 18).

5) Case 5: 4 segments (n = 9) with 27 measurements in
each segment (S = 27).

6) Case 6: 2 segments (n = 18) with 54 measurements in
each segment (S = 54).
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Fig. 5. Fitting result of the BMM (K = 2) and Gaussian model. The
histogram shows the readings from tactile sensor 3 of Finger 1 in the
first segment of Object 4.

In all six cases, four methods for statistical modeling are used.
1) Method 1: Gaussian model (the baseline method).
2) Method 2: BMM (K = 1). 2 parameters to identify.
3) Method 3: BMM (K = 2). 5 parameters to identify.
4) Method 4: BMM (K = 3). 8 parameters to identify.

C. Object Identification

Methods 1-4 are used to identify the object. Each object
will be identified six times, therefore, six trials of identification
for each object are conducted for the identification methods
described. The accuracy measure is obtained by taking the
average of the number of times the algorithm correctly identifies
the object out of the total six attempts. As the focus is to evaluate
the performance of the BMM for identifying the object, in each
identification ftrial, 7, is set to 1, to simplify the evaluation
procedure without loss of generality.

V. RESULTS AND DISCUSSION
A. Object Dataset Construction

To evaluate the haptic measurements fitting performance of
each sensor for each object at each segment, the “Cramer—von
Mises criterion” is adopted. The “Paired t-test” is then used
to statistically compare the overall performance of the BMMs
and the Gaussian model for each segment. Since there are 33
sensors measuring over the different number of segments on
20 objects, as an illustrative result, only the performance of
different methods at six segments (Case 4) is represented in this
article. For all three BMM methods, according to the p-value
calculated using the “Paired t-test,” the BMMs demonstrated a
closer fit than that of Gaussian at a significant level of 0.001.
Representative distribution of tactile measurements is given in
Fig. 5, which specifically shows the tactile measurements of the
third tactile sensor of the first finger when grasping Object 4.
Two peaks are observed, corresponding to the “no contact” and
the “firm contact” cases, respectively. This is widely observed
in the measurements of tactile sensors in this experiment. The
resulting distribution modeled by a BMM (in this case, at K = 2)
is shown in the figure, as well as a comparison to that with a
Gaussian model.
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ENTRIES IN BOLD INDICATE THE HIGHEST PERFORMING CASE IN EACH METHOD!

TABLE |

Method 1: Gaussian model Method 2: BMM with K =1
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Object 36 segments 18 segments 12 segments 6 segments 4 segments 2 segments | 36 segments 18 segments 12 segments 6 segments 4 segments 2 segments
4 66.7% 83.3% 66.7% 66.7% 100.0% 33.3% 100.0% 100.0% 100.0% 100.0%  100.0% 50.0%
5 83.3% 100.0% 100.0% 100.0%  100.0%  100.0% 100.0% 100.0% 100.0% 100.0%  100.0%  100.0%
6 66.7% 66.7% 50.0% 100.0%  100.0%  100.0% 83.3% 100.0% 100.0% 100.0% 83.3% 100.0%
11 33.3% 66.7% 66.7% 66.7% 33.3% 16.7% 83.3% 50.0% 33.3% 33.3% 66.7% 16.7%
13 66.7% 66.7% 83.3% 66.7% 66.7% 50.0% 100.0% 83.3% 83.3% 83.3% 83.3% 83.3%
14 66.7% 83.3% 83.3% 83.3% 66.7% 100.0% 83.3% 100.0% 83.3% 83.3% 100.0%  100.0%
15 33.3% 83.3% 50.0% 50.0% 50.0% 33.3% 66.7% 100.0% 100.0% 100.0%  100.0%  100.0%
16 83.3% 83.3% 100.0% 100.0% 83.3% 83.3% 100.0% 83.3% 100.0% 100.0%  100.0%  100.0%
17 33.3% 33.3% 33.3% 33.3% 33.3% 16.7% 66.7% 83.3% 83.3% 66.7% 50.0% 33.3%
18 66.7% 66.7% 83.3% 83.3% 83.3% 33.3% 83.3% 100.0% 83.3% 50.0% 66.7% 16.7%
19 83.3% 83.3% 83.3% 66.7% 50.0% 66.7% 83.3% 88.3% 50.0% 50.0% 50.0% 66.7%
20 66.7% 66.7% 83.3% 50.0% 50.0% 33.3% 100.0% 100.0% 100.0% 100.0%  100.0% 83.3%
Avg_nc 2 62.5% 73.6% 73.6% 72.2% 66.7% 55.6% 87.5% 90.3% 84.7% 80.6% 83.3% 70.8%
Std_nc 2 0.174 0.153 0.190 0.200 0.253 0.335 0.115 0.138 0.201 0.225 0.185 0.307
Avg_all 3 77.5% 84.2% 84.2% 83.3% 80.0% 73.4% 92.5%**  94.2%** 90.8%* 88.4%  90.0%** 82.5%**
Std_all 3 0.231 0.179 0.200 0.211 0.261 0.347 0.111 0.121 0.179 0.205 0.170 0.286
Method 3: BMM with K = 2 Method 4: BMM with K = 3
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Object 36 segments 18 segments 12 segments 6 segments 4 segments 2 segments | 36 segments 18 segments 12 segments 6 segments 4 segments 2 segments
4 - 83.3% 83.3% 100.0% 66.7% 66.7% — - 66.7% 100.0% 83.3% 33.3%
5 — 100.0% 100.0% 100.0%  100.0%  100.0% — — 100.0% 100.0%  100.0% 83.3%
6 — 83.3% 83.3% 66.7% 50.0% 33.3% — — 100.0% 100.0%  100.0% 83.3%
11 — 66.7% 50.0% 50.0% 50.0% 33.3% — - 33.3% 50.0% 66.7% 33.3%
13 — 83.3% 100.0% 100.0% 83.3% 66.7% — - 83.3% 83.3% 66.7% 16.7%
14 - 100.0% 100.0% 100.0%  100.0%  100.0% — — 100.0% 100.0%  100.0%  100.0%
15 — 100.0% 100.0% 100.0%  100.0%  100.0% — — 100.0% 100.0%  100.0%  100.0%
16 — 100.0% 100.0% 100.0%  100.0% 66.7% — — 100.0% 100.0%  100.0%  100.0%
17 — 83.3% 100.0% 100.0%  100.0%  100.0% — — 100.0% 66.7% 33.3% 50.0%
18 — 83.3% 83.3% 100.0%  100.0% 83.3% — - 83.3% 83.3% 83.3% 83.3%
19 — 83.3% 50.0% 50.0% 50.0% 50.0% — - 83.3% 83.3% 66.7% 50.0%
20 — 83.3% 83.3% 66.7% 100.0% 83.3% — — 100.0% 100.0% 50.0% 50.0%
Avg_nc 2 — 87.5% 86.1% 84.7% 83.3% 72.2% — — 87.5% 88.9% 79.1% 65.2%
Std_nc 2 — 0.095 0.171 0.190 0.207 0.220 — — 0.186 0.151 0.208 0.273
Avg_all 3 — 92.5%**  91.7%** 90.8%** 90.0%** 83.3%** — — 92.5%**  933%** 87.5%* 83.3%**
Std_all 3 — 0.098 0.154 0.171 0.186 0.223 — — 0.162 0.133 0.196 0.278

!For all six cases and four methods, the identification accuracy of all cylindrical and spherical objects (Objects 1 — 3, 7 — 10, and 12) is 100%. Hence, only the results

for noncylindrical objects (Objects 4 — 6, 11, and 13 — 20) are shown.

2 Avg_nc and Std_nc denote the average and standard deviation of the identification accuracy of noncylindrical/spherical objects, respectively.
3 Avg_all and Std_all denote the average and standard deviation of the identification accuracy of all objects, respectively.
Note: The values with “*** and “*’ represent the identification accuracy of that method is statistically higher than that of the Gaussian model (Method 1) in the

corresponding case at significance level 0.05 and 0.1 respectively.
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Fig. 6. Averaged identification accuracy of all objects in four methods
and decreasing number of segments.

B. Object Identification

The complete results of the experiment, comparing the ac-
curacy of the haptic object identification algorithm using the
Gaussian model and BMMs for all cases, are shown in Table 1.
The averaged accuracy is presented in Fig. 6 for ease of compar-
ison. The p-values of the identification accuracy performance of
the algorithm with the proposed BMMs against the Gaussian

TABLE Il
TWO-SAMPLE PROPORTION TEST RESULT COMPARING GAUSSIAN AND
BMM ON IDENTIFICATION ACCURACY (ONE TAILED p-VALUE)'

Method Method Method
1 and 2 1 and 3 1 and 4
p-value 5.05 x 107 2.34 x 107° 3.36 x 10~ °

!The p-value is calculated using all 20 objects in the object set and the identification result
of all cases.

model, based on a “Two-sample proportion test,” are presented
in Table IT to indicate the statistical significance of the difference
in performance.

From Fig. 6, it can be observed that the Gaussian model
(Method 1) has the lowest identification accuracy on average
and BMMs (Methods 2-4) outperform the Gaussian model
in all cases. The statistical significance of the difference in
performance for Methods 2—4, compared to Method 1, is vali-
dated by the p-values presented in Table II. This supports our
hypothesis that the BMM more accurately captures the distri-
bution of the uncertainties typical in object grasping than the
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Gaussian model. From Fig. 6, the identification performance
can be observed to drop with the lower number of segments
for all methods. This is because a lower number of segments
(to represent each object) means that each Gaussian or BMM
would need to capture a wider range of variations in the object,
while a higher number of segments per object allows each model
to capture a localized area on an object more accurately (thus,
resulting in more accurate identification performance). It should
be noted that a higher number of segments also means a higher
number of measurements needed, as there would be a fixed
number of parameters that need to be identified per segment.
In our experiment, a fixed number of overall measurements was
collected, thus, they are divided among the different number of
segments for different cases. The cases with a higher number of
segments, therefore, will have fewer measurements assigned per
segment. In this case, it can be observed that for the highest num-
ber of segments and higher number of components of the BMMs
(Methods 3 and 4, corresponding to K = 2,3, respectively),
there were insufficient measurements to produce the estimation
of the parameters of the BMMs. Thus, in Fig. 6 and Table I, it
can be observed that these results were not available.

According to Table I, for all four methods (the BMMs and
the Gaussian model), the identification accuracy of cylindri-
cal/spherical objects (Objects 1 — 3,7 — 10, and 12) was 100%.
As expected, due to their cylindrical symmetric feature, the mea-
surements were not affected by the uncertainties. The primary
source of noise in these measurements is the sensor noise, which
is bounded within a range that is much smaller than the variance
in the distinguishing information between objects. In contrast,
the better performance of the BMMs relative to the Gaussian
model can be found in identifying objects with sharp, clear,
or well-defined edges (Objects 4 — 6, 11, and 13 — 20). Due
to the nature of the tactile sensors used in our experiment that
individual sensors are embedded in the fingers and only measure
local forces applied near its location (this is a typical nature of
tactile sensors, observed in many robotic hands [44], [45]), a
change in the grasping position will cause a sharp angular feature
on an object to press on the adjacent tactile sensor, activating a
completely different sensor in the resulting reading. Therefore,
the measurements distribution of each tactile sensor will contain
multiple peaks, and BMMs are able to fit such distribution better
than the Gaussian model.

VI. CONCLUSION

This article utilizes the BMM to characterize the uncertainties
typical to haptic object identification using robotic hand grasps.
The BMMs were shown to be effective in representing the
distribution of the tactile measurements due to the object pose
uncertainties relative to the grasping hand. The advantage of
the BMM over the Gaussian model is clearly shown in the
identification of objects with well-defined edges. The higher
number of segments used to represent an object (V) was found
to improve the precision of the model of the probability density
function and this in turn results in higher accuracy in the haptic
object identification.
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