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Abstract— This work extends the existing fast extremum
seeking control (ESC) for a class of Hammerstein systems
to a class of generalized Hammerstein systems, in which the
nonlinear affine dynamic system is connected directly after a
given cost function. With the relative degree information of
the unknown nonlinear dynamics, a new output is generated.
The mapping between the new output and the input has two
parts. The first part is proportional to the cost function and the
second part is related to the state. By inserting a fast dither
signal, the proposed ESC can seek the optimum of this cost
function without time-scale separation. Our main results show
that with proper selection of tuning parameters, this scheme
can achieve arbitrarily fast semi-global practical asymptotic
(SPA) convergence. Simulation results support the theoretical
findings.

I. INTRODUCTION

Extremum seeking control (ESC) has been developed
to seek the optimum of the mapping between the input
and steady-state output of a dynamical system without the
knowledge of the system. Over almost one hundred years of
developments [5, 2, 13, 19, 12], ES algorithms have been
used in various applications such as robotics [20], magnetic
levitation systems [4], renewable energy [9], flight formation
[3], and so on.

In principle, ESC seeks an optimal value for an unknown
cost function. In particular, perturbation-based ESC utilizes
dither signals to perturb the input to estimate the gradient,
leading to the convergence. When a dynamic system is
considered, the singular perturbation technique [11, Chapter
11] has been widely used to obtain the input-to-steady-state-
output mapping. By tuning the ESC loop sufficiently slower
than the dynamics, in a slower time-scale, the dynamics
will die out quickly so that the input-to-steady-state-output
mapping will be dominating. Hence, the convergence of the
ESC has to be tuned slow compared with the dynamics of
the system, leading to possibly slow convergence when the
system dynamics are slow.
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Many algorithms have been proposed to attempt to re-
move the above mentioned time-scale separation so that fast
convergence can be achieved. Moase et.al proposed the fast
ESC for a class of Hammerstein systems [15], which have
a nonlinear cost function followed by a linear time-invariant
(LTI) dynamic system. This idea has been extended to a class
of Wiener-Hammerstein systems [14] where two LTI models
are connected via a nonlinear mapping, and [17] provided the
discrete version of [14]. Furthermore, proportional-integral
ESC is another type of ESC scheme that remove the time-
scale separation for a class of Wiener-type systems [7, 8].

As the dynamics considered in [15] are only LTI, this
limits the applicability of the fast ESC. This work extends
the results obtained in [15] to a more general setting when the
nonlinear cost function is followed by a nonlinear dynamics.
Such a system is called the generalized Hammerstein system.

Similar to [15], the relative degree information of the
nonlinear dynamics in the generalized Hammerstein model
is used to generate a new output. The relationship between
this new output signal and the input signal is dominated by
a static mapping, perturbed by unknown system dynamics.
The static mapping is related to the cost function and has
the same optimal point. By injecting high frequency dither
signals, the system dynamics can be treated as slowly time-
varying variables. Consequently, the effect of the unknown
perturbation from the system can be ignored by using av-
eraging technique, making the proposed fast ESC working.
Our first result (Theorem 1) shows how the fast ESC can
seek the optimum of a cost function without time-scale
separation. Moreover, this proposed fast ESC has an extra
design freedom to achieve any preferred convergence speed.
Corollary 1 extends Theorem 1 to the case when the cost
function has multiple inputs.

This paper is organized as follows. Section 2 presents
preliminaries and problem formulation. Section 3 shows the
main results. An extension to multi-variable case is covered
in Section 4. Simulation examples validate the obtained
results in Section 5.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

The notation R represents the set of all real numbers.
For any vector x ∈ Rn, |x| represents its Euclidean norm,



which is defined as |x| ≜
√
x⊺x, where (·)⊺ represents the

transpose. A continuous function α : R≥0 → R≥0 is said to
be of class K if it is zero at zero and strictly increasing. And
it is said to belong yo class K∞ if α(r) → ∞ as r → ∞.
A continuous function σ : R≥0 → R≥0 is said to be of
class L if it is converging to zero as its argument grows
unbounded. A continuous function β : R≥0 ×R≥0 → R≥0

is said to belong to class KL if, for each fixed s, the mapping
β(r, s) belongs to class K with respect to r and for each
fixed r, the mapping β(r, s) is decreasing with respect to s

and β(r, s) → 0 as s → ∞ [11]. The gradient and Hessian
matrix of a sufficiently smooth function F : Rm → R are
denoted by ∇F and ∇2F respectively. A function δ1(ε) =

O(δ2(ε)) if there exist positive constants k and c such that
|δ1(ε)| ≤ k |δ2(ε)|, ∀ |ε| < c [11].

B. Problem formulation

We first start from a class of unknown single-input-single-
output (SISO) nonlinear dynamical systems:

ẋ = f(x) + g(x)u,

y = h(x), (1)

where u ∈ R, x ∈ Rn, y ∈ R. The unknown nonlinear
mappings f : Rn → Rn, g : Rn → Rn, h : Rn → R are
continuously differentiable. The Lie derivative of h(·) along
f(·) is denoted as Lfh(x) =

∂h(x)
∂x f(x). The Lie derivative

of h(·) along g(·) is denoted as Lgh(x) =
∂h(x)
∂x g(x).

The nonlinear system (1) satisfies the following assump-
tions. The first assumption assumes the knowledge of the
relative degree of the system (1) though nonlinear mappings
f(·), g(·), and h(·) are unknown. This assumption plays a
key role in achieving fast ESC.

Assumption 1: The nonlinear system (1) has a global
relative degree1 1, which indicates that Lgh(x) ̸= 0 for any
x ∈ Rn. □
Without losing generosity, we further assume Lgh(x) > 0

for any x ∈ Rn. It is noted that the similar design principle
can be used for nonlinear systems (1) with an arbitrary
relative degree.

The second assumption assumes the parameterized stabi-
lization for system (1), which can be found in [19, Assump-
tions 1-2].

Assumption 2: There exists a smooth function l : R →
Rn such that

f(x) + g(x)u = 0 if and only if x = l(u). (2)

Moreover, for each u ∈ R, the equilibrium x = l(u) of
system (1) is globally asymptotically stable, uniformly in u.
□

1The definition of relative degree and global relative degree can be found
in [10, Chapter 4].

Next we assume that there exists a unknown cost function
F (·) : R → R, which satisfies the following assumption.

Assumption 3: There exists a unique θ∗ ∈ R that max-
imises F (·), and the following conditions hold:

dF (θ)

dθ

∣∣∣
θ=θ∗

= 0,
d2F (θ)

dθ2

∣∣∣
θ=θ∗

< 0

dF (σ + θ∗)

dθ
σ < −αq(|σ|), ∀σ ∈ R, (3)

where αq(·) ∈ K∞. □
Assumption 3 has been widely used in ESC (see [19] for
example). By connecting the cost function F (·) and the
nonlinear system (1) in series, it leads to the generalized
Hammerstein model

u = F (θ),

ẋ = f(x) + g(x)u,

y = h(x). (4)

If the dynamics in the system (4) are LTI, i.e., f(x) =

Ax, g(x) = B, and h(x) = Cx for matrices (A,B,C)

with appropriate dimensions, the dynamic system (4) is a
Hammerstein system as discussed in [15].

III. FAST ESC FOR A SISO SYSTEM

The diagram of the fast ESC for the system (4) is shown
in Fig.1. This scheme consists two parts: a non-causal
differentiator and a simplest perturbation-based ESC used in
[19] with a simple modification by using b = 1

a so that the
convergence speed of ESC does not depend on the choice of
a.
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Fig. 1. Block diagram of the fast ESC for the SISO generalized
Hammerstein model

Remark 1: The proposed fast ESC shares the similar
design idea of the fast ESC proposed for the Hammerstein
model presented in [15] with simpler structure and proof.
It is highlighted that compared with LTI systems in [15],
nonlinear dynamics considered in this work are more general.

Remark 2: It is noted that a differentiator is used in this
diagram for the simplicity of presentation. It is non-causal
and will magnify high frequency noises. In engineering
applications, filtered differentiators have been widely used,



i.e., s
τs+1 can replace s for some τ > 0 (similar techniques

are used in [15]). How to choose the cut-off frequency 1
τ is

application-driven. In our simulations, we will show how this
cut-off frequency will affect the performance of the proposed
fast ESC.

In this diagram, the dither signal takes the form as d(ωt) =
sin(ωt). The close-loop system in Fig.1 becomes

ẋ = f(x) + g(x)F (θ̂ + a sin(ωt)),x(t0) ∈ Rn,

y = h(x),

z = ẏ,

˙̂
θ =

K

a
z sin(ωt), θ̂(t0) ∈ R, (5)

where (a, ω,K) ∈ R3
>0 are the tuning parameters. a is small,

while K and ω are large parameters. Parameters a,K, ω

play important roles in achieving certain necessary time-
scale separation, so that fast convergence of the ESC can
be achieved.

Let x∗ = l(F (θ∗)), where l is from Assumption 2 and
θ∗ is from Assumption 3, then we can introduce a new
coordinate: x̃ = x − x∗, θ̃ = θ̂ − θ∗. The system (5) in
the new coordinate takes the following form:

˙̃x =f(x̃+ x∗) + g(x̃+ x∗)F
(
θ̃ + θ∗ + a sin(ωt)

)
,

˙̃
θ =

K

a

(
Lfh+ LghF (θ̃ + θ∗ + a sin(ωt)

)
sin(ωt), (6)

for all x̃(t0) ∈ Rn, θ̃(t0) ∈ R, and t ≥ t0 ≥ 0.
Let ε = K

aω . The convergence properties of the fast ESC
proposed in Fig.1 are summarized Theorem 1.

Theorem 1: Suppose the Assumptions 1− 3 hold for the
system (6). Given each strictly positive triplet (∆, ν,K),
there exist β1, β2 ∈ KL and a positive constant a∗ > 0

such that for any a ∈ (0, a∗), there exists ε∗ > 0 such that
for any ε ∈ (0, ε∗), the solutions of the system (6) satisfy:

|x̃(t)| ≤ β1 (|x̃(t0)| , (t− t0)) + ν,∣∣∣θ̃(t)∣∣∣ ≤ β2

(∣∣∣θ̃(t0)∣∣∣ ,K(t− t0)
)
+ ν, (7)

for all t ≥ t0 ≥ 0 and
∣∣∣∣[ x̃(t0)

θ̃(t0)

]∣∣∣∣ ≤ ∆.

The proof of Theorem 1 is presented in Appendix.
Remark 3: Theorem 1 shows the system (6) can achieve

semi-global practical asymptotic (SPA) stability. This means
that the trajectories x̃(t) and θ̃(t) can converge to an ar-
bitrarily small neighborhood of the origin (a ball of radius
ν centered at the origin) from any given initial condition
starting from a compact set ∆ by tuning parameters a

sufficiently small and ε sufficiently small (dither frequency
ω sufficiently large). Such SPA property was shown in
[19, Theorem 1]. However the classic ESC in [19] uses
slow dither signals to guarantee the necessary time-scale
separation, and the convergence speed has to be slow as it
is proportional to a2δω for small a, δ, and ω. In this work,

the convergence speed of θ̃ is only dependent on the tuning
parameter K (see (7)), which is a predefined parameter. By
increasing the parameter K, the convergence speed of the
proposed fast ESC can increase.

Remark 4: It is highlighted that in the proof, only the
averaging techniques are applied without using singular
perturbation technique. This indicates that there is no need
to separate the time-scale between the nonlinear dynamics
(1) and the updating law (θ̂-dynamics in (6)), resulting to a
fast convergence speed. Details can be found in the proof of
Theorem 1.

IV. EXTENSION TO COST FUNCTION WITH MULTIPLE

INPUTS

This section extends the fast ESC proposed in Fig.1 to a
more general case: a multi-input cost function F (·) : Rm →
R, which satisfies the following assumption:

Assumption 4: There exists a unique θ∗ ∈ Rm that
maximises F (·), and the following holds:

∇F (θ∗) = 0,∇2F (θ∗) < 0,

∇FT (σ + θ∗)σ < −αQ(|σ|),∀σ ∈ Rm, (8)

where αQ(·) ∈ K∞. □
Assumption 4 is an extension of Assumption 3 to a

multiple input case. This leads to the following diagram
shown in Fig.2.
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Fig. 2. Block diagram of the Fast ES algorithm for the MISO nonlinear
Hammerstein model

The dynamics in Fig.2:

u = F (θ),

ẋ = f(x) + g(x)u,

y = h(x), (9)

where x ∈ Rn, u ∈ R, θ = [θ1 . . . θm]T ∈ Rm and y ∈ R.
This structure is similar to a multivariable ESC setting as
discussed in [6], requiring a vector dither signal to be rich



enough to learn unknown optimal vector θ∗. The following
condition is used to generate the needed PE condition as
discussed in [6].

Condition 1: The dither signal d(ωt) is selected as

d(ωt) =[d(ωt1) · · · d(ωtm)]T

=[sin(ω1t) · · · sin(ωmt)]T , (10)

where ωi

ωj
is a rational number for any i, j ∈ {1, 2, · · · ,m}.

Also the following inequalities need to be satisfied: ωi ̸= ωj

and ωi + ωj ̸= ωk for distinct i, j, k ∈ {1, 2, · · · ,m}.
For the convenience of notation, it is denoted that ωmin =

min{ω1, · · · , ωm}. Following the similar steps in Section
III, the close-loop system in Fig.2 after the same coordinate
change becomes

˙̃x =f(x̃+ x∗) + g(x̃+ x∗)F (θ̃ + θ∗ + ad(ωt))

˙̃
θ =

K

a
(Lfh+ LghF (θ̃ + θ∗ + ad(ωt))d(ωt), (11)

for all x̃(t0) ∈ Rn, θ̃(t0) ∈ Rm, and t ≥ t0 ≥ 0.
Let ε = K

aωmin
. The following corollary summarizes the

stability properties for the system (11).
Corollary 1: Suppose the Assumptions 1, 3, 4 hold for the

system (11), and the dither signal d(ωt) satisfies Condition
1. Given a positive triplet (∆, ν,K), there exist β1, β2 ∈ KL
and a positive constant a∗ > 0 such that for any a ∈ (0, a∗),
there exists ε∗ > 0 such that any ε ∈ (0, ε∗), the solutions
of the system (11) satisfy:

|x̃(t)| ≤ β1(|x̃(t0)| , t− t0) + ν,∣∣∣θ̃(t)∣∣∣ ≤ β2(
∣∣∣θ̃(t0)∣∣∣ ,K(t− t0)) + ν, (12)

for all t ≥ t0 ≥ 0 and
∣∣∣∣[ x̃(t0)

θ̃(t0)

]∣∣∣∣ ≤ ∆.

The proof of Corollary 1 can directly follow the steps used
in the proof of Theorem 1 (see Appendix) as well as the PE
condition (see Condition 1 and discussions in [1, 6]). Thus
it is omitted due to space limitation.

Remark 5: It is highlighted that the proposed fast ESC
in Fig.1 and Fig.2 approximate the gradient of F (·). This
can be extended to other optimization techniques based
ESC, for example, the Newton-based method in [6], the
accelerated gradient method in [16], and so on. Our future
work will investigate different fast ESC using other off-the-
shelf optimization algorithms.

V. SIMULATION EXAMPLES

This section presents two simulation examples to illustrate
the performance of the fast ESC. The first example demon-
strates the performance of the proposed fast ESC with differ-
ent tuning parameters for a SISO generalized Hammerstein
system, while the second example illustrates how to choose
appropriate dither signals, which satisfy Condition 1, for a
cost function with multiple inputs.

A. A single-input case

The following single-input generalized Hammerstein
model is considered:

u =F (θ)

=

{
e−0.5(θ−1)2 , |θ − 1| ≤ c,

−e−c2(0.5(θ − 1)2 − 0.5c2 − 1), |θ − 1| > c,

ẋ =− x+ u,

y =x− 0.5 arctan(x), (13)

where c is a large positive constant. The initial state of
(13) is chosen as x(0) = −1, and the initial state of the
ESC is θ̂(0) = −1. The cost function F (·) is continuous
differentiable and satisfies Assumption 3 with a unique
optimum θ∗ = 1. It is also verified that Assumption 2 holds
for this system with x∗ = 1. Moreover, it is checked that
0.5 ≤ Lgh = x2+0.5

x2+1 , satisfying Assumption 1. Thus, the
proposed fast ESC scheme in Fig.1 is applicable.

We first check the convergence property of the proposed
fast ESC in Fig.1. It is highlighted that the convergence speed
of θ̂ only depends on the choice of the parameter K, as
stated in Theorem 1. We fix a = 0.1, ε = K

aω = 0.1, and
choose K = 8, 10, 20, 50, 100, 200 respectively. As shown
in Fig.3, a larger K leads to a faster convergence speed for
θ̂, which is consistent with the results in Theorem 1 while
the convergence of x will be slightly improved with larger
K (mainly depends on the dynamics of the system).
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0
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Fig. 3. The trajectories of θ̂ and x by using the proposed fast ESC with
different value of K. The value of K from right to left: 8, 10, 20, 50, 100,
200.

Next we use the classic perturbation-based ESC [19] for
the system (13) for comparison. By selecting a = b = 0.2,
k = 0.2, ω = 0.5 (see [19]), the trajectories of θ̂ and x are
shown in Fig.4. We can see that the classic ESC has slow
convergence speed from Fig.4 due to necessary time-scale
separation.

Last we will discuss how to improve the robustness
with respect to measurement noises. As mentioned in Re-
mark 2, usually the non-causal differentiator is used along
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Fig. 4. The trajectories of θ̂ and x from the classic ESC [19].

with a proper filter. A high frequency disturbance dout =

0.001 sin(1800t) is added to the output of the plant. We
choose a set of parameters a = 0.1, δ = K

aω = 0.1,
and K = 10. Here ω = 1000rad/s. In order to reduce
the influence of this noise to the fast ESC, a simple low-
pass filter: 1

s
1200+1 is connected with the differentiator. Fig.5

shows the trajectory of θ̂ with/without a low-pass filter,
indicating the performance improvement in the presence of
high frequency noises when a low-pass filter is used.
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Fig. 5. The trajectories of θ̂ by using the proposed fast ESC with a low-
pass filter.

B. A multi-input case

Now we consider a generalized Hammerstein model with
multiple inputs:

u =− 0.1(θ1 − 1)2 +−0.2(θ2 − 2)2,

ẋ =− x+ u,

y =x− 0.5 arctan(x). (14)

We choose the initial state of (14) as x(0) = −1, and the
initial state of the ESC is chosen as θ̂1(0) = −1, θ̂2(0) = 0.
The global maximum of the nonlinear mapping in (14) is
θ∗1 = 1, θ∗2 = 2, and the equilibrium of the nonlinear system
x∗ = 1. Assumptions 1− 3 are verified for the system (14).

In the simulation, tuning parameters are selected as: a =

0.1, ε = K
aωmin

= 0.1, K = 20. The frequencies of the
dithers are ω1 = ωmin and ω2 = 1.05ωmin, which satisfies

Condition 1. Fig.6 shows the trajectories of θ̂1, θ̂2 and x.
From Fig.6, we can see that there is no time-scale separation
between input θ̂ and state x, which is consistent results with
respect to Corollary 1.
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Fig. 6. The trajectories of θ̂1, θ̂2 and x for multi-input system (14) by
using the proposed fast ESC

VI. CONCLUSION

This work proposed the fast ESC for a class of generalized
Hammerstein systems. The proposed fast ESC can seek the
optimum (either a scalar or a vector) arbitrarily close from
any compact set in which the initial state stays. This can be
achieved by appropriate tuning of parameters of the proposed
fast ESC with the knowledge of the relative degree of the
nonlinear dynamics. As shown in this work, the convergence
speed of the proposed ESC approach can be significantly
improved compared to classic perturbation-based ESC, in
which time-scale separation between the dynamics and the
updating law is needed.

APPENDIX

Proof of Theorem 1.

Averaging techniques [11, Chapter 10] will be used to
analyze the stability properties of the close-loop system (6).

Let τ = ωt. In the new time “τ”, the system (6) becomes

dx̃

dτ
=
1

ω

(
f(x̃+ x∗) + g(x̃+ x∗)F (θ̃ + θ∗ + a sin(τ))

)
,

dθ̃

dτ
=

K

aω
(Lfh+ LghF (θ̃ + θ∗ + a sin(τ))) sin(τ). (15)

For any given K, by selecting a satisfying 1
ω ≤ K

aω and
0 < a ≪ 1, we can define ε = K

aω such that (15) has
a clear time-scale separation between the fast time-varying
part sin(τ) and slower dynamics in both x̃ and θ̃. Thus the
standard averaging techniques in [11, Chapter 10] is directly
applicable with ε = K

aω . For simplicity of notation, it is
defined c0 = a

K < 1, η1 := f(x̃ + x∗), η2 := g(x̃ + x∗),
η3 := F (θ̃ + θ∗), η4 := dF

dθ (θ̃ + θ∗), η5 := d2F
dθ2 (θ̃ + θ∗).



By using Taylor series expansion, the system (15) becomes
dx̃

dτ
= εc0

(
η1 + η2 · η3 + aη2 · η4 sin(τ) +O

(
a2
))

dθ̃

dτ
= ε

(
Lfh · sin(τ) + Lgh · η3 sin(τ) + aη4 sin

2(τ)
)

+ε
(
0.5a2η5 sin

3(τ) +O
(
a3
))

, (16)

with its following averaged system:
dxav

dτ
=εc0

(
f(xav + x∗) + g(xav + x∗)F (θav + θ∗) +O

(
a2
))

dθav
dτ

=ε

(
0.5aLgh

dF

dθav
(θav + θ∗) +O

(
a3
))

. (17)

The averaged system (17) in time-scale t has the following
form:

ẋav =f(xav + x∗) + g(xav + x∗)F (θav + θ∗) +O
(
a2
)

θ̇av =0.5KLgh
dF

dθav
(θav + θ∗) +O

(
a2
)
. (18)

For a given compact set ∆, for any x ∈ ∆, there exist
two constants Mδ > 0, M∆ > 0 such that

Mδ ≤ Lgh ≤ M∆, (19)

from the continuity of Lgh and Assumption 1. By using
Assumption 3, following the similar steps used in [18], we
can conclude that θav dynamics in (18) is semi-globally prac-
tically asymptotically stable (SPA) in a (see [19, Definition
1] for the detailed definition of SPA in parameter a). By
using Assumption 2, once θav is convergent, we can conclude
the stability properties of xav . That is for a positive pair
(∆, ν), there exists a∗ > 0 such that for any a ∈ (0, a∗), the
convergence properties of the averaged system (17) can be
captured by two class KL functions.

For the fixed a ∈ (0, a∗), by applying the averaging result
[18, Lemma 1], there exists ε∗ > 0 such that inequalities (7)
hold for any ε ∈ (0, ε∗). And this completes the proof. □

REFERENCES

[1] K. B. Ariyur and M. Krstic. “Analysis and design of
multivariable extremum seeking”. In: Proceedings of
the 2002 American Control Conference. Vol. 4. 2002,
pp. 2903–2908.

[2] W. Bamberger and R. Isermann. “Adaptive on-line
steady-state optimization of slow dynamic processes”.
In: Automatica 14.3 (1978), pp. 223–230.

[3] P. Binetti et al. “Control of formation flight via ex-
tremum seeking”. In: Proceedings of the 2002 Ameri-
can Control Conference. Vol. 4. 2002, pp. 2848–2853.

[4] Q. Chen et al. “Decentralized PID control design for
magnetic levitation systems using extremum seeking”.
In: IEEE Access 6 (2018), pp. 3059–3067.

[5] C. S. Draper and Y. T. Li. Principles of optimalizing
control systems and an application to the internal
combustion engine. American Society of Mechanical
Engineers, 1951.
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