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Abstract: Inverse optimal control (IOC) algorithms can be used to reveal underlying objectives.
Existing algorithms commonly estimate the objectives by assuming that the cost function can
be represented as a weighted sum of features, and use optimality criteria to estimate the weights.
However, the existing literature rarely discusses the recovery of cost functions in the presence
of state or control constraints, which often exist due to the limited ranges of actuators and
sensors. In this work, an optimisation problem is formulated to find the best values of weights
and Lagrange multipliers of constraints to satisfy the optimality conditions, given a segment
of an optimal trajectory. The maximum and minimum observed state and control variables are
hypothesised as potential box constraints and validated by the associated Lagrange multipliers.
In addition, this paper also introduces a method to dynamically choose the window size of the
observation, or identify that not enough information was provided for an accurate estimation.
The proposed approach is validated using simulated results generated with a two link serial arm.
The results show the proposed approach can recover the cost function when box constraints are
active, and the Lagrange multiplier value can indicate when and which constraints are present.
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1. INTRODUCTION

Inverse optimal control (IOC) aims to study the under-
lying objective function of observed behaviors from an
optimal control(OC) system (Ng and Russell, 2000). It has
been broadly applied in human behaviour analysis, learn-
ing from demonstration, and rehabilitation and assistive
robotics (Kulić et al., 2016). Most existing IOC studies
assume that the observed system trajectory is generated
from a cost function, which is constructed as a linear
combination of given features (or basis functions) with
unknown weights (Lin et al., 2021).

Recent works have also explored the application of IOC
to analyze motion with constraints. In (Clever and Mom-
baur, 2016; Reiter et al., 2022), the constrained IOC
problem was formulated as a Bi-level optimisation prob-
lem. The upper level optimises the unknown weights, pa-
rameters and constraints, while the lower level computes
forward OC trajectories repetitively. The main drawback
of the Bi-level structure is the computational cost, espe-
cially when model and task complexity increase. On the
other hand, (Menner et al., 2021; Molloy et al., 2020)
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solved the IOC problem in one step by exploiting the
Karush–Kuhn–Tucker(KKT) conditions. In (Molloy et al.,
2020), the control constraint was assumed known to the
IOC algorithm, and the recovery of the cost function is
temporarily paused during the segment of motion when
the control constraint is active. However, this algorithm
could not handle state constraints. In (Menner et al.,
2021), the constraints were formulated using the Lagrange
method, and the Candidate Constraint Set has to be pro-
cessed from the motion segment before recovering the un-
known feature weights and constraints. More importantly,
the algorithm solved the inverse of an infinite-horizon op-
timal control problem, and the optimal cost of the motion
data points behind the observed segment was computed
and included in the IOC formulation. This method is
more computationally efficient but require preprocessing of
the entire motion, which hinders the application in online
applications. In (Chou et al., 2020), an algorithm that can
learn parametric constraints from locally-optimal demon-
strations was proposed. The constraint learning problem
was formulated as a mixed integer linear program (MILP)
using the KKT conditions, focusing on finding a guaran-
teed safe set of states and generating novel movements.
The issue with the algorithm is its post-processing nature
which requires multiple and well-informed demonstrations
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robotics (Kulić et al., 2016). Most existing IOC studies
assume that the observed system trajectory is generated
from a cost function, which is constructed as a linear
combination of given features (or basis functions) with
unknown weights (Lin et al., 2021).

Recent works have also explored the application of IOC
to analyze motion with constraints. In (Clever and Mom-
baur, 2016; Reiter et al., 2022), the constrained IOC
problem was formulated as a Bi-level optimisation prob-
lem. The upper level optimises the unknown weights, pa-
rameters and constraints, while the lower level computes
forward OC trajectories repetitively. The main drawback
of the Bi-level structure is the computational cost, espe-
cially when model and task complexity increase. On the
other hand, (Menner et al., 2021; Molloy et al., 2020)

⋆ This work was supported by the Australian Research Council,
Project scheme (DP190100916). D. Kulić was supported by the
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that cover all constraints to recover the relevant cost and
constraints.

In this paper, we present an analysis framework for de-
termining both the objective criterion and box constraints
of an observed optimal motion, focusing on closing the
gap in cost and constraint recovery in online applications.
The proposed framework works in the finite-time horizon
setting, where the cost function is parameterizable and
time-independent and only the most common inequality
constraint, box constraint, are considered. The bounds
of the box constraints are extracted from the observed
motion segment, then an optimisation problem based on
the optimality conditions is formulated to solve for the
cost function and active constraints simultaneously. The
problem is formulated as a convex optimisation problem
which is more computationally efficient compared to the
Bi-level and MILP formulation. The presence of active
constraints is identified by the value of the inequality con-
straint multipliers. The proposed algorithm works with in-
complete observations and the recovery accuracy increases
with window size which also increases computational delay
in online applications. Therefore, the proposed algorithm
also include a method to choose window size dynamically,
which balances the trade-off between estimation accuracy
and computational demand. The accuracy of the cost and
constraint recovery of the proposed approach are evaluated
in simulation with a dynamical model of a two-link planar
arm.

2. PROBLEM FORMULATION

Let R and Rn denote the set of real numbers and an n-
dimensional Euclidean space respectively. Let I be the
identity matrix and 0 be the zero matrix or the zero vector
with appropriate dimensions.

2.1 Optimal Control

An OC problem for a class of discrete-time nonlinear
dynamic systems consists of the nonlinear dynamics, the
cost function, and the constraints.

The nonlinear dynamics have the following form:

xk+1 = f(xk,uk), x0 ∈ Rn, (1)

where xk ∈ Rn is the state at the kth sampling instant.
The control input at the kth sampling instant is denoted
as uk ∈ Rm. The nonlinear mapping f : Rn × Rm → Rn

is assumed to be smooth.

The cost function indicates how much a certain state-
action trajectory costs. In particular, the standard finite-
horizon free-end OC with the following cost is defined:

J(ū) =
N−1
k=0

L(xk,uk), (2)

where the optimization variable ū is defined as

ū = [u0 u1 · · · uN−1 ]
T
, (3)

and N is the total number of discrete time steps. Here J
is the total cost and L : Rn ×Rm → R is the running cost
at each time step. It is assumed that the running cost L(·)
satisfies the following assumption:

Assumption 1. The running cost can be parameterized as
follows

L(xk,uk) =ωTϕ∗(xk,uk)

= [ω1 ω2 · · · ωp]




ϕ1(xk,uk)
ϕ2(xk,uk)

...
ϕp(xk,uk)


 , (4)

where the nonlinear mapping ϕ∗ : Rn × Rm → Rp is
smooth, and both ϕ∗(·, ·) and ω are known.

Constraints are an essential part in the OC problem formu-
lation when it is implemented in engineering applications
as both actuators and sensors have limited capabilities.
This includes equality and inequality constraints:

h(x̄, ū) = 0q1 , (5)

g(x̄, ū)≥ 0q2 , (6)

where ū is defined in (3) and x̄ is defined as

x̄ = [ x1 x0 · · · xN ]
T
. (7)

The mappings h : Rn×N × Rm×N → Rq1 and g : Rn×N ×
Rm×N → Rq2 are the known collection of equality
constraints and inequality constraints respectively.

In this paper, the most common inequality constraints,
box constraints, are considered:

xlb ≤ xk ≤ xub, k = 1, . . . , N, (8)

ulb ≤ uk ≤ uub, k = 0, . . . , N − 1, (9)

where xlb,xub ∈ Rn and ulb,uub ∈ Rm are the box
constraints of state and control variables respectively.

Consequently, the OC can be formulated as

min
ū∈Rn×N

J(ū)

s.t.


xk+1 = f(xk,uk), x0 ∈ Rm,
xlb ≤ xk ≤ xub, k = 1, . . . , N,
ulb ≤ uk ≤ uub, k = 0, . . . , N − 1

(10)

where J(·) is defined in (2), f(·, ·) is defined in (1).

Assume that the optimal solution of (10) is ū∗. The
associated optimal state is x̄∗. The optimal trajectories
can be represented as

ξ̄ = {ξk,x∗
N |k = 0, · · · , N − 1} , (11)

where

ξk := (x∗
k,u

∗
k), (12)

for k = 0, . . . , N − 1.

2.2 Optimality Condition based Inverse Optimal Control

Conversely from OC, in IOC, it is assumed that the
optimal trajectory ξ̄ is observed, and the problem can
be formulated as recovering the weights and/or terms
in the cost function J . Given a cost function structure
defined in (4), IOC methods commonly assume that the
nonlinear mapping ϕ∗(·, ·) is known and the parameter ω
is unknown. By observing the optimal solution, IOC tries
to identify the parameter ω from the observed optimal so-
lution. As mentioned in (Jin et al., 2021), it is beneficial to
infer objective functions from incomplete trajectories when
sensor failures or occlusion causes loss of measurements;
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constraint, box constraint, are considered. The bounds
of the box constraints are extracted from the observed
motion segment, then an optimisation problem based on
the optimality conditions is formulated to solve for the
cost function and active constraints simultaneously. The
problem is formulated as a convex optimisation problem
which is more computationally efficient compared to the
Bi-level and MILP formulation. The presence of active
constraints is identified by the value of the inequality con-
straint multipliers. The proposed algorithm works with in-
complete observations and the recovery accuracy increases
with window size which also increases computational delay
in online applications. Therefore, the proposed algorithm
also include a method to choose window size dynamically,
which balances the trade-off between estimation accuracy
and computational demand. The accuracy of the cost and
constraint recovery of the proposed approach are evaluated
in simulation with a dynamical model of a two-link planar
arm.

2. PROBLEM FORMULATION

Let R and Rn denote the set of real numbers and an n-
dimensional Euclidean space respectively. Let I be the
identity matrix and 0 be the zero matrix or the zero vector
with appropriate dimensions.

2.1 Optimal Control

An OC problem for a class of discrete-time nonlinear
dynamic systems consists of the nonlinear dynamics, the
cost function, and the constraints.

The nonlinear dynamics have the following form:

xk+1 = f(xk,uk), x0 ∈ Rn, (1)

where xk ∈ Rn is the state at the kth sampling instant.
The control input at the kth sampling instant is denoted
as uk ∈ Rm. The nonlinear mapping f : Rn × Rm → Rn

is assumed to be smooth.

The cost function indicates how much a certain state-
action trajectory costs. In particular, the standard finite-
horizon free-end OC with the following cost is defined:

J(ū) =
N−1
k=0

L(xk,uk), (2)

where the optimization variable ū is defined as

ū = [u0 u1 · · · uN−1 ]
T
, (3)

and N is the total number of discrete time steps. Here J
is the total cost and L : Rn ×Rm → R is the running cost
at each time step. It is assumed that the running cost L(·)
satisfies the following assumption:

Assumption 1. The running cost can be parameterized as
follows

L(xk,uk) =ωTϕ∗(xk,uk)

= [ω1 ω2 · · · ωp]




ϕ1(xk,uk)
ϕ2(xk,uk)

...
ϕp(xk,uk)


 , (4)

where the nonlinear mapping ϕ∗ : Rn × Rm → Rp is
smooth, and both ϕ∗(·, ·) and ω are known.

Constraints are an essential part in the OC problem formu-
lation when it is implemented in engineering applications
as both actuators and sensors have limited capabilities.
This includes equality and inequality constraints:

h(x̄, ū) = 0q1 , (5)

g(x̄, ū)≥ 0q2 , (6)

where ū is defined in (3) and x̄ is defined as

x̄ = [ x1 x0 · · · xN ]
T
. (7)

The mappings h : Rn×N × Rm×N → Rq1 and g : Rn×N ×
Rm×N → Rq2 are the known collection of equality
constraints and inequality constraints respectively.

In this paper, the most common inequality constraints,
box constraints, are considered:

xlb ≤ xk ≤ xub, k = 1, . . . , N, (8)

ulb ≤ uk ≤ uub, k = 0, . . . , N − 1, (9)

where xlb,xub ∈ Rn and ulb,uub ∈ Rm are the box
constraints of state and control variables respectively.

Consequently, the OC can be formulated as

min
ū∈Rn×N

J(ū)

s.t.


xk+1 = f(xk,uk), x0 ∈ Rm,
xlb ≤ xk ≤ xub, k = 1, . . . , N,
ulb ≤ uk ≤ uub, k = 0, . . . , N − 1

(10)

where J(·) is defined in (2), f(·, ·) is defined in (1).

Assume that the optimal solution of (10) is ū∗. The
associated optimal state is x̄∗. The optimal trajectories
can be represented as

ξ̄ = {ξk,x∗
N |k = 0, · · · , N − 1} , (11)

where

ξk := (x∗
k,u

∗
k), (12)

for k = 0, . . . , N − 1.

2.2 Optimality Condition based Inverse Optimal Control

Conversely from OC, in IOC, it is assumed that the
optimal trajectory ξ̄ is observed, and the problem can
be formulated as recovering the weights and/or terms
in the cost function J . Given a cost function structure
defined in (4), IOC methods commonly assume that the
nonlinear mapping ϕ∗(·, ·) is known and the parameter ω
is unknown. By observing the optimal solution, IOC tries
to identify the parameter ω from the observed optimal so-
lution. As mentioned in (Jin et al., 2021), it is beneficial to
infer objective functions from incomplete trajectories when
sensor failures or occlusion causes loss of measurements;

the computational cost for complete trajectory with high
dimensional complex systems could be high; the capability
of learning objective function with incomplete observa-
tion might address other problems such as learning time-
varying objective functions. An incomplete observation of
the motion can be denoted as

ξs:s+ℓ := {ξk : s ≤ k ≤ s+ ℓ} ⊂ ξ̄, (13)

for some s ∈ [0, N − 1] satisfying s+ ℓ ∈ [s,N − 1]. Here ξ̄
and ξk are defined in (11) and (12) respectively. Thus, the
proposed algorithm objective is to estimate the ω and the
active inequality constraints xlb,xub,ulb and uub coming
from (8) and (9) respectively, given a measured incomplete
optimal trajectory ξs:s+ℓ.

Next we will revisit how to use ξs:s+ℓ for some s + ℓ ∈
[0, N−1] to estimate the weight ω without any constraints
by using the recovery matrix proposed in (Jin et al., 2021).
A new cost function from the given interval [s, s + ℓ]
is introduced, considering the dynamics as the equality
constraint by using the standard Lagrange multiplier:

JL (xs:s+ℓ,us:s+ℓ−1,λs:s+ℓ)

=
s+ℓ−1∑
k=s

(
ωTϕ(xk,uk) + λk(f(xk,uk)− xk+1)

)
, (14)

with the optimal parameters to minimize the cost function
JL defined in (14), i.e.,

argmin
us:s+ℓ−1,
λs:s+ℓ

JL (xs:s+ℓ,us:s+ℓ−1,λs:s+ℓ) . (15)

With the optimal solutions ξs:s+ℓ (no additional equality
constraints and inequality constraints) and the known
feature set, we have the following by applying Pontryagin’s
maximum principle (Doya et al., 2006),

λk−1 −
∂f ′

∂x∗
k

λk − ∂ϕ′

∂x∗
k

ω = 0, s ≤ k ≤ s+ ℓ (16)

∂f ′

∂u∗
k

λk +
∂ϕ′

∂u∗
k

ω = 0, s ≤ k ≤ s+ ℓ (17)

where λk−1 and λk is the costate for the OC system. The
optimality conditions described in (16) and (17) were the
basis of the recovery matrix in (Jin et al., 2021, Definition
1).

3. PROPOSED APPROACH

In this paper, we propose to solve the IOC problem as
an optimization problem and incorporate the inequality
constraints into the problem formulation using the La-
grange method. This contrasts the common approaches in
the literature that formulate the IOC problem as Bi-level
optimization problem (Clever and Mombaur, 2016; Reiter
et al., 2022) or mixed-integer linear programming (Chou
et al., 2020), and closes the gap in optimality condition-
based approaches with the presence of unknown state and
control box constraints (Jin et al., 2021; Molloy et al.,
2020). The proposed method maintains the computational
benefit offered by exploiting the optimality conditions. The
proposed algorithm works in the finite-time horizon setting
and deals with incomplete observations. The minimum
window size needed for successful recovery is proposed.
Additionally, the value of inequality constraint multipliers

indicates the presence of active constraints. The overall
algorithm is summarised in Algorithm 1.

Firstly, we modify (14) to incorporate state and control
constraints (8) and (9) leading to the following new cost
function,

ĴL (xs:s+ℓ,us:s+ℓ−1,λs:s+ℓ,νsub,k,νslb,k,νcub,k,νclb,k)

=
s+ℓ−1∑
k=s

(ωTϕ(xk,uk) + λk(f(xk,uk)− xk+1)

+νsub,k(xub − (ϵsub,k + xk))

+νslb,k(xk − (ϵslb,k + xlb))

+νcub,k(uub − (ϵcub,k + uk))

+νclb,k(uk − (ϵclb,k + ulb))),
(18)

where νsub,k, νslb,k, νcub,k, and νclb,k are the costates
associated with upper and lower bounds of state and
control variables at each time step respectively, and
ϵsub,k,ϵslb,k,ϵcub,k,and ϵclb,k are slack variables of the in-
equality constraints. The slack variables are postive and
costates are 0 when the inequality constraint is inactive.
Then, (18) can be simplified to (14). However, slack vari-
ables are 0 and the costates are positive when the inequal-
ity constraints are active.

Applying Pontryagin’s maximum principle with the ad-
ditional multipliers νsub,s:s+ℓ, νslb,s:s+ℓ, νcub,s:s+ℓ, and
νclb,s:s+ℓ associated with inequality constraints, (16) and
(17) become

λk−1 −
∂f ′

∂x∗
k

λk − ∂ϕ′

∂x∗
k

ω + νsub,k − νslb,k = 0,

s ≤ k ≤ s+ ℓ, (19)

∂f ′

∂u∗
k

λk +
∂ϕ′

∂u∗
k

ω − νcub,k + νclb,k = 0,

s ≤ k ≤ s+ ℓ, (20)

Considering (19) and (20), together with the properties
of the costates, i.e. νsub,s:s+ℓ and νslb,s:s+ℓ can not be
non-zero at the same time, we propose that νsub,s:s+ℓ

and νslb,s:s+ℓ can be summed together in νsb,k. Similarly,
νcub,s:s+ℓ and νclb,s:s+ℓ could be lumped together as νcb,k,
which lead to the following expressions

λk−1 −
∂f ′

∂x∗
k

λk − ∂ϕ′

∂x∗
k

ω + νsb,k = 0, s ≤ k ≤ s+ ℓ, (21)

∂f ′

∂u∗
k

λk +
∂ϕ′

∂u∗
k

ω + νcb,k = 0, s ≤ k ≤ s+ ℓ. (22)

Prior works (Jin et al., 2021; Molloy et al., 2020) elim-
inated the costates λk associated with system dynamics
by rearranging and substituting (16) into (17). However,
the costates νsb,k and νcb,k associated with the inequal-
ity constraints cannot be eliminated because these are
variables we wish to recover to identify the presence of
constraints. As a result, there are more unknown variables
than the number of equations in (21), leading to non-
unique solutions. Therefore, we choose to minimise the
residual error instead of solving for the necessary KKT
condition equations explicitly:
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λk−1 −
∂f ′

∂x∗
k

λk − ∂ϕ′

∂x∗
k

ω + νsb,k = εx,k, s ≤ k ≤ s+ ℓ,

(23)

∂f ′

∂u∗
k

λk +
∂ϕ′

∂u∗
k

ω + νcb,k = εu,k, s ≤ k ≤ s+ ℓ,

(24)

where εx,k, and εu,k are the residual error calculated
at each time step. Similar approaches were presented in
(Chou et al., 2020; Englert et al., 2017; Menner et al.,
2021) to deal with noisy input data or sub-optimal demon-
strations. Here, we use the residual error to enable the
identification of constraints. The IOC problem is then
formulated as an optimisation problem

argmin
ω̂,λ̂s:s+ℓ,
νsb,s:s+ℓ,
νcb,s:s+ℓ

s+ℓ
k=s

ε2x,k + ε2u,k (25)

s.t.

p
i=1

ω̂i = 1,

0 ≤ ω̂i ≤ 1,

νsb,s:s+ℓ ∈ Rn,

νcb,s:s+ℓ ∈ Rm.

Next we discuss how to identify the presence of active con-
straints and how to dynamically chose a suitable window
size.

3.1 Constraint Identification

In theory, the inequality constraint multipliers can take
different values depending on whether the inequality
bound was hit as

νsb,k



= 0, xlb < xk < xub

> 0, xk = xub

< 0, xk = xlb.

(26)

The same rules apply to νcb,k. In practice, when there
are no limitations on the values of νsb,s:s+ℓ and νcb,s:s+ℓ,
and the only objective in (25) is to minimise the sum
of residual errors, the additional optimizable variables
means the solution is non-unique. Therefore, the following
limitations were applied to νsb,s:s+ℓ and νcb,s:s+ℓ utilising
information from the observed trajectory segment:

νsb,s:s+ℓ ∈




[0, 0], if x̂lb < xk < x̂ub

(0, inf), if xk = x̂ub & x̂ub = x̂lb > xn

(− inf, 0), if xk = x̂lb & x̂ub = x̂lb < xn,
(27)

where xn is the neutral position, x̂ub and x̂lb are the
hypothesized upper and lower bound of xk. If xk is not
constant during the analysis segment, x̂ub and x̂lb can
be extracted directly as the extrema. However, if xk is
constrained for the entire duration of the analysis window,
it may not be known whether the constraint is the upper
or lower bound. In this case, we utilise a prior, such
as knowledge of the neutral position xn, to assign the
constraint to either be upper or lower bound. This prior
may be known (e.g., in the case of human motion) or
obtained from earlier analysis windows.

With the modified multiplier range, we check the value
of νsb,s:s+ℓ and νcb,s:s+ℓ to identify whether there is
any constraint activated during the observed trajectory
segment. For instance, if νsb,k, k ∈ (s, s + ℓ) is positive,
then the x̂ub observed is the upper bound of x and an
active constraint is detected.

3.2 Dynamic Window Size and Stopping Criteria

The only question left is how to choose a suitable observa-
tion length ℓ. Increasing observation length improves the
accuracy of cost function estimation, but also increases
computational cost and delay. A fixed window size was
used and no guidance on the choice of the window size
was provided in (Menner et al., 2021). In (Molloy et al.,
2020) and (Jin et al., 2021), rank condition was used to
select window size. However, (Jin et al., 2021) could not
handle any inequality constraints, while (Molloy et al.,
2020) only deals with control constraints. We propose to

use the residual error, i.e. when
s+ℓ

k=s ε
2
x,k+ε2u,k is greater

than the desired residual error level εd, to determine the
minimum suitable window size. As shown in Algorithm
1, the observation length ℓ is increased until the residual
error sum is smaller than εd (Successful Recovery, SR) or
the end of the trajectories are reached (EoT).

Algorithm 1 IOC with inequality constraint

Input: Trajectory segment ξs:s+κ and feature set ϕ
Output: Feature weights ω and active inequality con-

straint bound values
Let ℓ = ℓ0 and εs = ε0
while εs > εd & ℓ < κ do

extract x̂ub, x̂lb, ûub, ûlb from ξs:s+ℓ

compute new residual error sum

εs =
s+ℓ

k=s ε
2
x,k + ε2u,k


/ℓ

ℓ = ℓ+ 1
end while
determine active inequality constraints using values of
νcb and νcb as in Section 3.1

4. SIMULATION SETUP

4.1 Multi-rigid-body Dynamics

The dynamic equations of a rigid-body system describe
the relationship between the inputs to the system, forces
and torques, and the state of the system such as position,
velocity and acceleration. Assuming all dynamic parame-
ters of the system are known, a closed-form relationship
can be obtained through the Lagrange approach and has
the form:

M(q)q̈ +C(q, q̇) +G(q) = τ , (28)

where q ∈ Rm, q̇ ∈ Rm and q̈ ∈ Rm are the vectors of
generalized joint coordinates, velocities and accelerations
respectively, M ∈ Rm×m is the joint-space inertia matrix,
C ∈ Rm×m is the Coriolis and centripetal coupling matrix,
G ∈ Rm is the gravity terms and τ ∈ Rm is the
torque vector. The additional torque components caused
by friction, backlash and actuators are assumed to be
small and neglected, thus not included in (28). Note here,
n = 2×m for a fully actuated multi-rigid-body dynamics
model.
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λk−1 −
∂f ′

∂x∗
k

λk − ∂ϕ′

∂x∗
k

ω + νsb,k = εx,k, s ≤ k ≤ s+ ℓ,

(23)

∂f ′

∂u∗
k

λk +
∂ϕ′

∂u∗
k

ω + νcb,k = εu,k, s ≤ k ≤ s+ ℓ,

(24)

where εx,k, and εu,k are the residual error calculated
at each time step. Similar approaches were presented in
(Chou et al., 2020; Englert et al., 2017; Menner et al.,
2021) to deal with noisy input data or sub-optimal demon-
strations. Here, we use the residual error to enable the
identification of constraints. The IOC problem is then
formulated as an optimisation problem

argmin
ω̂,λ̂s:s+ℓ,
νsb,s:s+ℓ,
νcb,s:s+ℓ

s+ℓ
k=s

ε2x,k + ε2u,k (25)

s.t.

p
i=1

ω̂i = 1,

0 ≤ ω̂i ≤ 1,

νsb,s:s+ℓ ∈ Rn,

νcb,s:s+ℓ ∈ Rm.

Next we discuss how to identify the presence of active con-
straints and how to dynamically chose a suitable window
size.

3.1 Constraint Identification

In theory, the inequality constraint multipliers can take
different values depending on whether the inequality
bound was hit as

νsb,k



= 0, xlb < xk < xub

> 0, xk = xub

< 0, xk = xlb.

(26)

The same rules apply to νcb,k. In practice, when there
are no limitations on the values of νsb,s:s+ℓ and νcb,s:s+ℓ,
and the only objective in (25) is to minimise the sum
of residual errors, the additional optimizable variables
means the solution is non-unique. Therefore, the following
limitations were applied to νsb,s:s+ℓ and νcb,s:s+ℓ utilising
information from the observed trajectory segment:

νsb,s:s+ℓ ∈




[0, 0], if x̂lb < xk < x̂ub

(0, inf), if xk = x̂ub & x̂ub = x̂lb > xn

(− inf, 0), if xk = x̂lb & x̂ub = x̂lb < xn,
(27)

where xn is the neutral position, x̂ub and x̂lb are the
hypothesized upper and lower bound of xk. If xk is not
constant during the analysis segment, x̂ub and x̂lb can
be extracted directly as the extrema. However, if xk is
constrained for the entire duration of the analysis window,
it may not be known whether the constraint is the upper
or lower bound. In this case, we utilise a prior, such
as knowledge of the neutral position xn, to assign the
constraint to either be upper or lower bound. This prior
may be known (e.g., in the case of human motion) or
obtained from earlier analysis windows.

With the modified multiplier range, we check the value
of νsb,s:s+ℓ and νcb,s:s+ℓ to identify whether there is
any constraint activated during the observed trajectory
segment. For instance, if νsb,k, k ∈ (s, s + ℓ) is positive,
then the x̂ub observed is the upper bound of x and an
active constraint is detected.

3.2 Dynamic Window Size and Stopping Criteria

The only question left is how to choose a suitable observa-
tion length ℓ. Increasing observation length improves the
accuracy of cost function estimation, but also increases
computational cost and delay. A fixed window size was
used and no guidance on the choice of the window size
was provided in (Menner et al., 2021). In (Molloy et al.,
2020) and (Jin et al., 2021), rank condition was used to
select window size. However, (Jin et al., 2021) could not
handle any inequality constraints, while (Molloy et al.,
2020) only deals with control constraints. We propose to

use the residual error, i.e. when
s+ℓ

k=s ε
2
x,k+ε2u,k is greater

than the desired residual error level εd, to determine the
minimum suitable window size. As shown in Algorithm
1, the observation length ℓ is increased until the residual
error sum is smaller than εd (Successful Recovery, SR) or
the end of the trajectories are reached (EoT).

Algorithm 1 IOC with inequality constraint

Input: Trajectory segment ξs:s+κ and feature set ϕ
Output: Feature weights ω and active inequality con-

straint bound values
Let ℓ = ℓ0 and εs = ε0
while εs > εd & ℓ < κ do

extract x̂ub, x̂lb, ûub, ûlb from ξs:s+ℓ

compute new residual error sum

εs =
s+ℓ

k=s ε
2
x,k + ε2u,k


/ℓ

ℓ = ℓ+ 1
end while
determine active inequality constraints using values of
νcb and νcb as in Section 3.1

4. SIMULATION SETUP

4.1 Multi-rigid-body Dynamics

The dynamic equations of a rigid-body system describe
the relationship between the inputs to the system, forces
and torques, and the state of the system such as position,
velocity and acceleration. Assuming all dynamic parame-
ters of the system are known, a closed-form relationship
can be obtained through the Lagrange approach and has
the form:

M(q)q̈ +C(q, q̇) +G(q) = τ , (28)

where q ∈ Rm, q̇ ∈ Rm and q̈ ∈ Rm are the vectors of
generalized joint coordinates, velocities and accelerations
respectively, M ∈ Rm×m is the joint-space inertia matrix,
C ∈ Rm×m is the Coriolis and centripetal coupling matrix,
G ∈ Rm is the gravity terms and τ ∈ Rm is the
torque vector. The additional torque components caused
by friction, backlash and actuators are assumed to be
small and neglected, thus not included in (28). Note here,
n = 2×m for a fully actuated multi-rigid-body dynamics
model.

The dynamic equation forms the basis of the state transi-
tion equation f in (1) and can be derived as

f(xk,uk) = xk+1 =

[
qk+1

q̇k+1

]
=

[
qk + q̇k∆t
q̇k + q̈k∆t

]
, (29)

where

xk =

[
qk
q̇k

]
, (30)

uk = τk, (31)

q̈k = M(qk)
−1(uk −C(qk, q̇k)−G(qk)), (32)

and ∆t is the time difference between each time step of
the discrete system.

Fig. 1. The schematic of the two-link serial arm model in
the simulation (Spong and Vidyasagar, 2004, p.209),
the parameters are summarised in Table 1.

Table 1. Parameters of two-link arm model.

m1 m2 l1 l2 r1 r2 I1 I2
1 1 1 1 0.5 0.5 0.5 0.5

The units of mass, length and moment of inertia
parameters are kg, m, and kg m2 respectively.

A two-link serial arm model (Spong and Vidyasagar, 2004,
p.209) was used to generate simulated optimal trajectories.
The schematic of the model is shown in Fig. 1. The
state and control variables of the system are defined as
x = [q1, q2, q̇1, q̇2]

′ and u = [τ1, τ2]
′. Note that, [·]′ is the

transpose of a vector or matrix.

4.2 Trajectory Generation

The goal of the OC problem is to generate the motion
trajectories which get the serial arm from initial state
x0 = [π/2,−π/2, 0, 0]′ to the final position xf = [0, 0, 0, 0]′

in T = 1 seconds, and the motion is discretised with
∆t = 0.01. The cost (objective) function takes the form
described in (4), with the features set ϕ = [τ21 , τ

2
2 ]

′ and
the corresponding weights [0.3, 0.7]′. The box inequality
constraints of states and control variables were applied to
generate optimal trajectories with constrained behaviours.

Case 1 No state or control constraints were applied.

Case 2 The state variable q̇2 is bounded within [−2.5, 2.5]
radian per second.

Case 3 The state variable q̇1 is bounded within [−2, 2]
radian per second in addition to constraints in Case 2.

0 20 40 60 80 100
-2

0

2

0 20 40 60 80 100

Time step

-50

0

50

100

(a)

(b)

Fig. 2. Optimal solution using the two link model, with
state constraints −2 ≤ q̇1 ≤ 2 and −2.5 ≤ q̇2 ≤ 2.5.

The optimal trajectories of Case 3 are shown in Fig. 2.

Three algorithms were implemented to analyse the optimal
trajectories generated. Namely, RM, the recovery matrix
method (Jin et al., 2021), FW, the proposed algorithm
with fixed window size w (similar to the approach pro-
posed in (Menner et al., 2021)), and DW, the proposed
algorithm with dynamic window size as shown in Algo-
rithm 1. The optimal trajectories and convex optimisation
problem formulated in FW and DW were all solved using
CasADi (Andersson et al., 2019).

5. RESULTS

The IOC approach presented in Section 3 was used to
recover the objective function weights and constraints
assuming the system dynamics and feature set are known.
The initial observation length ℓ0 was set to 10, initial
residual error sum ε0 was set to 1, and desired residual
error level εd was set to 1e-8. Algorithm 1 was applied
repetitively to the motion segments ξs:s+κ where s takes
increasing values from 0 to 90, s is the starting time step
of the observation and κ = 100 − s indicates the end of
the trajectory has been reached as T = 1s and ∆t =
0.01s. The estimated weights of ω̂ of the corresponding

feature terms ϕ̂ are shown in Fig. 3. The average of the
estimated weights of all feature terms in ω̂ with εs < εd
are summarised in Table 2. The comparison with FW
with time steps 5 and 20 are shown in Fig. 4 and Fig. 5.
The average weights recovered from all algorithms are
summarised in Table 2.

In all three cases, the recovery matrix (RM) based IOC
algorithm (Jin et al., 2021) can estimate the feature
weights when no inequality constraint is active within
the observed trajectory segment. This is expected be-
cause when inequality constraints are not activated,
νsub,k,νslb,k,νcub,k,νclb,k are 0 and the optimality con-
ditions can be simplified to (16) and (17). However, the
RM method (Jin et al., 2021) cannot recover the weights
correctly when inequality constraints are active. The num-
ber of valid estimates is reduced from 95 for Case 1 to 68
and 47 for Cases 2 and 3 respectively as seen in Table 2.
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Table 2. Recovered feature weights

τ21 τ21 RMSE NE

Ground Truth 0.3 0.7

DW 0.3000 0.7000 4.8453e-09 90(90)
FW5 0.3001 0.6999 5.7978e-04 95
FW10 0.3000 0.7000 8.1602e-09 90

Case 1 FW15 0.3000 0.7000 6.5193e-07 85
FW20 0.3000 0.7000 9.3064e-07 80
FW25 0.3000 0.7000 4.5925e-08 75
RM 0.3000 0.7000 1.1782e-09 95(95)

DW 0.3000 0.7000 1.7013e-07 90(90)
FW5 0.2976 0.7024 0.0267 95
FW10 0.2996 0.7004 0.0040 90

Case 2 FW15 0.2999 0.7001 0.0014 85
FW20 0.2999 0.7001 6.5495e-04 80
FW25 0.3000 0.7000 3.8225e-04 75
RM 0.3000 0.7000 1.4939e-08 68(95)

DW 0.3000 0.7000 1.2236e-05 90(90)
FW5 0.3024 0.6986 0.0659 95
FW10 0.2993 0.7007 0.0051 90

Case 3 FW15 0.2996 0.7004 0.0037 85
FW20 0.2996 0.7004 0.0027 80
FW25 0.2996 0.7004 0.0027 75
RM 0.3000 0.7000 2.6082e-09 47(95)

DW: proposed method using dynamic window size;
FWw: proposed method with fixed window size w;
RM: recovery matrix method
RMSEs were computed between the recovered weights and the

ground truth of feature τ21 . This is sufficient because
the objective function contains only two feature terms.

NE: the number of valid estimates returned. The number in
the brackets is the total number of estimates made.

The proposed method with fixed window size provides
better estimates for trajectory segments with active con-
straints. The distinguishable change in νsb,k can be used
as the indication of an active constraint, as shown in
Fig. 4(b), and Fig. 5(b). Note here that the absolute values
of νsb,k and νcb,k were plotted because the vertical axes of
Fig. 3(b), Fig. 4(b) and Fig. 5(b) are in logarithmic scale. It
is clear that the accuracy of recovered weights is correlated
to residual error and that increasing the window size leads
to lower residual errors and a lower root mean squared
error (RMSE). However, this leads to fewer estimates and
has a higher computational cost. For instance, 95 estimates
were returned with window size 5 but only 75 for window
size 25.

The proposed method with dynamic window size gener-
ates accurate estimates of feature weights for trajectory
segments with or without active constraints. The proposed
approach terminates when the stopping criteria εs < εd is
met or the end of the trajectory has been reached. The
value of εd governs the trade off between accuracy and
computational cost and potential loss of valid estimations,
as the lower εd leads to larger window size. εd was set to
1e-8 for the results shown in Table 2 and Fig. 3. The selec-
tion of εd improves accuracy comparing to fixed window
method without large increase of window size from the
default 10 as shown in Fig. 3 (d). The proposed method
also produces valid estimates for all segments with active
constraints compared to the recovery matrix method. It
is worthwhile to note that the estimate results generated
when the end of the trajectory is reached would be dis-
carded in Fig. 3(a). Those gaps correspond to the EoT

flags in Fig. 3(d), where the accuracy criteria εs < εd was
not met.
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Fig. 3. Recovered feature weights of Case 3 using proposed
IOC method with dynamic window size.
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Fig. 4. Recovered feature weights of Case 3 using proposed
IOC method with fixed window size 5.

There are some limitations to the proposed algorithm.
Firstly, the box constraint assumption permits a time-
decoupled cost function and easy access to the constraint
bounds. The proposed approach cannot tackle task space
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There are some limitations to the proposed algorithm.
Firstly, the box constraint assumption permits a time-
decoupled cost function and easy access to the constraint
bounds. The proposed approach cannot tackle task space
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Fig. 5. Recovered feature weights of Case 3 using proposed
IOC method with fixed window size 20.

obstacles which may introduce non-linear constraints and
time dependent cost terms as studied in (Chou et al.,
2020). Secondly, the performance of the proposed algo-
rithm can be hindered by noise, as with other optimality
condition based IOC algorithms (Jin et al., 2021; Molloy
et al., 2020). Although the proposed algorithm can handle
small magnitudes of added Gaussian noise by increasing
observation window size, filtering noise prior to passing
the trajectory segment to the algorithm may yield less
computational cost. Lastly, the proposed algorithm does
not guarantee a unique solution of the cost function and
constraints. The dimension of the problem grows linearly
with observation length and model complexity, which
could result in many local minima that can satisfy the
optimality conditions.

6. CONCLUSIONS

In this paper, we developed an inverse optimal con-
trol(IOC) algorithm to handle constraints on both state
and control variables. Box constraints were incorporated
into the IOC problem formulation using the Lagrange
method. An optimisation problem was formulated accord-
ing to optimality conditions of optimal control problems.
Normalised residual error was used to automatically select
a suitable window size of the incomplete observation. The
proposed approach can efficiently recover the objective
function and active box constraints from partial trajec-
tories, by formulating a convex optimisation problem. In
addition, the adaptive window size can help to balance the
trade-off between accuracy and temporal resolution. Our
future work will extend the application of the proposed
algorithm to analyse trajectories observed in practical
settings, which will have more complex dynamical model
and suffer from noise.
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