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Abstract— Assisting persons during physical therapy or aug-
menting their performance often requires precise delivery of an
intervention. Robotic devices are perfectly placed to do so, but
their intervention highly depends on the physical human-robot
connection. The inherent compliance in the connection leads
to delays and losses in bi-directional power transmission and
can lead to human-robot joint axes misalignment. This is often
neglected in the literature by assuming a rigid connection and
has a negative impact on the intervention’s effectiveness and
robustness. This paper presents the preliminary results of a
study that aims to close that gap. The study investigates what
model forms and parameters best capture human-robot con-
nection dynamics across different persons, connection designs
(cuffs), and cuff strapping pressures. The results show that the
linear spring-damper model is the best compromise, but its
parameters must be adjusted for each individual and different
conditions separately.

Index Terms— physical human-robot interaction, modelling

I. INTRODUCTION

Robot-assisted intervention is emerging as a promising
approach for augmenting human performance or recovering
lost abilities. A crucial component in this approach is the
physical connection between the human and the robot, called
the physical human-robot interface (pHRI). Traditionally
considered a rigid component, pHRI has been gaining a lot
of interest due to research demonstrating significant losses
coming from human non-homogenous soft tissues and soft
elements (e.g., straps, cuffs) that make pHRI. This paper
contributes to the topic by investigating different model
forms and model coefficients that best capture human-robot
connection dynamics.

The compliant (non-rigid) parts of pHRI, including human
soft tissues and robotic cuffs, although help absorb impact
and tolerate misalignments, negatively affect robot-human
power transmission, causing delays and significant losses.
The reshaping and delays between the assistance robots
initiate and the human users receive were quantified as a
55% power loss in the loading phase and partial return in the
unloading phase in the case of an angle exosuit device [1].
Similarly, compliant pHRI can also lead to human-robot joint
misalignment. For example, the cuff migration with respect
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to the skin can exceed 4 cm [2] during robot-assisted move-
ments due to skin stretching and cuff sliding [3]. Combined
with the human-robot kinematic (joint) incompatibility, the
difference in angular movement can be larger than 6◦ [4].

The losses in pHRI can be accounted for using (mechanis-
tic) models that capture the mechanical properties of compli-
ance in humans and robots. Modeling human-robot systems
is not a new approach, as numerous studies have exploited
this pathway to optimize the metabolic cost of walking [5],
improve athletic performance [6], and evaluate innovative
control algorithms for specific gait disorder treatments [7],
[8]. Other examples include evaluating pHRI designs that
minimize discomfort and misalignment [9], [10] and actuator
design optimization [11], [12]. What is missing in all these
applications is a realistic representation of the pHRI behavior
(models). The studies regularly assume rigid connection and
lossless force transmission [5]–[8], [12] or use simple pHRI
models without well-informed pHRI parameters [13], [14].
This is a bottleneck in robot-assisted interventions, as poorly
understood and modeled pHRI has major negative impacts on
the effectiveness, efficiency, and robustness of the interaction.

A limited number of studies on pHRI modelling can
already be found in the literature. For example, Schiele [15]
proposed a spring-damper model in the tangential direction to
the skin, subsequently extended to a spring-damper-attitude
model with the inclusion of joint angle in the same direction
[2]. More recently, Shafiei and Behzadipour [9] included the
normal direction to the skin and rotational directions in a
linear spring model but without evaluating the model fitting
quality. A common limitation across these studies is the
model evaluation using a single strapping pressure, a single
cuff, and a small sample. Such restricted testing conditions
are major limitations in the interpretation of the results, more
so as studies have shown that pHRI model parameters may be
affected by factors such as interface geometry, compliance,
and the cuff position on the leg segment [16], [17]. This is
particularly true in the normal direction to the skin, where
the force from the exoskeleton is primarily transmitted to the
human limb.

In this study, we present preliminary results of the quanti-
tative evaluation of pHRI that considers the effects of the cuff
geometry, cuff strapping pressure, and individual differences.
In particular, we show how pHRI model form and parameters
vary across four healthy participants tested with two cuff
designs and two strapping pressures. The results validate
using a linear spring-damper model across all six degrees
of freedom (three forces and moments) but demonstrate the
need for user and interface-specific model parameters.



II. METHODOLOGY

A. Participants

Four healthy young male adults (28±2 years, body mass
83.8 ±19.9 kg, height 182.5±7.0 m, thigh circumference
54.2±8.5 cm) participated in the study. No participant had
any physical or biomechanical issues that would affect their
participation. The study was approved by the ethics commit-
tee of The University of Melbourne (2022-24842-31294-2).

B. Experimental Setup

The investigation of pHRI modeling design and parameters
is carried out in a static setup in a biomechanics lab. The
setup consists of a chair for participants to sit on, a base
frame, a cuff strapped around the person’s right leg, an
excitation frame used to manually generate cuff movement
in space, and a six-degree-of-freedom force/torque sensor
connecting the cuff and the excitation frame (Fig. 1.a).
The undesired lateral leg movement is minimized by two
adjustable base frame extrusions, one on each side of the
right knee. The chair height and position are also adjustable
to ensure the participant’s thigh is always parallel to the
ground and the thigh-shank linkage forms a perpendicular
angle.

The cuffs used in the study include one 3D-printed cuff in
PLA plastic (Cuff A, Fig. 1.b) and one taken off the commer-
cially available Fourier X2 exoskeleton (Fourier Intelligence,
Shangai, China; Cuff B, Fig. 1.c). The Cuff A is designed
based on a 3D scan of a young healthy adult and adapted in
size to different participants. The cuff is secured by two wide
BOA straps on the distal ends of the cuff. The Cuff B has
a hard C-shaped shell and soft padding with two adjustable
straps that wrap around the leg. Both cuffs are instrumented
with four pressure sensors (Flexiforce, Tekscan) between the
hard shell and padding to measure strapping pressure.

A sturdy aluminum (i.e., excitation) frame is used to gen-
erate desired movements of the cuff in 3D space, including
the three translations and rotations. The frame and cuff
are connected by a 6-axis force/torque sensor (Robotous,
Korea), easily attachable to allow quick change of cuffs
between tests. The sensor measures the interaction wrench
(force and torque) at 100Hz, the same frequency as the
marker-based Vicon motion capture system (Vicon, UK). The
markers define the relative position and orientation of the
leg and frame (i.e., cuff). Three functional and one auxiliary
markers are placed on the thigh, the former including markers
placed on the lateral condyle, medial epicondyle, and greater
trochanter of the femur. The cuff’s position and orientation
are defined by four markers on the excitation frame, forming
a rigid body.

The frame also houses a 3-axis accelerometer, placed close
to one of the excitation frame markers. The data from the
four pressure sensors, force/torque sensor, and accelerometer
are recorded by an embedded computer running Linux OS
(Jetson TX2, NVIDIA, USA). The data from Vicon and
Jetson are recorded separately and synchronized by matching
the acceleration of the marker and the accelerometer [18].

Force/Torque Sensor

Chair

Base Frame

Cuff

Accelerometer

Base Frame Extrusions

Excitation Frame

(a) Experimental setup

(b) Cuff A (c) Cuff B

Fig. 1: The experimental setup. (a) The setup consists of a
chair with an adjustable position/height, a base frame with
two extrusions, an excitation frame, a cuff, retroreflective
markers, a force-torque 6 DoF sensor, and accelerometer. (b)
In-house 3D-printed cuff. (c) Commercially-available cuff.

C. Experimental Protocol

The main objective of the experiment is to examine the
interaction force and relative displacement under various
pHRI configurations with several subjects. The configura-
tions include four combinations of the two cuffs and two
strapping pressures that are applied to four healthy young
adult subjects.

The experiment is divided into two sessions taking place
on separate days (see Fig. 2). Session 1 aims to identify
the two strapping pressures for the tests, while the second
serves as a data collection day. During Session 1, the subjects
are instructed to sit on a chair with the distal end of the
thigh fixed (by frame extrusion) while the two cuffs are
donned by a physiotherapist (PT). The pressure between
the cuff and the soft tissue is measured using four force-
resistive sensors (FSR) placed at each corner, providing a
level of tightness our PT would apply in clinical practice.
The obtained pressure (an average of four measured values)
represents the baseline per cuff per subject and is denoted
as Loose (30kPa). The baseline pressure is averaged across
subjects to get a single value per cuff, which is then increased
by 20% to form a second level for comparison (denoted
Tight).

In Session 2, the subjects are instructed to sit in the same
position as in Session 1 and keep their lower limb muscles
relaxed during the experiment. The four pHRI configurations
include Cuff A Tight, Cuff A Loose, Cuff B Tight, and Cuff B
Loose. In each configuration (i.e., bout), the investigator
manually applies a pre-defined set of three translations and
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Fig. 2: Experimental protocol. Session 1 serves to determine
loose Pl and tight Pt strapping pressures per cuff. The
data are collected in Session 2 across four configurations
(bouts). In each bout, three translational and rotational cuff
movements are manually applied in a pre-defined order, with
each movement repeated 10 times before moving on to the
next one.

three rotations, always in the same order. The movements
are applied sequentially, repeating 10 times each at a 1 Hz
frequency (guided by a metronome), followed by a 1-sec
pause before moving on to the next movement. The order of
the four bouts is randomized for each subject.

D. Data Processing

1) Relative displacement: The relative displacement con-
sists of three translational (∆T ) and three rotational (∆R)
degrees of freedom (DoFs) defined between the human and
the excitation frame. The human frame H is attached to the
thigh joint, assumed to coincide with the hip marker. The
excitation frame origin O is set to coincide with the force
sensor origin, subsequently translated along the x axis to sit
on the thigh’s central axis (the center of the applied rotational
movements). Fig. 3 shows all the relevant frames and axes
definitions.

The translation is defined as displacement between the
origins of the two coordinate frames, and rotation by the
Tait–Bryan angles (yaw, pitch, roll) between the two coordi-
nate frames. Before the recording starts, the excitation frame
is leveled parallel to the ground and this position is treated
as a bias to zero-level the rest of the data. The translational
and rotational velocities are calculated by differentiating
corresponding displacements and filtered with a zero-phase
Butterworth filter (8 Hz cut-off frequency).

2) Interaction wrench correction: The interaction wrench
of interest is that with respect to frame O, as this is the
origin where the relative displacement is defined. However,
the force F and torque M sensor measurements need to be
corrected (transformed) from the sensor’s origin S to origin
O. The following corrections are used:

Fi,O = Fi,S (1)
Mx,O = Mx,S (2)
My,O = My,S + L · Fz,S (3)
Mz,O = Mz,S + L · Fy,S (4)
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Fig. 3: Coordinate frames and force/moment definitions. The
axes of all three frames (human H , sensor S, and orthosis
O) follow the same convention: the x-axis is perpendicular
to the leg in the medio-lateral direction, the y-axis is defined
along the thigh, and the z-axis coincides with the vertical
line.

where L is the S-O origin distance and i ∈ {x, y, z}. The
recorded interaction force and torque are zero-leveled by
averaging the readings during the first second of recording
when the excitation frame is held still in its leveled position.

E. Model Structure

The purpose of the model is to describe the force-
displacement relationship in the three translational, as well as
the moment-displacement relationship in the three rotational
directions. The model comprises six functions that charac-
terize each DoF independently, i.e., without accounting for
coupling effects, and is defined as follows:

Fi = fi(∆Ti,∆Ṫi) (5)

Mi = gi(∆Ri,∆Ṙi) (6)

Here, ∆Ti is the translation in direction i, and ∆Ri is
the rotation about direction i, where i ∈ {x, y, z}. In other
words, the model considers both spring (S) and damper (D)
terms in trying to capture pHRI dynamics.

Various function forms h() for fi and gi are tested. The
tested functions mapping force/torque to displacement and
velocity include both linear and nonlinear forms, determined
by order of displacement and velocity terms used. We also
include models with linear and piece-wise linear coefficients
to account for the potential heterogeneous directional be-
havior. The function composition is denoted as hPj ,Sr,Dz ,
with the following meaning of each element: P refers to
the linear-coefficient (j=0) and piece-wise linear-coefficient
(j=1) function; S and D denote displacement and velocity
terms; and r and z subscripts denote the corresponding order
of each term, all respectively. The mathematical formulation
of the linear-coefficients function is given as:

hP0,Sr,Dz
(x, ẋ) =

r∑
n=0

knx
n +

z∑
m=0

bmẋm, (7)



and of the piece-wise linear-coefficients function as:

hP1,Sr,Dz
(x, ẋ) =

r∑
n=0

pnx
n +

z∑
m=0

qmẋm, (8)

where

pn =

{
kn+, x ≥ 0

kn−, x < 0
qm =

{
bm+, ẋ ≥ 0

bm−, ẋ < 0.

For this study, we consider displacement and velocity
terms up to the third order (r, z ≤ 3). This, combined with
piece-wise and non-piece-wise options, results in a total of
32 function compositions of fi and gi tested.

F. Model Fitting

The scheme of model fitting is depicted in Fig. 4. For a
given subject-pHRI configuration (columns, four per cuff-
pressure combination) and a given function composition
(rows, 1-32), the model is fitted (each Fit block) separately in
the six directions using the data collected in the correspond-
ing direction. For example, to fit a function in the x direction,
only data collected during the translational movement in the
same direction are used. The composition (i.e., order) of all
functions (fx, fy, fz, gx, gy, gz) is kept the same in a given
fit.

To ensure fair comparison across all tests, force and
moment data are capped at ±80N and ±10Nm, respec-
tively, representing the minimum values achieved in all tests.
The data are subsequently separated into training:test set
as 70%:30%. The model is fitted using the least squares
method and the fit quality evaluated by the coefficient of
determination (R2) and variance across all testing conditions.

III. RESULTS

The results section shows the effects model composition
(the order of S and D terms), linearity (piece-wise and non-
piece-wise), and the amplitude of model coefficients (k and
b) have on capturing the actual pHRI dynamics. To begin
with, Fig. 5 illustrates the independent contribution to fitting
quality from each (S and D) term in fi and gi. This is
done up to the fifth order (e.g., kx,..., kx5) using the y =
cx + d regression model. As results show, a linear spring
behavior explains pHRI to high levels of accuracy (R2=0.941
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Fig. 4: The scheme of the model fitting procedure. For each
subject (4), cuff (2), and strapping pressure (2) combinations
(16 total, columns), 32 different models (rows) are fitted cor-
responding to different orders of translational and rotational
displacement and velocity.

on average) in all six DoFs. Contrary to this, damping terms
make a very small contribution, with an average coefficient of
determination R2=0.029). Higher power coefficients in both
x and ẋ are weaker predictors of the dependent variable, with
the contribution dependent mostly on the pHRI configuration
(and less on the DoFs).

Fig. 6 shows a fitting quality of fi and gi compositions
made of S and D terms up to the third order (as per Fig. 5
outcomes). Datapoints are averaged across all 16 conditions,
generated by combining the order of D term (four shapes)
and order of S term (three colors). Starting from a linear
spring model (green circle, Sx and no D), the biggest im-
provement across all S-D combinations comes from adding a
linear damper (S1D1). Further increasing model complexity
comes with diminishing returns, leaving linear spring – linear
damper model as the best possible trade-off. Interestingly,
increasing model complexity decreases NMRSE (normalized
root mean square error) variance in all DoFs except x
rotation.

The results so far considered fixed k and b across both
positive and negative directions. Fig. 7 shows how separating
the two directions (i.e., piece-wise linearity, see (8)) affects
model fitting quality. Clearly, the change is marginal in either
of the six DoFs, albeit it slightly improves the accuracy in
all. Compared to an average decrease in NRMSE of 0.0075
when spring or damper order is increased to 3, respectively
(each doubling the number of parameters in the model), an
average decrease of 0.0039 coming from piece-wise linearity
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subjects.

is not sufficient to justify the added complexity.
Variations in pHRI stiffness amplitude for the different

cuff-strapping pressure configurations and in all six DoFs
are shown in Fig. 8. The stiffness values represent k1 in a
linear spring – linear damper model (S1D1 in (7)), as earlier
results demonstrated this to be a model of high fitting quality
and low variance across conditions (i.e., this model reflects
the true stiffness in pHRI dynamics). Both cuff type and
strapping pressure affect the estimated pHRI stiffness across
all participants. The biggest changes include an increase of
about 52% and 25% when going from loose to tight in
Cuff A and Cuff B (y translation) and an increase of about

0

2000

4000

6000

8000

10000

12000

S
ti

ff
n

e
s
s
 (

N
/m

)

Translation X Translation Y Translation Z

CA-TCA-LCB-TCB-L
0

20

40

60

80

100

S
ti

ff
n

e
s
s
 (

N
m

/r
a
d

)

Rotation X

CA-TCA-LCB-TCB-L

Rotation Y

CA-TCA-LCB-TCB-L

Rotation Z

S1

S2

S3

S4

Fig. 8: Variation in estimated pHRI stiffness for different test-
ing conditions. Bars represent mean values, with individual
values (per participant) given as data points. Different cuff-
strapping pressure combinations are colour-coded. Notice the
same y-axis limits per row.

TABLE I: The range of pHRI stiffness amplitudes per DoF.

Stiffness Tx Ty Tz Rx Ry Rz
Max 5654 6165 10835 99.6 24.6 71.8
Min 1926 188.2 3655.97 28.4 6.29 17.1

The units: N/m for Tx, Ty, Tz, and Nm/rad for Rx,Ry,Rz.

102% and 112% when changing from Cuff A→Cuff B for
loose and tight configurations (x rotation), all respectively.
The range of pHRI stiffness values across the subjects and
cuffs, separated into DoFs, are given in Table. I.

IV. DISCUSSION

This study investigated the effects of cuff design, strapping
pressure, and individual differences (in leg composition)
on the complexity of and coefficients in pHRI modelling.
Capturing the inherent compliance in the human-robot con-
nection model is gaining momentum, but little progress has
been made. The results presented herein are an important
step in closing that gap and growing our understanding of
interaction dynamics.

The strapping pressure identified by a PT in Session 1
following clinical guidelines in securing a cuff was much
higher for Cuff A. This is due to a customised design and
larger contact surface that allow comfort at a tighter fit,
an outcome also predicted by the PT. Higher strapping
pressure resulted in a significant drop in higher order k
term contributions for Cuff A (Fig. 5), indicating stronger
linearity in the data. This aligns with polynomial force-
displacement patterns found in [19], [20], where human
tissue was characterised using a pen-like device of a small
pressure area.

A linear spring-damper pHRI model, often used in the
literature [2], [15], [17] due to its intuitiveness, emerged
as a good trade-off between complexity and quality in this
work as well (Fig. 6). Where our work contributes is a
quantification of the S and D terms’ relevance in all six
DoFs, up to the fifth order, providing much-needed insights
into multi-dimensional human-robot interaction dynamics.



Results indicate high statistical significance of the S and low
of the D term in model accuracy (Fig. 5), which meant we
could only provide a range of k values with high confidence.
Further examining the effects of k terms by using a piece-
wise linear approach ((8) and Fig. 7) shows that the pHRI has
largely uniform stiffness in positive and negative directions
in all 6 DoFs. This is specific to the human thigh due to its
large muscle concentration and is unlikely to be found on
the shank.

The identified stiffness range differs across the two cuffs
(Fig. 8), with the lower one in Cuff B comparable to the
literature [9]. The biggest relative drop in stiffness is seen in
x rotation, a DoF where robotic assistance is provided (and
thus the most important DoF), with the average drop across
all DoFs in going from Cuff A to Cuff B 35.5%(±12.3%)
for Tight and 32.5%(±13.7%) for Loose case. The drop was
smaller for each cuff when changing from Tight to Loose,
averaging 20.9%(±7.9%) for Cuff A and 18.2%(±6%) for
Cuff B, suggesting that cuff design has a higher impact than
a strapping pressure. Since lower stiffness acts as a bigger
energy sink in transmitting robotic assistance to humans,
these numbers illustrate the importance of a good fit, a result
of custom cuff designs and adequate strapping pressure.

The variations in pHRI stiffness properties with changes
in cuff design, strapping pressure, and between individuals
demonstrate the need to approach the design of pHRI con-
sidering the needs and biomechanical features of each indi-
vidual. As a step further, the pHRI stiffness can potentially
be exploited as a compliant element in compliant actuators,
leading to a more compact and user-tailored exoskeleton
design. This will require a more elaborate experimental
design to characterise pHRI across more conditions and
participants, including standing and (assisted) walking. We
aim to address this in the coming work, thus overcoming the
limited amplitude and velocity of the excitation signal, as
well as the small sample, the main limitations of this work.

V. CONCLUSION

In this work, we investigated the relationship between
the relative displacement and interaction force at pHRI in
a sitting position. The outcomes of testing pHRI models
of different complexity show that the linear spring-damper
model captures most of the observed dynamics, equally well
in all six DoFs. However, the identified variations in pHRI
stiffness with changes in cuff designs, strapping pressure, and
among individuals demonstrate the opportunity to include
and personalise pHRI models, and corresponding controllers
for each individual, to compensate for losses in transmission,
leading to more effective design of wearable robots.
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