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Object Recognition Using Mechanical Impact,
Viscoelasticity, and Surface Friction

During Interaction
Pakorn Uttayopas , Xiaoxiao Cheng , Jonathan Eden , Member, IEEE, and Etienne Burdet

Abstract—Current robotic haptic object recognition relies on
statistical measures derived from movement dependent interaction
signals such as force, vibration or position. Mechanical properties,
which can be estimated from these signals, are intrinsic object
properties that may yield a more robust object representation.
Therefore, this paper proposes an object recognition framework
using multiple representative mechanical properties: stiffness, vis-
cosity and friction coefficient as well as the coefficient of restitution,
which has been rarely used to recognise objects. These properties
are estimated in real-time using a dual Kalman filter (without
tangential force measurements) and then are used for object clas-
sification and clustering. The proposed framework was tested on a
robot identifying 20 objects through haptic exploration. The results
demonstrate the technique’s effectiveness and efficiency, and that
all four mechanical properties are required for the best recognition
rate of 98.18 ± 0.424%. For object clustering, the use of these
mechanical properties also results in superior performance when
compared to methods based on statistical parameters.

Index Terms—Haptic exploration, interaction mechanics,
feature extraction, supervised learning for classification, clustering.

I. INTRODUCTION

A S ROBOTS are increasingly used in various fields e.g.
agriculture, they have to manipulate objects of different

mechanical properties skillfully. For instance, to harvest toma-
toes or potatoes with similar shape, it is necessary to know
their respective mechanical properties to handle them without
dropping or crushing them. To recognize the objects a robot is
interacting with, the unique features that characterise them need
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to be extracted [1]. While geometric features can be used to
identify solid objects [2], [3], [4], the shape of compliant objects
changes with interaction such that shape alone is insufficient for
identification.

Compliant objects can be recognised by using tactile infor-
mation obtained during haptic interaction such as force and
vibrations. Empirical measures of these signals, such as the
maximum, minimum and variance have been used for classi-
fication [5], [6], [7]. While these interaction features can be
employed for object recognition, their value depends on specific
actions, and the information that they provide can be redundant
leading to high computational costs.

The intrinsic mechanical features, which describe an object’s
behavior in response to a load, may yield a specific representa-
tion and lead to more efficient object recognition. For example,
the coefficient of restitution can characterise the energy loss [8]
during an impact. Furthermore, viscoelasticity can describe the
deformation and restoration of the surface in response to a
perpendicular force, while when applying a tangential force,
roughness can represent the resistance to sliding. These param-
eters have been previously estimated as mechanical properties
from tactile information.

The coefficient of restitution is an important property in char-
acterising how a surface material reacts during an impact. While
this property has rarely been used for object recognition, related
features have been extracted from the frequency spectrum of
acoustic and acceleration signals [9], [10] or applying unsuper-
vised learning methods [11] or statistical tools [12], [13]. The
acceleration peak has also been considered as a similar impact
related feature for object recognition, proving able to recognise
five different materials [14].

Compliance-related features characterise the deformation in
response to continuous forces. Empirically, these features can
be estimated by analyzing the normal force signal during in-
teraction [7], [15], [16]. Such approaches have been used to
estimate stiffness [17], [18] and to infer how full a bottle is in
grasping [19]. Stiffness, however, only characterises the static
response. To estimate both stiffness and viscosity, recursive
least-square algorithms [20], [21], [22] and a Gaussian pro-
cess [23] have been used. These estimated features have then
been applied to object recognition in simulation [24].

To characterise the response to sliding, roughness related
features are often used. These features are typically estimated
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Fig. 1. Object recognition process. The end-effector force and position mea-
sured during interaction are used to obtain mechanical properties with an esti-
mator (Sections II-A,B,C). The estimated mechanical features are then used to
recognize objects (Section IV) and adjust the motor command with the controller
(Section II-D).

from the force or vibration occurring in the tangential direction
during sliding [25], [26], [27]. A constant Coulomb model is
commonly used to identify surface friction [28], [29]. Using
the surface friction along with geometrical information, 18
household objects with different shapes and materials could be
recognised [30]. The robot-environment interaction can also be
modelled using a quasi-static LuGe model [31] for the inclu-
sion of dynamic friction parameters, which have been shown
to benefit the classification of objects with different surface
materials [32], [33].

These previous works show how a single mechanical property
can benefit object recognition. However, a given mechanical
property may have identical values across multiple objects (e.g.,
having similar stiffness for two solid materials) and thus they
cannot be distinguished by it solely. Integrating a collection
of mechanical property estimations may improve object recog-
nition. However, there is currently no such haptic exploration
framework to estimate the viscoelasticity, friction, and espe-
cially the coefficient of restitution systematically and use them
together for object recognition.

This prompted us to develop a framework for the estimation of
mechanical properties and investigate their use to recognise spe-
cific objects. In this new approach, the coefficient of restitution,
stiffness, viscosity and friction coefficient are estimated from
the interaction force during haptic exploration. Our work builds
upon [34] which adapted viscoelastic parameters to maintain a
stable interaction. To address issues with the parameter oscil-
lation in [34] we used a dual Kalman filter to consider sensory
noise. We further incorporated the estimation of the coefficients
of friction and restitution. The resulting method is first validated
in simulation. The role of each mechanical parameter in object
recognition is then investigated before our method is compared
to representative statistical and empirical methods.

Fig. 1 shows the overall recognition framework with its
three components; estimation, control, and recognition. A robot,
driven by a controller, interacts mechanically with objects to re-
trieve the corresponding interaction forces at different locations.

The robot estimator first estimates the coefficient of restitution
when touching the object’s surface (details in Section II-B). A
dual extended Kalman filter (DEKF) is then used to estimate
the object stiffness, viscosity and friction coefficient online
from signals of haptic sensors (Section II-C). These mechanical
features are also used to adapt the controller parameters so as to
interact with each object properly (Section II-D). After haptic
exploration, the features consisting of the estimated mechani-
cal parameters are combined to form a dataset feeding object
recognition algorithms to identify and cluster objects offline
(Section IV).

II. ONLINE ESTIMATION AND CONTROL

This section describes the online estimation and control. First,
a discrete impact model and a continuous interaction model
are introduced to capture the robot-environment interaction at
different stages. Using these models, the estimation of impact
(coefficient of restitution) and continuous interaction properties
(stiffness, viscosity and friction coefficient) are presented. Fi-
nally, the interaction controller used to smoothly drive the robot
interaction with the environment is explained.

A. Interaction Model

Let the dynamics of a n-DOF robot interacting with its envi-
ronment be described by

M(q)ẍ+ C(q, q̇)ẋ+G(q) = u+ F + ω , (1)

where x is the coordinate of the end effector in operational space
and q is the joint angle vector. M(q) and C(q, q̇) represent the
inertia and Coriolis matrices andG(q) the gravitation vector,u is
the control input and ω motor noise. The interaction force F can
be modelled with a mass-spring-damper system in the normal
direction and Coulomb friction in the tangential direction:

F =

[
F⊥
F‖

]
=

[
F0 + κx+ d ẋ

μF⊥

]
, (2)

where F⊥ and F‖ are the interaction forces in the normal direc-
tion ⊥ and tangential direction ‖ respectively, F0 = −κx0 is
the force corresponding to the surface rest length x0 (without
interaction), κ is the surface stiffness, d its viscosity, and μ its
friction coefficient.

B. Impact Estimation

The initial contact of a robot with an object occurs in two
phases: deformation and restoration. The deformation phase
occurs before the initial point of contact and continues until
maximum deformation. Then restoration occurs until separa-
tion. The coefficient of restitution is defined as the ratio of
the normal impulse of restoration to the normal impulse of
deformation [35]:

ψ̂ =
R

D
=

∣∣∣∣∣
∫ t+

t0 F⊥ dt
m⊥[ẋ⊥(t−)− ẋ⊥(t0)]

∣∣∣∣∣ . (3)
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Fig. 2. Dual extended Kalman filter. At each time step, Estimator 1 obtains the
robot states and friction coefficient from the measured position and estimated
interaction force. Estimator 2 obtains the object viscoelasticity parameters and
interaction force from the measured force and estimated robot states.

whereD is the momentum from 0.01 s before collision, t−, to the
time of maximum deformation, t0, and R integrates the normal
force from t0 to 0.01 s after collision, t+.

C. Continuous Properties Estimation

We assume that the robot can measure the end-effector posi-
tion (e.g. from joint encoders) as well as the force normal to the
surface subjected to a noise ν.

The estimated system dynamics become nonlinear due to the
coupling of the robot states and mechanical parameters in the
interaction force model (2). In discrete state-space form, the
dynamics of the robot interacting with the environment is:

ξk+1 = f(ξk, uk, θk) + ωk

ηk = h(ξk) + νk

ξ ≡

⎡⎢⎢⎢⎢⎣
x⊥
ẋ⊥
x‖
ẋ‖
μ

⎤⎥⎥⎥⎥⎦ , η ≡
[
x⊥
x‖

]
, u ≡

[
u⊥
u‖

]
, θ ≡

⎡⎣F0

k
d

⎤⎦ (4)

where f is a nonlinear mapping obtained from (1) and h is
a nonlinear mapping between the states and observation. The
augmented state ξ consists of the robot states and the friction
parameter, u are motor commands, η is the measured robot
positions and θ is the viscoelasticity vector.

Due to the system’s nonlinearity, noise and the coupling
between the states and parameters, we employ the dual extended
Kalman filter method of [36] to estimate the robot states and
interaction mechanics’ parameters simultaneously. The dual
Kalman filter is a recursive estimation process, which uses partial
measurements to estimate the parameters in the model before
integrating the updated model and measurements to estimate the
unobservable states. Fig. 2 depicts the two designed estimators.
Estimator 1 estimates the state ξ, which includes the robot
states and the friction parameter. Estimator 2 then estimates the
viscoelasticity parameters θ from the measured normal force. In
principle, the prediction error is minimized when the estimated
parameters θ̂, μ̂ converge on the real values θ, μ while the
estimated states ξ̂ converge to the real states ξ.

1) Robot States Estimation: The robot states ξ and friction
parameter μ are estimated together by using the nonlinear
stochastic state-space model (4), with the linearization

ξk+1 = Ak ξk +Bk uk + ωk

ηk = Ck ξk + νk (5)

Ak =
∂f(ξ, u, θ)

∂ξ

∣∣∣∣
(ξ̂k,θ̂k,uk)

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 � 0 0 0

0 1 0 0 0

0 0 1 � 0

0 0 0 1 F̂⊥k�/m‖
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦,

Bk =
∂f(ξ, u, θ)

∂u

∣∣∣∣
(ξ̂k,θ̂k,uk)

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

�/m⊥ 0

0 0

0 �/m‖
0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Ck =
∂h(ξ)

∂ξ

∣∣∣∣
(ξ̂k,θ̂k,uk)

=

[
1 0 0 0 0

0 0 1 0 0

]
,

wherem⊥ andm‖ are the mass matrix components in the normal
and tangential directions, respectively, and � is the integration
time step. F̂⊥ is the estimated normal force from the environment
model (2). The Kalman Filter to estimate ξ is then designed as

ξ̂k+1 = ξ̂−k+1 +Kξ,k+1

(
ηk − Cξ̂−k+1

)
(6)

where ξ̂−k+1 = f(ξ̂k, uk, θ̂k) is the predicted states obtained by
using the last estimated states and Kξ,k+1 is the filter gain for
state estimation.

2) Viscoelasticity Parameters Estimation: The viscoelastic-
ity parameter θ can be estimated using the measured normal
force, the interaction force model (2) and the estimated robot
states ξ̂. An EKF is used to estimate viscoelasticity parameters
by considering the following state-space model:

θk+1 = θk + ωk

ηθ,k = hθ (ξk, θk) + νk . (7)

The observer for the estimation of viscoelasticity parameters is
given by:

θ̂k+1 = θ̂k +Kθ,k+1(ηθ,k − Cθ,kθ̂k) (8)

whereKθ,k+1 is the Kalman filter gain for parameter estimation,
ηθ,k is the measured normal force, and the output matrix is

Cθ,k =
∂hTθ (ξk, θ)

∂θ

∣∣∣∣
(ξ̂k,θ̂k)

=
[
1 x̂⊥k

˙̂x⊥k

]
. (9)

D. Interaction Control

To enable the robot to smoothly track a predefined trajectory
r = [x⊥r, x‖r]T during interaction with an environment, an in-
teraction controller using the estimated mechanical parameters
is defined through

u = ι+ φ . (10)

The feedforward component ι compensates for the interaction
force using the predictive model (2). It is updated recursively
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Fig. 3. Estimator in simulation. (a) Filtering of the robot position in the normal (top) and tangential (bottom) directions. (b) Estimated mechanical properties of
the two environments. From top to bottom: feedforward force, stiffness, viscosity and friction coefficient.

with the estimated mechanical properties according to

ι = −
[
F̂⊥
F̂‖

]
. (11)

The feedback component to track the target trajectory is defined
as

φ = −KP e−KD ė (12)

with the error e = x− r and control gainsKP andKD. To avoid
overloading while in contact with a stiff surface, the control input
is saturated: ũ = satM (u) with

sat(s) =

⎧⎨⎩
s |s| ≤M

−M s < −M < 0
M s > M > 0 .

(13)

III. VALIDATION OF MECHANICAL PROPERTY ESTIMATION

A. Simulation

We first tested the designed estimator by simulating a robot
interacting with different environments. The desired trajectory
was designed as

r =

[
x⊥r

x‖r

]
=

[
0.012 sin(15t)

0.01t

]
m, t ∈ [0, 20] s. (14)

A sinusoidal motion was used in the normal direction (satis-
fying the persistent excitation condition [37]) to ensure that the
estimator had suitable information to capture the viscoelastic pa-
rameters. The amplitude and frequency were adjusted according
to the allowed surface deformation. In the tangential direction,
sliding with constant speed was used to yield a homogeneous
lateral contact.

Two objects with different mechanical properties were consid-
ered: a stiff-and-smooth surface with {F0 = 1 N, k= 1000 N/m,

TABLE I
AVERAGE VALUE OF THE MECHANICAL PARAMETERS IN THE INTERVAL [10,

20] S OBTAINED BY THE ESTIMATOR IN SIMULATION

d = 10 Ns/m, μ = 0.5} and a soft-and-rough surface with
{F0 = 1 N, k = 500 N/m, d = 30 Ns/m, μ = 1.25}. The
control and estimation parameters used in the simulations were
{KP = 1000 kg/s2, KD = 200 kg/s, Pξ,0 = 10 I5, Pθ,0 = 5 I3,
� = 0.001 s}, where I5, I3 are identity matrices, sensory
noise covariance R = 4 ×10−4, process noise covariance
Q = 2.5 × 10−3I5.

Fig. 3(a) shows that the estimator obtained a close estimate
of the true position and velocity despite the large measurement
noise. The estimated kinematic values were then passed back
to the controller. As a result, the robot could track the target
positions during the interaction with both environments. The
estimated mechanical properties of the objects are shown in
Fig. 3(b). The estimation stabilized after an approximately 2 s
settling period to a value close to the ground truth (shown in Ta-
ble I) for all mechanical properties in both the stiff and compliant
environments. This shows that the mechanical properties can be
estimated together with the robot states for different objects.
Note that the coefficient of restitution was not estimated as it is
not involved in the continuous interaction and computed directly
from (3).

B. Experimental Validation

The designed estimator was experimentally validated using
the HMan robot [38], which is a 2-DOF cable-driven planar
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(a) (b)

(c)

Fig. 4. Experimental setup. (a) HMan robot with a sensorized finger and an
object to examine. A wooden platform frame is used to attach various objects
for the robot to explore. The finger is driven by two motors in the normal
and tangential directions to the object surface. (b) Diagram of the robot finger
interacting with an object’s surface. (c) 20 objects used in the experiment.

robot with a 24 × 28 cm2 rectangular workspace controlled
by two actuators (model 352699; Maxon Motor). These two
actuators were controlled by a NI real-time system with a 1 kHz
sampling rate. A finger was installed on the base of the robot
end-effector (Fig. 4(a)), and a six-axis force sensor (SI-25-0.25;
ATI Industrial Automation) was mounted between the tip and
robot finger base (Fig. 4(b)) to measure the interaction forces.
The finger interacted with objects attached vertically to a wooden
frame. This allowed the robot to estimate the object’s mechanical
properties with minimal influence of gravity. Note that the
tangential force was measured but not used by the estimator
which only needs normal force information.

The robot interacted with 20 objects, each with a relatively flat
surface to minimise the shape’s influence, as shown in Fig. 4(c).
These selected objects encompass a range of mechanical proper-
ties from compliant to stiff objects and smooth to rough surfaces,
where the objects sometimes have similar values for a given
mechanical property. This is to build a database of different
objects’ mechanical characteristics.

The estimator was implemented on the robot to estimate the
mechanical properties of the tested objects. The experiment
procedure and actions used for the estimation were as follows:
� Tapping: Tapping was performed initially to estimate the

coefficient of restitution. To ensure that the robot had a
consistent speed while approaching an object surface, a
constant force was exerted to it for 0.5 seconds. Afterwards,
it moved freely towards the object’s surface and made an
impulse.

� Indentation: The robot finger then started pressing the
object’s surface in the normal direction with a desired
trajectory x⊥r(t) = 0.01 sin(8t) + 0.01m, t ∈ [0, 20] s to

estimate the surface viscoelasticity. Due to hysteresis in the
object’s deformation, the frequency of the sinusoidal move-
ment compared to simulations was reduced such that the
robot finger would have sufficient contact with the surface.
For stiff objects, the trajectory would not be followed due
to control saturation (eq. (13)). to avoid large interaction
force.

� Sliding: The robot executed a tangential sliding motion
along the surface of the object at a constant velocity of
0.04 m/s, while concurrently applying a constant normal
force of 4 N to estimate the coefficient of friction. To
account for variations in the mechanical properties of the
objects, separate movements of indentation and sliding
were performed in the experiment, thereby allowing the
robot to interact more smoothly with all objects.

The actions were used for all tested objects to standardize
the measuring process. The estimation was validated through
25 trials for each pair of actions and object. The demonstration
video can be found at1.

C. Estimated Mechanical Properties

To evaluate the quality of the viscoelasticity and friction co-
efficient estimation using only normal force data, we compared
the estimation with the mechanical parameters identified from
using a least squares estimator with both normal and tangential
force [30], [39].

As shown in Fig. 5(a), (b), the estimated stiffness and viscosity
of the compliant objects were close while using these two
methods, where the root-mean-square error (RMSE) between
them was 60.9 N/m for the stiffness and 0.94 Ns/m for the
viscosity. The estimated viscoelasticity for hard objects is not
shown because the robot could not follow the desired trajectories
due to the block of the objects, leading to infeasible estimation
in both methods.

To capture the friction force between the finger and objects,
the robot friction was identified and subtracted from the es-
timator. Fig. 5(c) shows the estimated friction coefficient of
all objects. The two methods exhibited similar results with an
RMSE of 0.19 except {soft, medium soft, slightly soft, and
slightly hard silicone}. This bias may be caused by unconsidered
factors in the tangential force model, which will be further
discussed.

Fig. 5(d) shows the estimated coefficient of restitution, which
was directly computed from eq. (3) using force and velocity data
during tapping. These estimated values suggest that although
some mechanical properties are similar between objects, a com-
bination of them may possess sufficient variability for unique
object recognition.

IV. OBJECT RECOGNITION

Object recognition was performed using the experimental data
of Section III-B. The estimated coefficient of restitution was
directly used as a feature. The mean values of the estimated
stiffness, viscosity and friction coefficient from the last two

1[Online]. Available: https://youtu.be/vE244htxuzk
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Fig. 5. The estimated mechanical property values of example tested objects (a) stiffness from soft object group (b) viscosity from soft object group (c) friction
coefficient from all objects (d) coefficient of restitution from all objects.

seconds of interaction were used to extract the steady-state
values as additional features.

To compare the object recognition enabled by the mechanical
property features with that of previous methods used in the
literature, 35 such statistical features were extracted from the
raw force data. These included the mean and maximum values,
and the standard deviation (sd) from the interaction force in each
direction as well as from their magnitude. In addition, a value
of the normal interaction force from the first contacts was used
as another feature (referred to as the “tap peak“). The frequency
spectrum of the force in both directions was obtained using a
fast-Fourier transformation (FFT), which was averaged into four
frequency bands: [0, 35], [36, 65], [66, 100] and [101, 500] Hz,
where these intervals were identified during a preliminary data
examination to characterise the interaction. The mean values of
vibration amplitude for the frequency bands were also used as
features.

To avoid overfitting, the statistical features were ranked using
a feature selection method. The Chi-square test was applied
since it is commonly used to evaluate features by testing their
independence from the class label.

The empirical mechanical properties of the previous methods
were modified and calculated to form two additional feature
sets. Consistent with [7], in the first feature set the object
stiffness and surface properties features in [7] were calculated

based on the interaction force. In the second feature set, object
compliance from [15] was calculated based on the contact force
using a force/torque sensor instead of the originally consid-
ered impedance sensing electrode. The object surface properties
in [15], [40] were calculated using the vibration of the dynamic
interaction force instead of the dynamic pressure signal in the
original work (further details are provided in section 1 of the
supplementary material).

In summary, the five object recognition feature sets were
formed from the mechanical property features, statistical fea-
tures and empirical mechanical property features shown in
Table II.

The object recognition performance of these feature sets
were evaluated using both supervised and unsupervised learning
methods as described in Table III. For classification, the Naive
Bayes classifier was selected as it exhibited superior perfor-
mance than other classifiers for supervised learning (see section
2 of the supplementary materials).

To investigate clustering, Gaussian mixture models (GMMs)
were used for unsupervised learning. Clustering performance
was evaluated by comparing the results with the known labels
using the normalised mutual information (NMI) defined as:

NMI =
2MI(C;L)

H(C) +H(L)
(15)
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TABLE II
FEATURE SETS USED FOR OBJECT RECOGNITION

TABLE III
LEARNING METHODS, RECOGNITION ALGORITHMS, AND DATASET USED FOR

CLASSIFICATION

where MI(C;L) is the mutual information between a set of
clustering results C = {c1, c2, . . .cN} and known labels L =
{l1, l2, . . .lN}:

MI(C;L) =
∑
i

∑
j

p(ci ∩ lj) log p(ci ∩ lj)
p(ci) · p(lj) (16)

and H(·) is the entropy

H(X) = −
∑
x∈X

p(x) log p(x) . (17)

The NMI evaluates how random the generated clusters are with
respect to the known labels in a range of [0, 1], where 1 means the
clusters are perfectly generated according to the known labels
and 0 that they are generated randomly.

A. Classification With Mechanical Properties

To understand how each of the estimated mechanical prop-
erties impact object classification, a classification using all
combinations of the mechanical features was performed. The
classification was evaluated through a four-fold cross-validation
using a 3:1 train:test ratio with 100 repetitions.

Fig. 6 shows the object recognition confusion matrix results
using the (a) friction coefficients, (b) stiffness and viscosity, (c)
coefficient of restitution, (d) friction coefficients, stiffness, and
viscosity and (e) all estimated mechanical properties. It can be
seen that by using only friction or the coefficient of restitution,
the recognition rate is lower than 50%. These features recognise
hard objects (classes 1–9 and 20) better than soft objects (classes
10–19) as shown in Fig. 6(a), (c). Using just stiffness and

viscosity leads to a higher recognition rate 74.45%, but could
not differentiate hard objects (Fig. 6(b)).

Fig. 6(d) shows that by combining parameters estimated with
the dual Kalman filter (friction coefficient and viscoelasticity),
the recognition rate can reach 89.96%, improving the results
compared to using a single mechanical feature. However, there
is still some confusion within the stiff objects due to similar
friction, e.g. wood (class 2) and steel (class 7).

After integrating the estimated coefficient of restitution, using
all four mechanical properties in the classifier further increased
the recognition rate to 98.18% (Fig. 6(e)). The resulting confu-
sion matrix exhibits almost perfect recognition with a rate over
90% for each object. Although there is some confusion between
pairs of object class, the misclassification rate of each object is
lower than 0.05%, which can be considered as negligible. These
results demonstrate the advantages provided by using the combi-
nation of different mechanical properties, especially including
the coefficient of restitution, to classify various objects. The
recognition rates for all combinations of mechanical features
are provided in section 3 of the supplementary material.

B. Object Classification With Mechanical Properties Vs.
Statistical Features

To examine the role of using the estimated mechanical prop-
erties for object classification compared to other feature sets,
the classifier was used to find the recognition rates from the
five sets of features described in Table III: mechanical property
features (MP), statistical features (SF and CSSF) and empirical
mechanical properties features (EMP1 and EMP2). These object
classifications were evaluated by a four-fold cross-validation
using 100 repetitions.

Fig. 7(a) shows that using mechanical properties as features
resulted in a recognition rate of 98.18 ± 0.424%. On the other
hand, the statistical features with and without feature selection
resulted in a recognition rate of 92.2 ± 0.60% and 89.7 ± 3.20%
respectively. Lastly, the EMP1 features used in [7] provided
77.5 ± 5.07% and the EMP2 features used in [40] and [15]
yielded 82.9 ± 0.91%. These results show that mechanical
properties provided the highest recognition rate while using a
lower number of features and without needing tangential force
sensing.

C. Object Clustering Using Mechanical Properties or
Statistical Features

To study the benefit of using the coefficient of restitution,
stiffness, viscosity and friction coefficient together in an unsu-
pervised learning method, GMMs clustering was used with the
same five sets of feature as in Section IV-B. We assumed that
each cluster had its own diagonal covariance matrix and that
the number of clusters was set to 20, i.e. the number of tested
objects. This clustering task was carried out and evaluated by
NMI for 40 repetitions for each set of features.

The evaluation of clustering results using NMI is shown
in Fig. 7(b). Using mechanical features gave NMI values of
0.851± 0.03 which is similar to what the SF and CSSF provided
at 0.863 ± 0.016 and 0.856 ± 0.018 respectively (p > 0.05,
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Fig. 6. Confusion matrix obtained by using (a) friction coefficient (b) stiffness and viscosity (c) coefficient of restitution (d) friction coefficient, stiffness and
viscosity (e) all mechanical properties as features. Blue corresponds to correct classified objects while red corresponds to incorrect classified objects.

Fig. 7. Classification (a) and clustering using the NMI (b) for the different
feature sets described in Table III.

Dunn’s test). However, the NMI results obtained using the MP
were found to be higher than the results obtained using EMP1
and EMP2. This suggests that using four mechanical properties
could provide the same results as with 35 statistical features, and
outperform the other features representing empirical mechanical
properties used in [7], [15], [40].

V. DISCUSSION

This paper introduced an object recognition framework based
on the estimation of mechanical properties with a dual extended

Kalman filter. This online method extends [34] and stably es-
timates the coefficient of restitution, stiffness, viscosity and
friction parameters. The method’s viability was demonstrated
in simulations and experiments. Our estimator using only the
normal force yielded mechanical property parameters that were
comparable to those estimated using both the normal and tan-
gential forces, showing that mechanical features that can be
leveraged for object recognition.

The classification performance was evaluated with the ob-
tained experimental data. Using the four representative me-
chanical parameters, a recognition rate of 98.18 ± 0.424%
could be achieved using supervised learning, and clustering
exhibited a normalized mutual information of 0.851 ± 0.03.
Using only four mechanical parameters resulted in a bet-
ter classification and similar clustering as with 35 statis-
tical features, suggesting that mechanical features entail a
more compact and accurate representation than statistical
features.

The coefficient of restitution, viscoelastic and friction pa-
rameters were all required to distinguish objects. In particular,
including the coefficient of restitution largely improved the
recognition rate compared to using only viscoelastic parameters.
For example, using stiffness could not distinguish steel from
wood as both are hard materials, but they had different impact
properties as measured by the coefficient of restitution.
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The intrinsic mechanical properties estimated in our scheme
provided better and more consistent results than the empirical
mechanical properties used in previous works [7], [15], [40].
This illustrates the limitations of using empirical features to
recognize objects, which may depend on the specific action
used. For instance, the surface texture measure of [15], defined
as a variance of the interaction force in the normal direction
while the robot finger slid on object surface, leads to inconsistent
estimation results because its value may depend on the object
pose and robot interaction.

Despite the promising results of this study, some limitations
should be acknowledged. First, although the current Coulomb
model extracts the surface friction property well for stiff objects,
the estimation was less accurate for compliant objects as the
lateral interaction is more affected by the material deformation.
This could be addressed using a more sophisticated tangential
interaction force model to represent a versatile representation
of the lateral interaction force. Second, in our experiments, we
primarily used objects with flat surfaces to minimize the influ-
ence of shape on the results. For objects with curved surfaces,
the method needs to be extended to estimate their mechanical
properties by integrating a contour following algorithm e.g. [41].

In summary, this work emphasized the role of mechanical
properties in haptic exploration, and how they can be used to
reliably recognise different objects. The results demonstrated
the superiority of the mechanical properties-based object recog-
nition, yielding more reliable recognition than empirical prop-
erties and requiring far less features than based on statistical
features. It is noteworthy that the coefficient of restitution during
impact can distinguish otherwise similar materials, e.g. solid
materials such as wood and steel. Moreover, using this intrinsic
object representation makes the framework flexible to using
various classification algorithms. While the presented system
could successfully recognize objects during haptic exploration,
considering the weight and inertial parameters would enable
extending our framework from haptic exploration to enabling
full object manipulation with transport.
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