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Abstract— A Human-Prosthetic Interface (HPI) serves to
estimate and realise the limb pose intended by the human
user, using the information obtained from sensors worn by
the user. In recent studies, the HPI maps multi-joint limb
poses (i.e. coordinated movement of the body and limbs)
to the inputs of multiple sensors. This is in contrast to the
conventional methods where each degree of freedom of the
powered prosthesis is mapped to the input of one/a pair of
sensors. In this approach, it is necessary to systematically
select sensors that carry the most information for the
intended set of poses, to improve system accuracy and/or
minimise the number of sensors, thus the complexity, in the
prosthetic system. In this paper, sensor selection process
is systematically formulated to maximise the information
contained in the input features for a given number of
sensors. Most importantly, it accounts for composite
features, which are features requiring information from
multiple sensors. Such composite features exist and are
important in HPIs as we seek to capture coordinated motion
involving movements of multiple limb and body segments.
A non-convex optimisation problem is formulated which
accounts for the constraint introduced by the composite
features. A projection matrix is utilised as the optimisation
variable to select intended features for evaluation. The
problem is solved by the proposed Sensor Selection
with Composite Features (SS-CF ) algorithm which adapts
convex-relaxation techniques. The SS-CF is benchmarked
against HPI with expert-selected sensors in the literature
and against a greedy heuristic method. The outcome
demonstrated the efficacy of the SS-CF algorithm.

Index Terms— Sensor selection, prosthetics, sparsity
constraint optimisation.
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I. INTRODUCTION

IN RECENT years, there has been great interest in
developing Human-Prosthetic Interfaces (HPIs) that enable

coordinated movement with the user’s limb and body in
order to produce human-like natural movements for people
wearing upper limb prostheses [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10]. This differs from the more traditional
approach in powered prostheses, where the movement of
each degree of freedom is explicitly controlled by the human
user through the signal from one/a pair of sensors (e.g.
from the electromyography (EMG) signals of a pair of
antagonistic muscles). One of the key challenges to coordinate
such a movement is to identify the user-intended pose of
the prosthesis based on the features that are the variables
processed from wearable sensor signals forming the interface,
such as inertia measurement units (IMUs) and surface EMG
(sEMG).

Designing an appropriate HPI that can accurately reflect the
user’s intention is a challenging task due to the large variations
of human users and the complexity of human movements.
A natural solution is to use all available wearable sensors
to provide as much information as can be obtained to the
HPIs, as shown in [5]. On the other hand, using a low number
of wearable sensors reduces the system complexity and is
desired from the aspect of practical implementation [11]. It is
imperative that the performance of the interface, in the form
of the accuracy in the intention estimation, is maintained, else
it would lead to ineffective operation, user frustration and
device abandonment [12]. These two facts lead to the problem
formulation in this paper: selecting the appropriate numbers of
sensors from all available sensors, which provide the necessary
information to identify the user-intended prosthetic pose from
a set of target poses. This is known as the sensor selection
problem in the literature [13], [14].

A common approach is to select the sensors based on
evaluating the features with the most amount of discriminating
information for detecting the user intention [11]. A feature
that can be constructed out of the signal from a single sensor
is termed a direct feature. The information contained in one
sensor can be used to construct multiple features, hence one
sensor can provide multiple direct features. There are also
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features that require information from multiple sensors, which
we shall define in this paper as composite features. The
composite features have shown great benefits in designing
HPIs, especially when coordinated motions are involved. For
instance, the orientation of the forearm required the kinematic
information of the upper arm, the trunk and the elbow joint.
This means features such as wrist orientation are composite
features, requiring information from multiple sensors (e.g. the
IMUs) worn across the trunk, upper arm and forearm. These
features are important in achieving coordinated movement of
the prostheses and residual limb [2], [3], [15]. Other examples
include muscle-synergy-related features, which require the
sensor fusion of multiple sEMG electrodes on the residual
limb and potentially the body of the user. Muscle synergy
features could be more robust than commonly used time-
domain sEMG features in prosthetic pose control [16]. Note
that any dimension reduction technique such as Principal
Component Analysis (PCA), e.g. in [15], creates a low-
dimensional representation of the original features where each
dimension is a composite feature.

To achieve coordinated movements, most studies select the
features in their HPIs through the designer’s experience, exper-
tise and intuition, refined by a trial-and-error approach [3],
[4], [5], [6], [7], [8], [9], [17], [18]. In recent years, there
have been some studies to provide systematic methods for
sensor selection (mostly sEMG), which have not considered
composite features and are based on the performance of
selected trained input-output models (e.g., classification and
regression) [11], [13], [19], [20], [21]. In [13] and [19] the
logistic regression model was used. The Sequential Forward
Selection (SFS), which is a greedy heuristic method, was
used in [11], [20], and [21]. In the SFS method, one sensor
with all available features is added one at a time based on
the classification performance until it reaches the required
number of sensors. Nevertheless, the results did not take into
account composite features which require certain combinations
of sensors to be added together to be effective. In addition,
these sensor selection algorithms are specific to the chosen
machine learning model used for the intention estimation step,
thus requiring time-consuming and repetitive training to be
used for different models or to achieve a desired performance
such as identification accuracy.

In this paper, we propose a systematic approach to select
sensors with the most information to differentiate a given set
of target poses achieved through coordinated motion, under
the presence of composite features. For ease of presentation,
we refer to the proposed algorithm as Sensor Selection with
Composite Features (SS-CF), which is achieved by introducing
a mapping matrix to characterise the relationship between the
sensor and its direct/composite features, and to constrain the
selected number of sensors/features. Such problem formulation
leads to a non-convex optimisation problem for a given
objective function to achieve as much separability as possible
among the feature clusters of the target poses. Adapting
existing optimisation techniques [22], [23] to solve the non-
convex optimisation problem, the proposed SS-CF selects
sensor combination for optimum performance for a given
number of sensors. Furthermore, we adopt an objective

function, which is based on the statistical property of the
features [24], [25], [26], without repeating the input-output
model training as in [11]. More specifically, the objective
function is based on the class separability of the clusters
representing each target pose, which maximises the intra-class
variances of the features relative to their inter-class variances.
While the proposed technique was designed to address sensor
selection, it is also applicable to select features from the
chosen sensors.

The effectiveness of the proposed algorithm is validated
on the data collected in the context of prosthetic pose
identification involving the coordinated movements of the
upper limb and the trunk. The experiment was conducted
in the transhumeral prostheses scenario with 10 subjects
performing tasks involving 9 upper limb poses including three
discrete prosthetic elbow poses that need to be differentiated.
The proposed algorithm was implemented on the direct and
composite features, including time-domain sEMG, muscle
synergy and joint kinematics features. The features were
obtained from the sensors attached to the residual limb (upper
arm) and upper body of the subjects. The results of the
proposed SS-CF method are compared to the existing sensor
selection results in the literature and the SFS-type method.

II. SENSOR SELECTION WITH COMPOSITE
FEATURES (SS-CF)

Sensor selection is a process to select a set of sensors
from the available, which would yield the best performance.
In our case, the performance is measured by having the highest
information contained in the features. Each sensor provides
sensor readings that contribute to one or more features.

This section formulates a class of sensor selection problems
in the presence of composite features. It starts by defining
sensor with composite features, followed by the definition of
a matrix A′ that characterises the relationship between the
set of sensors and the set of features. With the help of A′,
the sensor selection is formulated as a finding the optimal
subspace projection problem for a given objective function of
the training data with constraints on the number of selected
sensors and features. In general, such an optimisation problem
is not convex, thus convexification techniques are discussed
to provide feasible solutions to the formulated optimisation
problem for sensor selection and/or feature selection.
Notation: We use lowercase letters for scalars, boldface
lowercase letters for vectors, and boldface uppercase letters to
denote matrices throughout this article. Let R and Rn denote
the set of real numbers and an n-dimensional Euclidean space,
respectively. Let N be the set of natural numbers. The key
notations are listed in Table I.

A. Composite Features
A composite feature requires information from multiple

sensors. A direct feature requires information from only one
sensor. Assume that we have a collection of p sensors forming
a sensor set G = {g1, g2, . . . , gp}. Each sensor can contribute
to one or more features. For the union of all available features,
collected from these p sensors, we define the feature set
F = { f1, f2, . . . , fd}.
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TABLE I
SUMMARY OF KEY NOTATIONS

TABLE II
EXAMPLE OF FEATURE AND SENSOR RELATIONSHIP

The relationship between the features and the required
sensors can be characterised by a matrix A′

∈ Rd×p
={

a′

i j

}
i=1,...,d, j=1,...,p

where

a′

i j =

{
1 ; if feature fi needs information from g j

0 ; else.
(1)

Example 1: Assume that we have a feature set F =

{ f1, f2, f3} extracted from two sensors g1 and g2. Table II
describes the relationship between the feature set F and sensor
set G, where the entry filled with “1” means the measurements
of the sensor contribute to the feature, and “0” otherwise.

From the table, we can see that feature f1 is a direct feature
because the information from g1 is complete. The same for
feature f3. Whereas, feature f2 is composite, since it requires
the information from both sensor g1 and g2.

The matrix A′ can be calculated using (1):

A′
=

1 0
1 1
0 1

 .
The resulting matrix A′ reflects the feature-sensor arrangement
as shown in Table II. ◦

Remark 1: Note that there is no redundancy in sensor
measurements, which means the same feature cannot be
produced independently by another sensor.

The introduction of the matrix A′ can also serve to
determine when composite features are present. Specifically,
a sensor set G contains composite features if (A′)T A′ has at
least one non-zero off-diagonal term.

B. Problem Formulation
The sensor selection process includes choosing q sensors

out of p sensors available for the analysis (where p > q), then
evaluating through an optimisation process which combination
of q sensors contain features that yield the most information
in terms of identifying the user-intended poses. In this process,
we also need to account for the constraint introduced by the
presence of composite features.

The assessment is performed on a collected training data set
X ∈ Rn×d

=
[
x1, x2, . . . , xn

]T , where the columns represent
the d features and rows are the n samples. It should be noted
that for the case of supervised training (which is the case in
this paper), each row xT

i (i = 1, . . . , n) is assigned a label,
contained in a vector y ∈ Rn , corresponding to the associated
target poses. There are c possible labels contained in a set
P = {1, 2, . . . , c}. In the problem in this paper, the labels
represent the target poses to be achieved by the human user
and the prosthesis.

This subsection will therefore present (i) a method to specify
which features (from the q sensors) are to be evaluated by
the use of a projection matrix, (ii) the formulation of the
optimisation problem to find the optimal set of q sensors
with respecting constraint introduced by composite features,
and finally (iii) the objective function to be optimised in the
context of this paper, which is the ability to accurately identify
the target poses as intended by the human users. These are
presented in the three respective subsections below.

1) Specifying Which Sensors or Features to Evaluate Using
Projection Matrix W: In this work, we use a projection matrix
W to specify which features are included when evaluating
the performance as required by the objective function. The
projection matrix has a specific structure of having some rows
set to all zeros [24]. Multiplying the projection matrix with
the training data X produces a resulting data representation
containing only the effect of features multiplied with rows of
W that are not set to all zeros.

Let W =
[
w1,w2, . . . ,wm

]
∈ Rd×m be the projection

matrix and Z the result of the projection that satisfies Z =

XW ∈ Rn×m , where m is the number of dimensions after
the projection and is less than or equal to the number of all
available features d. If i th row of W are all zeros, i.e. the
squared sum of the elements is zero, the influence of the i th

column of X in Z is zero. In other words, the contribution of
feature fi to Z is ignored. Note that multiple rows in W can
be made all zeros. Removing selected features means that only
the remainders are included in further consideration, such as in
the evaluation of the information content. To exclude a sensor
from the selected set, rows corresponding to features from the
said sensor need to be assigned all zeros. This includes any
composite features that require data from the said sensor. For
instance, using the same setting as Example 1, if the 2nd and
3rd row of W are all zeros, the sensor g2 will be excluded
from the selected set.
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This structure is referred to as row sparsity and can be
indicated by a vector ω =

[
ω1, ω2, . . . , ωd

]T
∈ Rd , where

the importance of feature fi are proportional to the ωi and the
fi are selected if i satisfy ωi ̸= 0, and vice versa. The ω gives
the form

ω = (W ◦ W)1m, (2)

where 1m = [1, 1, . . . , 1]
T

∈ Rm , and the ◦ denotes the
Hadamard (element-wise) product and power [27] of two
matrices V,U ∈ Rd×m defined as

H = (V ◦ U)◦
1
2 = {hi j }i=1,...,d, j=1,...,m,

hi j = (vi j ui j )
1
2 .

(3)

In this paper, the projection matrix W is not manually
assigned for performance evaluation. Instead, W is obtained
by solving the optimisation problem below.

2) General Formulation: Subsequently, we propose a general
problem formulation for sensor selection accounting for
the presence of composite features, which is a constrained
optimisation problem to obtain the W. The key problem
is to obtain the required sensors based on the knowledge
of selected (composite) features. Here, we utilise a linear
mapping A constructed from A′ in (1) to obtain a vector
ψ =

[
ψ1, ψ2, . . . , ψp

]T
∈ Rp indicating the required sensors

gi where i satisfy ψi ̸= 0. The ψ takes the form

ψ = ATω,

A = diag(A′1p)A′,
(4)

where diag(v) creates a square diagonal matrix with vector v
as the main diagonal, and the i th diagonal term of diag(A′1p)

represents the maximum number of features can be obtained
by selecting sensor gi .

For any chosen objective/cost function and training data X,
a general form of such the intended optimisation is:

max
W
/min

W
J (X, y,W), (5)

s.t. ω = (W ◦ W)1m, ∥ω∥0 ≤ l, (6)

ψ = ATω, ∥ψ∥0 = q, (7)

where y contains the corresponding labels for the training
data, which can be neglected if an unsupervised scenario is
considered, ∥·∥p is the lp-(pseudo)norm of the vector and
when p = 0 it counts the non-zero entries of the vector.
Equation (6), originated from (2), constrains the selected
number of features by an upper bound of l. The selected
features as reflected in ω will require the set of sensors ψ
reflected in (7), which captures the feature-sensor mapping
through matrix A. Finally, (7) also limits the number of sensors
(the number of non-zero elements in ψ) to q.

3) The Objective Function to Optimise: Next, an explicit
objective function is required in place of (5) that is contextual
to this application. For the HPI in this study, the key
requirement in the process of sensor (and/or feature) selection
is to successfully differentiate the user-intended prosthetic
poses. As a result, an objective function was selected to
maximise the “class separability” that evaluates how well

the clusters of the required target poses (i.e. classes) can be
separated from one another relative to their individual spread
in the feature space [28], [29]. In other words, the objective
is to maximise the inter-class variance and minimise the intra-
class variance. The two types of variances are evaluated by
the inter-class and intra-class scatter matrix Sb ∈ Rd×d and
Sw ∈ Rd×d given by

Sb =

c∑
j=1

n j (m j − m)(m j − m)T , (8)

Sw =

c∑
j=1

n j∑
k=1

(x j,k − m j )(x j,k − m j )
T , (9)

where x j,k ( j = 1, . . . , c, k = 1, . . . , n j ) represents the kth

samples of the j th class by relabelling each observation xi
according to y, n j is the number of samples in the j th class,
i.e.,

∑c
j=1 n j = n, and m j ∈ Rd is the mean of the j th class,

computed from the sampled data in the j th class while m ∈ Rd

is the mean of all samples.
In order to formulate a scalar “class separability” measure,

we adopt the ratio trace of the scatter matrices [24], [30].
A higher value of the scalar measure indicates a greater chance
of achieving higher accuracy in identifying the target poses,
as demonstrated in our previous work [28]. Substituting this
scalar measure as the objective function in (5), the selection
of sensors and features can be formulated as the following
optimisation problem in the presence of composite features
(see Section II-A):

max
W

tr
[
(WT SwW)−1(WT SbW)

]
(10)

s.t.ω = (W ◦ W)1m, ∥ω∥0 ≤ l
ψ = ATω, ∥ψ∥0 = q,

(11)

where tr(V) denotes the trace of any m × m square matrix
which is defined as tr(V) =

∑m
i=1 vi i .

C. Convex Relaxation
The objective function (10) is non-convex with two non-

convex constraints (11). Such optimisation problems are
challenging to solve as many local minima exist [24], [25].
In order to make such problems tractable and solved efficiently,
many techniques have been proposed to relax the problems by
their convex approximates [22], [31].

In this paper, the non-convex objective function (10) is
approximated by a least-square convex regression problem by
adding a new optimisation variable called scoring matrix [23].
The constraints are reformulated as penalty functions [31]. The
optimal projection and scoring matrix are obtained by fixing
one and solving another [22] using gradient-based technique
as described in [32].

When the convex-relaxation techniques are not applicable
for some objective/cost, the greedy heuristic algorithms such
as sequential forward selection (SFS) were proposed to find
a feasible solution to the problem (10) with constraints
(11). Although such algorithm is applicable to our problem
formulation, given the existence of composite features we
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doubt the solution by the heuristics is very likely to be
suboptimal.

1) Objective Function Relaxation: The non-convex objective
function in (10) is cast into a convex one. To do so,
the class label y is turned into continuous variables using
the dummy variables and scoring matrix [23]. Let Y ={

yi, j
}

i=1,...,n, j=1,...,c ∈ Rn×c denote the dummy variable of
the label vector y where its elements are defined as

yi j =

{
1 if the i th observation belongs to j th class
0 else.

(12)

The scoring matrix 2 is defined as 2 =
[
θ1, θ2, . . . , θm

]
∈

Rc×m . Let matrix B be defined as B =
1
n YT Y. Instead

of solving the non-convex objective (10), we can solve the
following problem with a convex objective

min
W,2

1
2n

||Y2− XW||
2
F (13)

s.t. ω = (W ◦ W)1m, ∥ω∥0 ≤ l

ψ = ATω, ∥ψ∥0 = q (14)

2T B2 = Im×m,

where ∥·∥F denotes the Frobenius norm of a matrix defined
as ∥V∥F =

√
tr

(
VT V

)
.

2) Constraints Relaxation: To relax the non-convex con-
straints on the number of sensors and features, the problem
(13, 14) are solved sequentially for each vector pair wk in W
and θk in 2 (k = 1, 2, . . . ,m) by fixing one and solving the
other as shown in [22] and [32].

Since we are solving for each wk , by adapting the idea of
Sparse Group Lasso [31], the constraints can be replaced by
introducing a penalty term or penalty function h(·). In this
work, the penalty function h(·) takes the following form

h(w) = (1 − α)||(AT (w ◦ w))◦
1
2 ||1 + α||w||1, (15)

where α ∈ (0, 1) balances the two penalties.
One can show that if the wk is known, the solutions of θk of

the optimisation problem (13) with the constraints (14) have
a closed form solution given by

θ̃k = (Ic −2T
(k−1)2(k−1)B)B−1YT Xwk

θk = θ̃k/

√
θ̃

T
k Bθ̃k,

(16)

where 2(k−1) denotes the first k − 1 columns of 2.
In the sequel, the optimisation problem (13, 14) is converted

to the following form

min
wk ,θk

1
2n

||Yθk − Xwk ||
2
2 + λh(wk) (17)

s.t. θT
k Bθk = 1
θT

k Bθ i = 0 ∀i < k,
(18)

where (18) is converted from the constraint 2T B2 = Im×m in
(14), and h(·) is defined in (15). Such an optimisation problem
is convex. This can be solved by applying proximal gradient
descent [33].

After obtaining the optimal solution W∗, the features fi are
ranked in descending manner according to the corresponding
values of ωi . Features and sensors ranked highest without
violating the constraint on ω and ψ in (14) are selected.
The sensor selection algorithm (SS-CF) is summarised in
Algorithm 1.

Algorithm 1 SS-CF Algorithm

Input : X ∈ Rn×d : Training data;
Y ∈ Rn×c: Dummy variable of labels (12);
A ∈ Rd×p: Mapping matrix (4);
l: Limit in the number of features to utilise;
q: Limit in the number of sensors to utilise;
m: Dimension after projection;
α, λ: Tuning parameters for optimisation;

Output: W∗
=

[
w∗

1, . . . ,w∗
m
]
: Optimal projection;

Fs : Selected feature set;
Gs : Selected sensor set;

1 Initialise: B =
1
n YT Y, 2 =

[
θ1, . . . , θm

]
= Ic×m ;

2 for k = 1, . . . ,m do
3 while wk has not converged do
4 Solve for wk by solving (17) using proximal

gradient descent ;
5 Update θk using (16) ;

6 Rank the features fi descending based on ω∗

i calculated
by (2);

7 Obtain Fs and Gs which are the highest ranked sensor
and feature indices without violating (14);

III. HUMAN DATA COLLECTION AND ALGORITHM
EVALUATION EXPERIMENT

The objective of this study is to develop an algorithm for
selecting the sensors that contain the maximum information,
thus guaranteeing the highest chance of accurate target pose
identification when the user controls the prosthesis in real-
time. The implementation of the algorithm for real-time
decision-making and joint movement control in a prosthesis
will be investigated in our future work. In this section,
the proposed SS-CF algorithm is validated with the data
collected from a human-subject experiment in the context of
identifying the target prosthetic pose involving coordinated
motion with the upper limb and trunk. The protocol of the
human experiment for data collection is presented, followed
by the feature extraction methods where the training data X
and Y are obtained and the mapping matrix A is constructed.
Finally, the experimental protocol for evaluating algorithm
performance is presented where l, q, and m are set according
to the need, α is chosen as suggested in the literature and λ
is optimised by the grid searching method [31].

A. Experimental Protocol for Human Data Collection
1) Subject Recruitment: Ten non-disabled subjects (7 male,

3 female; all right-handed) were recruited for the data
collection experiment. The age range was [24, 32] with a
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Fig. 1. (a) Experimental setup and sensor deployment, (b) Virtual Reality (VR) avatar and reaching target example, (c) Target set within the
parasagittal plane, T1-T3 denote the intended target elbow poses.

median of 27. The experimental protocol was similar to our
previous work [29], and described below. It is approved by the
University of Melbourne Human Research Ethics Committee,
project ID 11878. Informed consents were obtained from all
subjects.

2) Experimental Protocol: The experiment was conducted in
the context of transhumeral prostheses control where a set
of sensors are attached to the upper limb and upper body
of the human subjects (Fig. 1(a)) to record the kinematic
and sEMG signals. The subjects stand straight naturally and
unconstrained, and were asked to perform forward-reaching
tasks toward targets placed along the parasagittal plane by
extending the upper limb forward, for ten iterations for each
target. The target, which the subject should reach with their
hand, was displayed in the head-mounted display virtual reality
(VR) environment as a sphere, see Fig. 1(b). The position of
the target was generated by the subjects flexing the shoulder
joint and extending the elbow joint to the designed poses, see
Fig. 1(c), and the middle fingertip location in VR environment
is recorded as the target location. To instruct the subjects
to reach the pose during target generation, the real-time
shoulder flexion/extension and elbow flexion/extension poses
were displayed in front of the subject’s left eye.

The subjects were instructed to maintain their final upper
limb pose after reaching the targets. The quasi-static sensor
readings during the holding period were used for feature
extraction. This data primarily consists of static information
about the subject reaching the intended elbow pose and being
instructed to hold the pose. Thus, the data is valuable and
reliable to detect such intention when the elbow joint has been
replaced with a prosthetic component.

3) Task Description: By setting the joint space human
arm displacements, nine reaching targets were set in the
parasagittal plane as illustrated in Fig. 1(c). The arm-length
calibration was resolved by the target generation process.

In the context of a transhumeral prosthesis (for an above-
elbow amputation), the prosthesis consists of the elbow (and
potentially, the wrist and hand). In this study, only the elbow
joint was considered for the prosthesis. In this experiment,
the HPI needs to identify the c = 3 discrete elbow poses
accurately, based on the kinematics (e.g. the shoulder pose)

and the sEMG signals of the human subject. The data set
was collected at three distinct shoulder poses and three elbow
poses, resulting in the 9 reaching targets in the experiment,
labelled as Ti (i = 1, 2, 3), as shown in Fig. 1(c).

4) Sensor Deployment: The upper-body and arm kinematic
signals and upper-arm sEMG signals were collected using
wearable sensors with a sampling rate of 90 Hz and 1,111 Hz,
respectively. Fig. 1(a) presents the sensor setup. Upper body
and upper arm postural data were acquired through three
HTC VIVE Trackers (with motion capture sensors and an
embedded IMU) attached to the subject’s upper arm (UA),
shoulder acromion (SA), and C7 vertebrae (C7). Another
tracker on the forearm (FA) and the controller in the hand
was only utilised to control the avatar in the VR environment.
Seven Delsys® Trigno™ wireless sEMG electrodes were
attached to the dominant upper arm of the subjects: two on
the biceps long/short heads (BLH/BSH), two on the triceps
lateral/long heads (TLAH/TLH), three on the anterior, middle
and posterior of the deltoid (DA/DM/DP).

B. Feature Extraction
Based on the type of sensors used, the candidate features

were extracted from the data containing the target pose
intention. The data were collected during the subject holding
the upper-limb pose upon reaching the targets in a coordinated
fashion and were summarised in Table III. The training data
X, dummy variable matrix Y, and the mapping matrix A are
constructed from the feature data.

The time-domain sEMG and joint postural features were
utilised in this study. To extract the time-domain sEMG
features, the raw sEMG signals were filtered by a 4th order
Butterworth band-pass filter with a 10-500 Hz passband [34].
Outliers of more than three standard deviations from the
mean were removed. Then, a sliding window of 200ms was
applied for the signal, with overlapping 100ms (resulting 10Hz
sampling rate). The kinematic postural features were computed
through the orientation readings of the embedded IMU of
VIVE trackers and were downsampled to 10Hz.

1) Kinematic Postural Features: We included both direct
and composite kinematic postural features. The direct
features are the trunk flexion/extension (Tf/e) and left/right
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TABLE III
COMPOSITE AND DIRECT FEATURES

bending (Tlb/rb) which only require the C7 tracker’s
measurements. The composite postural features are: shoulder
flexion/extension (Sf/e) and adduction/abduction (Sabd/add)
which needs UA and C7 trackers, and scapular protrac-
tion/retraction (Scp/r) and depression/elevation (Scd/e) which
requires UA and SA trackers. Since the targets were in the
parasagittal plane, shoulder internal/external rotation and trunk
rotation were not considered.

2) sEMG Features: For sEMG features, the direct and
composite features are the time-domain and muscle synergy
features, respectively. The time-domain sEMG features are
computed following [29], [35], including mean absolute value
(MAV), root mean square (RMS), wave length (WL), zero
crossing (ZC) and slope sign change (SSC).

Muscle synergy (MS) features were extracted from the
RMS values of a group of sEMG sensors [16]. The
Nonnegative Matrix Factorisation (NNMF) is used to extract
the features. Assume the drms−dimensional RMS features
from a group of sEMG sensors are sorted into a matrix
Xrms ∈ Rn×drms and the muscle synergy features can be
obtained by decomposing the Xrms into two nonnegative
matrices: (i) G ∈ Rdrms×dms which is the muscle synergy
matrix, (ii) Xms ∈ Rn×dms which is the muscle synergy
features where each column is regarded as a feature. The
dms < drms is the reduced dimension of the extracted muscle
synergies. The relationship is given by

XT
rms = GXT

ms + E, (19)

where E ∈ Rdrms×n is the residual which can be used
to estimate the variance of the data account explained
by the factorisation. In this work, the dms for each
muscle combination was determined based on the criterion:
||E||2/||XT

rms ||2 < 5% which means more than 95% variance
of the data is explained by the GXT

ms . The overall muscle
synergy features in this study were from the k-combinations
(k = 2, 3, . . . , 5) of five muscle groups (biceps, triceps, deltoid
anterior, middle and posterior).

The G is obtained using the Xrms of the training data.
During test The G is then used to obtain the muscle synergy
features Xms by

XT
ms = G†XT

rms, (20)

where † denotes the left Moore–Penrose inverse which satisfies
G†

= (GT G)−1GT .

C. SS-CF Experimental Evaluation
In the evaluation, the proposed SS-CF sensor selection

algorithm was applied to select q sensors from a total of
10 sensors (where q = 1 to 9) that provide the best features
to distinguish the target poses, based on the data collected
in the aforementioned human subject experiment. The matrix
A is constructed based on the information in Table III. The
resultant classification accuracy of the selected features of
sensors was used as the performance metric. We conducted
5-fold cross-validation for the dataset from each subject.
By doing so, the data are divided into 5 parts each containing
2 iterations, and each part will be reserved for the test with
the rest being used for sensor selection and classifier training.
Regarding the constraints in (11), we set: ∥ψ∥0 = q ∈ [1, 9]

and ||ω||0 ≤ l = d. The upper bound of the number of selected
features was set large enough to allow all the informative
features to be used. The tuning parameter λ was determined
to be the value that results in the closest sensor-level sparsity
and minimum cross-validated value of (17) along a grid of
λ. The grid was set by log-linearly interpolating 30 points
between the λmax = 0.3 and λmin = 0.1λmax . The adopted
parameter settings were: λmax = 0.3, λmin = 0.03, α = 0.95,
m = 2. The dimension of the projected feature space m was
set such that after the projection, it was possible to view how
the classes are separated in the low-dimensional (2D) feature
space by observation.

Three sets of performance evaluation, benchmarking and
analysis are carried out in this study. They are described below
and the results and the corresponding discussions are presented
in Section IV (Results and Discussion).

1) Performance Evaluation and Benchmarking: The sensor
sets selected by SS-CF, for q = 1 to 9 were assessed for their
classification accuracy using the test data. The performance
was also compared to reported sensor selections in the
literature, which were carried out based on the experience and
knowledge of experts (the experimenters). The two studies in
the literature that are used as benchmarks in this paper are:

• [7]: utilises 4 sensors, including C7 and UA trackers
to obtain upper limb kinematics and a pair of sEMG
electrodes placed at BLH and TLAH;
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• [8]: utilises 9 sensors, including all 7 sEMG electrodes in
our study and C7 and UA trackers which act similarly to
the motion tracking system with bony markers as reported
in [8].

Given the studies in the literature were carried out with a
specific number of sensors, the comparisons of the outcomes
of the proposed algorithm to the literature were only done at
q = 4 and q = 9.

In the evaluation of the classification accuracy of the
selected sensors, all the features available to the sensor choices
were utilised. The intended pose classification of the sensor
sets by SS-CF and the two benchmark algorithms from the
literature were tested on three classifiers:

• k-Nearest Neighbors (KNN) which is a simple nonpara-
metric classifier [36] with nonlinear decision boundaries.
The parameter k was tuned through a grid search
from 1 to 27 (the square root of the training sample
number);

• Time-delayed Artificial Neural Network (TDANN)
which was used in [8] to predict transhumeral prosthetic
poses. The network had a hidden layer with 20 neurons
and an input delay of 7 the same as [8];

• Linear Discriminant Analysis (LDA) which is a com-
monly used linear classifier in prostheses control [12].

The statistical significance test was conducted using a
non-parametric method because the obtained classification
accuracy does not fit the normality assumption [37]. The two-
sided Wilcoxon signed-rank test was performed to compare the
accuracy between the sensor selection results by our algorithm
and the two chosen benchmark selections, at q = 4 against [7]
and at q = 9 against [8]. The confidence level was set to be
95% (p < 0.05).

2) Comparison to Greedy Heuristics: Sequential Forward
Selection (SFS) is a simple greedy heuristic algorithm that
has been used for sensor selection. The algorithm adds one
sensor with all available features at a time based on some
performance metric (usually classification accuracy) until q
sensors are selected [11], [13]. A similar approach can be
applied to our problem formulation (10, 11), when l is set
sufficiently large. However, the results can be suboptimal [30].
Therefore, we doubt due to the existence of composite
features, the optimal sensor set can be non-sequentially built,
and the proposed algorithm gives better performance. The
classification performance was evaluated using KNN.

3) Inter-Subject Variations: It has been shown that the
most informative feature sets vary between subjects in HPIs
[11], [29] The proposed algorithm was applied to the data
of individual subjects, to select the sensor sets that provide
the highest classification accuracy. The selected sensors (at
q = 1 to 9) based on the first fold of 5-fold cross-validation
training data were investigated, and the variations of the
selections were compared to get an insight into the inter-
subject variations.

IV. RESULTS AND DISCUSSION

In this section, the results and discussion for the three points
of evaluation outlined in Section III-C are presented.

A. Performance Evaluation and Benchmarking
The performance evaluation of the SS-CF algorithm is

shown in the three subplots in Fig. 2, for the three classifiers
used. The expected general trend was found in the three
subplots that as the number of sensors selected gets higher, the
accuracy generally increases. Note that there are 10 available
sensors to choose from in the training data. It was observed
that the SS-CF algorithm achieved higher accuracy for all
three classifiers when compared to the results of the selection
based on expert experience (4-sensor [7] and 9-sensor [8])
with p < 0.05. The outcome across three classifiers shows the
generalisability of the proposed SS-CF algorithm for different
machine learning models since it evaluates the statistical
properties of the data. Consequently, the sensor selection
process can be decoupled from the design and implementation
of the machine learning model for HPIs. This can significantly
reduce the effort required, such as in [11] and [13], for
repetitive training and tuning the hyper-parameters of the HPI
model when evaluating each candidate feature and sensor set.

In addition to the systematic nature of the proposed
approach, and the potential higher accuracy in identifying
the intended target pose, the increase in performance can
also allow the same performance to be achieved with fewer
sensors, reducing system complexity. Fig. 2 also shows that
the accuracy did not increase proportionally to the further
increase in the number of sensors.

It is noteworthy that the highest mean classification accuracy
shown in Fig. 2(a) was obtained by selecting only two
sensors. However, it is observed that the accuracy variance
at q = 2 is quite large and decreases for larger q. Therefore,
we think the peak of the mean accuracy observed at q = 2 is
a consequence of the large inter-subject variation and is not
representative of the overall performance of all 10 subjects at
q = 2. This is further supported by the observations in Fig. 3
which shows the performance of two subjects, S8 (Fig. 3(a))
and S10 (Fig. 3(b)). It is observed that the accuracy of the
two subjects has a significant difference at q = 2, with each
deviating significantly from the mean accuracy in opposite
directions. The achieved accuracy for S8 is much higher than
S10 (100 % vs. 85%). This figure also shows that the variation
in the accuracy decreases at larger q values. Furthermore, this
result shows that personalisation of the HPI is required when
a low number of sensors are used [11], [29].

B. Comparison to Greedy Heuristics
A comparison is made between the outcome of the proposed

SS-CF algorithm and a sequential forward selection (SFS)
process. The outcome presented in Fig. 3 indicates that the
optimal sensor set may be non-sequentially built to the
ascending number of sensors. The SFS approach selects
the best sensor when only q = 1 sensor can be selected. Then
for the case of selecting q = 2 sensors, it assumes the sensor
that is best for the scenario of q = 1 is included and searches
for a second sensor to complete the set of 2 sensors, and so on.

Fig. 3 demonstrates the sensors selected for q = 1 to 9 for
2 different subjects (subject 8 (S8) and subject 10 (S10), shown
in Fig. 3(a) and 3(b), respectively). For Fig. 3(a), it was
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Fig. 2. The resultant classification accuracy of 3 elbow poses using the selected sensor and feature sets by the proposed SS-CF algorithm
and compared to 2 existing results with 4-sensor [7] and 9-sensor [8]: (a) k-Nearest Neighbors (KNN) classifiers, (b) Time-delayed artificial neural
network (TDANN) and (c) Linear Discriminant Analysis (LDA). The error bars represent the population mean accuracies and their standard deviation.
The statistical significance test results are shown at the top with * denoting p < 0.05, ** denoting p < 0.01, and *** denoting p < 0.001.

Fig. 3. (a) and (b) demonstrate the comparison of the proposed SS-CF vs. Sequential-Forward-Selection (SFS) type solution to the proposed
problem formulation for two of the subjects, S8 and S10, respectively. The top row shows the sensor selection results where the colored block
indicates the chosen sensor. For each q, the selections by the proposed method are on the left (in purple), and the SFS-type results are on the right
(in green), respectively. The bottom row shows the corresponding elbow pose classification accuracy using KNN classifier by the chosen sensors
and features based on the two methods.

shown that for this subject, for q = 2, the outcome of the
convex-relaxation-based SS-CF algorithm does not contain the
sensor selected for q = 1. Similarly, for Fig. 3(b) at q = 4.
In both cases, the classification performance is significantly
better than the SFS-type solution (the bottom row).

To be specific, for subject 8 (S8), BLH is the best single
sensor, whereas C7 and SA form the sensor pair which can
provide the composite feature Scp/r and Scd/e and performs
significantly better. This is mainly due to the composite
features, building up the sensor set sequentially is very likely
to miss such features in other possible sensor combinations.
The proposed SS-CF algorithm results in the selection of the
C7 and SA kinematic sensors, while the SFS-type algorithm
fails to include these sensors at q = 2, leading to suboptimal
results. Similarly, the suboptimal path starts from q = 4 for
subject 10 (S10).

C. Inter-Subject Variations
The variation in the resulting sensor selection among

different subjects was investigated. As shown in Fig. 3,

different sensor sets are selected for the subjects S8 and
S10, for q = 1, . . . , 9 sensor sets. Fig. 4 further presents
such variation among the 10 subjects, by depicting the
occurrence percentage of each sensor being selected among
the 10 subjects for q = 1, . . . , 9. For example, for q = 1,
sensor C7 was selected for two of the 10 subjects. None of
the q sensors result in the same sets among the 10 subjects.
In other words, for any q , there are no q sensors selected
for all subjects. For q = 1 and 2, there was not one single
sensor that was selected for all subjects. The most commonly
selected was BLH at q = 1 and C7 and SA at q = 2. Even at
q = 9, only 7 sensors are common among all subjects (selected
for 100% of the subjects). Consequently, the results in this
subsection and IV-A indicated that personalisation in feature
selection [28], [29] and sensor selection yield significant
performance improvements.

D. Limitations and Future Work
Although the classification accuracy is a reasonable metric

herein for evaluating the selected sensor’s information in
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Fig. 4. The occurrence percentage of each sensor being selected for
q = 1,2, . . . ,9 sensors among the 10 subjects. The lighter the color, the
higher occurrence of the sensor selected.

differentiating the user intention. This metric may not fully
reflect the performance when the human user controls the
prosthesis in real time since the transient data during
dynamic movement can be substantially different. Frequent
misclassification of the target prosthetic poses might happen
and hinder the subjects to reach the intended upper-limb
pose efficiently in an online manner. However, the online
performance of prosthesis control depends predominately
on the implementation of control algorithms, including the
method for making decisions, joint motion planning, and
control. Therefore, the next key problem would be how to
process data when the user is in the loop.

The target pose set in this work was limited to three poses
of one prosthetic elbow joint. The targets lie only in the
parasagittal plane and are non-oriented. From the perspective
of benefiting the advance in the multi-DoF prosthesis, it is
necessary to extend the workspace from a plane to the
3-dimensional physical space and densify it in terms of the
pose resolution of multiple DoFs. To this end, a corresponding
extended and densified target pose set can be constructed
for data collection. Then, the proposed algorithm can be
applied to each DoF, selecting sensors and evaluating offline
performance. If low performance is observed, we can use the
“class separability” measure tr(S−1

w Sb) to identify challenging
poses with a low separability. To address this, we may
explore other input modalities or include a user training
stage [38].

In addition to selecting individual sensors, our proposed
algorithm can be used to systematically screen sensor
modalities. For example, in detecting human intention for
assistive devices, various modalities can be used, such
as EMG, kinematics, electroencephalogram (EEG), force
myography (FMG), gaze tracking sensors, etc. In order to
apply our algorithm, each modality can be treated as a
“sensor”, and the A′ matrix can be constructed accordingly.
The A′ matrix enables the identification of composite
features that require information from multiple modalities.
The proposed algorithm is applicable to other applications in
the presence of composite features beyond the one studied
in this article. For instance, it can also be applied to select

sensors for predicting the user intention in assistive lower limb
exoskeletons [39], [40]. Furthermore, our proposed problem
formulation can be applied in cases where ground truth labels
are not available, such as in the detection of back injury risk
in [41], or in unsupervised scenarios like the Body-Machine
Interface studied in [42].

V. CONCLUSION

In this paper, a sensor selection problem in the presence
of composite features is formulated and solved specifically
for an HPI application. The proposed SS-CF optimisation-
based approach was found to outperform the benchmark
sensor selection results reported in the literature for the same
number of sensors utilised. Compared to the heuristic approach
of sequential forward selection (SFS), the proposed convex-
relaxation based optimisation approach was found to provide
higher accuracy in identifying the intended target poses. This
is because the SFS approach adds one sensor at a time to the
set of candidate sensors, which does not take into account
the composite features that require inputs from specific
multiple sensors. Evaluating the resulting selected sensors
for different individuals demonstrated a high degree of inter-
subject variations, which supports the cause for personalisation
of HPIs.
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