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Abstract: The majority of literature for averaging methods deal with a class of nonlinear time-
varying (NLTV) dynamics and their time-invariant averaged systems with locally Lipschitz
continuous (LLC) condition. In this work, a class of uniformly continuous NLTV systems and
their uniformly continuous averaged systems are considered. With a careful discussion of the
existence of solutions, the first result shows the closeness of solutions between the original NLTV
system and its averaged system with a sufficiently small time-scale separation parameter ε on
a subset of a time interval, in which both the NLTV system and the averaged system have
well-defined solutions. If the averaged system is finite-time stable, the second result shows that
the original NLTV system will uniformly converge to an arbitrarily small neighborhood of the
origin on a finite-time interval with sufficiently small ε. Simulation results support the theoretical
finding.
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1. INTRODUCTION

Averaging theory is one of the most widely used tools to
analyse the stability property of a class of parameterized
nonlinear time-varying (NLTV) systems from the stability
property of their time-invariant averaged systems. It has
been used in various applications, such as extremum
seeking control Krstić and Wang (2000); Tan et al. (2006),
parameter identification and adaptive control Anderson
et al. (1986); Solo and Kong (1994), vibrational control
Bellman et al. (1986); Cheng et al. (2018), power electronic
system Krein et al. (1990); Lehman and Bass (1996) and
so on.

Most averaging methods deal with a class of NLTV dy-
namics and their time-invariant averaged systems when
the nonlinear mappings are locally Lipschitz continuous
(LLC) Khalil (2002); Nesic and Teel (2001); Sanders and
Verhulst (2007); Teel et al. (1999). On one hand, locally
Lipschitz continuity provides the uniqueness of solutions of
nonlinear dynamics on an interval close to the initial time
instant. On the other hand, LLC condition guarantees a
limited rate of change for the nonlinear mapping on any
compact set. Such properties are necessary for the clas-
sical averaging analysis including the traditional method
originated from the work of Bogoliubov N.N. Bogoliubov
(1961), Khalil (2002), the trajectory-based method Aeyels
and Peuteman (1998); Sanders and Verhulst (2007), and
Lyapunov method Teel et al. (1999); Wang and Nesic
(2010).

However, non-Lipschitz nonlinear dynamics appear quite
often in engineering applications. For example, the sliding

mode control is a well-known nonlinear control method
that alters the dynamics of a nonlinear system by apply-
ing non-smooth control algorithms Basin (2019); Boiko
and Fridman (2005) to achieve finite reaching time to
the sliding surface. Recently, the concept of finite-time
stability has gained a lot of attention. As indicated in
Bhat and Bernstein (2000), finite-time stability is usually
achieved for a class of continuous but non-Lipschitz sys-
tems. Compared with asymptotic stability, achieving the
desired performance in a finite-time interval is more attrac-
tive in engineering applications, see, for example, finite-
time stabilization for controllable systems Hong (2002),
finite-time optimization Garg and Panagou (2021) with
applications Poveda and Krstić (2021); Ŕıos et al. (2017).

Averaging techniques that assume a finite-time stable
averaged system without LLC condition have not been
well studied. An averaging tool to deal with a class of
non-Lipschitz NLTV systems was developed by Russian
mathematics in Kranosel’skii and Krein (1955). However,
only non-uniform closeness of solutions results over a
finite-time interval was discussed without any stability
analysis for the NLTV systems. A few papers including
Arstein (1998a); Wang et al. (2012) studied a class of
time-invariant singularly perturbed systems without LLC
condition via averaging along the trajectories of the fast
dynamics to conclude some asymptotic behaviors, though
this paper focuses on investigating some finite-time stabil-
ity properties for a class of NLTV system via its finite-time
stable averaged system. In Poveda and Krstić (2021), the
fixed-time extremum seeking algorithms were proposed by
using Wang et al. (2012) directly without rigorous analysis.



This work considers a class of NLTV systems following the
form in (Khalil, 2002, Chapter 10) without the LLC condi-
tion. With the maximum interval of existence of solutions
for the NLTV system and its averaged system carefully
addressed, the first result shows the closeness of solutions
for two systems uniformly in the initial time t0 over a
subset of the common maximum interval of existence of
solutions. Based on the first result, the second result shows
that given the origin of the averaged system is finite-time
stable, the original NLTV system will uniformly converge
to an arbitrarily small neighborhood of the origin over
a finite-time interval by tuning the time-scale separation
parameter ε sufficiently small.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

The notation R represents the set of all real numbers
and N represents the set of all integers. For any vector
x ∈ Rn, |x| represents its Euclidean norm, which is defined

as |x| ≜
√
x⊺x, where (·)⊺ represents the transpose.

A continuous function α : R≥0 → R≥0 is said to be of class
K if it is zero at zero and strictly increasing. A continuous
function σ : R≥0 → R≥0 is said to be of class L if it
is converging to zero as its argument grows unbounded.
A continuous function α̃ : R≥0 → R≥0 is said to be a
generalized K function (GK function) if it satisfies{

α̃(s1) > α̃(s2) if α̃(s1) > 0, s1 > s2,

α̃(s1) = α̃(s2) if α̃(s1) = 0, s1 > s2.
(1)

A continuous function β : R≥0 × R≥0 → R≥0 is said
to belong to class KL if, for each fixed s, the mapping
β(r, s) belongs to class K with respect to r and for each
fixed r, the mapping β(r, s) is decreasing with respect
to s and β(r, s) → 0 as s → ∞. A continuous function

β̃ : R≥0×R≥0 → R≥0 is a generalized KL function (GKL
function) if, for each fixed t ≥ 0, the function s → β̃(s, t)
is a generalized K function, and for each fixed s ≥ 0, the
function t → β̃(s, t) decreases to zero as t → T for some
T < ∞.

Similar to Haddad et al. (2008), a class of nonlinear time-
varying (NLTV) systems is considered:

ẋ = f0(t, x), x(t0) = x0 ∈ D0, t ∈ [t0, t0 + Ix0,t0), (2)

where the nonlinear mapping f0(t, x) : R≥0 ×D → Rn is
continuous with respect to (t, x) with 0 ∈ D0 ⊆ D ⊆ Rn.
t0 ≥ 0, and 0 < Ix0,t0 ≤ ∞ is the maximal interval of
existence of solutions of (2). Denote the S(t, t0, x0) as the
set of all the solutions of (2) with the initial state x0 and
initial time t0.

Remark 1. It is noted that the continuity of f0 guarantees
the existence of solutions, but the solutions might not be
unique due to possible lack of local Lipschitz continuity. In
Haddad et al. (2008), it was assumed that the system (2)
possesses a unique solution in forward time for all initial
conditions except possibly the origin. Also, f0(t, 0) ≡ 0
holds for any t ≥ 0, indicating that the origin is the
equilibrium of interests. In this work, the existence of
multiple solutions with initial conditions besides the origin

for (2) is considered, and the origin of (2) is not necessarily
an equilibrium. In particular, our first result (Theorem
1) shows the closeness of solutions between the original
NLTV system and its time-invariant averaged system over
a finite-time interval without any stability requirements
or forward uniqueness of solutions. Therefore, the require-
ment of the system (2) is weaker than that in Haddad et al.
(2008). ◦

A simpler subclass of time-varying systems (2) is a time-
invariant system:

ẋ = f0(t, x) = f1(x), x(0) = x0 ∈ D0, t ∈ [0, Ix0
), (3)

with the set of all the solutions of (3) denoted as S(t, x0).
Ix0

is the maximal interval of existence of solutions of (3).

2.2 Problem formulation

This paper focuses on a family of NLTV systems parame-
terized by a small positive parameter ε:

ẋ = f

(
t

ε
, x

)
, x(t0) = x0 ∈ D0, t ∈ [t0, t0 + Iax0,t0,ε],(4)

with ε ∈ (0, ε0) for some positive ε0 and t0 ≥ 0. The
state satisfies x ∈ D ⊆ Rn and D0 is a compact subset
of the compact set D, where 0 ∈ D0. The set Sε(t, t0, x0)
contains all solutions of (4) with any solution denoted as
xε(t, t0, x0).

The following assumptions are used in this work. The first
assumption is about the property of the nonlinear mapping
f(·, ·).
Assumption 1. The nonlinear mapping f(τ, x) : R≥0 ×
D → Rn is uniformly continuous with respect to x,
uniformly in τ . Moreover, for any x ∈ D, f(τ, x) is
continuous and uniformly bounded in τ . 2

From Assumption 1, for simplicity of presentation, we
assume that f(τ, x) is uniformly continuous with respect
to x compared with the continuity assumption for (2). This
assumption is sufficient in most cases when dealing with
nonlinear dynamics with finite-time stability (see Garg and
Panagou (2021); Hong (2002)). Also, for switched systems
Wang and Nesic (2010), f(τ, x) is piecewise continuous in
τ while we assume f(τ, x) is continuous in τ in Assumption
1 for simplicity. We will further relax these in our future
work.

Remark 2. Most existing averaging techniques require
that the nonlinear mapping f(τ, x) is locally Lipschitz
continuous (LLC) with respect to x, uniformly in τ Khalil
(2002); Sanders and Verhulst (2007); Teel and Nesic
(2000). Also, it was assumed that the solutions are forward
complete 1 in Teel and Nesic (2000). Without the LLC
condition, the NLTV system (4) might have multiple so-
lutions and different convergence property compared with
LLC systems. Also, the existence of solutions on a certain
time interval needs to be carefully addressed. ◦

The key idea of averaging techniques is to conclude some
uniform stability properties with respect to time “t” for
the NLTV dynamics (4) from its time-invariant averaged

1 The definition of forward completeness can be found in (Teel and
Nesic, 2000, Definition 3).



system with a sufficiently small parameter ε. To achieve
this, the closeness of solutions of two systems over a finite
time interval needs to be analysed first. Two assumptions
are thus needed. One is the existence of a well-defined
averaged system. The other is the existence of a common
interval of the existence of solutions for two systems.

Assumption 2. There exists a uniformly continuous func-
tion fav(x) : D → Rn such that there exist βav ∈ KL and
T ∗ > 0, the following inequality holds∣∣∣∣∣fav(x)− 1

T

∫ t0+T

t0

f(τ, x)dτ

∣∣∣∣∣ ≤ βav(max{|x| , 1}, T ),(5)

for any T > T ∗, t0 ≥ 0, x ∈ D. 2

It is noted that fav(·) is also uniformly continuous and
not necessarily LLC. Assumption 2 defines the following
averaged system of (4):

ẋ = fav(x), x(t0) = x0 ∈ D0, t ∈ [t0, t0 + Ibx0
]. (6)

The notion of Sav(t, x0) denotes the set of all solutions of
(6), and xav(t− t0, x0) is any solution in Sav(t, x0) which
is not dependent on t0.

Assumption 3. For any x0 ∈ D0, t0 ≥ 0, ε ∈ (0, ε0), there
exists 0 < I∗ ≤ min{Iax0,t0,ε, I

b
x0
} such that all solutions

of (4), (6) satisfy Sε(t, t0, x0) ⊆ D and Sav(t, x0) ⊆ D for
any t ∈ [t0, t0 + I∗]. 2

Remark 3. Assumption 3 shows the boundedness for all
solutions of two systems (4), (6) (see a similar assumption
in (Deghat et al., 2021, Assumption 1)). In particular, such
boundedness property holds for all solutions of the original
system (4) uniformly in x0, t0, ε. This assumption plays
an important role in showing the closeness of solutions
on a finite interval in the next section. How to relax this
assumption will be addressed in our future work. ◦

3. CLOSENESS OF SOLUTIONS ON A FINITE TIME
INTERVAL

This section discusses the closeness of solutions between
the original system (4) and its averaged system (6) on
a finite-time interval [t0, t0 + I] for any 0 < I ≤ I∗,
t0 ≥ 0. Now each solution of systems (4) and (6) is a
continuous function xε(t, t0, x0) : [t0, t0 + I] → D and
xav(t − t0, x0) : [t0, t0 + I] → D respectively. It is noted
that the result in this section do not require any stability
property or uniqueness of solutions for the original system
(4) or its averaged system (6). Furthermore, such closeness
of solutions analysis plays a key role in the finite-time
stability analysis in the next section.

It is highlighted that the widely used proof technique for
averaging methods Nesic and Teel (2001); Sanders and
Verhulst (2007) is based on the Gronwall Lemma (Khalil,
2002, Lemma A.1), which requires LLC condition. Since
the nonlinear mappings f(·, ·), fav(·) are not necessarily
LLC, new proof techniques are needed. In this work,
the proof is completed based on Arzela-Ascoli theorem
(Bressan, 2013, Corollary 3.13). Motivated by (Arstein,
1998b, Lemma 4.3), the following two lemmas are used to
prove the first main result.

Lemma 1. Suppose Assumptions 1 and 3 hold. Given any
I ∈ (0, I∗], for each solution xε(t, t0, x0) of the original

system (4), there exists a uniformly continuous function
y(t, t0, x0) : [t0, t0 + I] → D with y(t0, t0, x0) = x0, such
that for any δ > 0, there exists a ε∗1 > 0 such that for any
ε ∈ (0, ε∗1), the following inequality holds

|xε(t, t0, x0)− y(t, t0, x0)| < δ, (7)

for any x0 ∈ D0, t ∈ [t0, t0 + I], t0 ≥ 0.

The proof of Lemma 1 is provided in Appendix A. Lemma
1 shows that with ε → 0, each solution xε(t, t0, x0) of
the original system (4) converges to a function y(t, t0, x0),
which is independent of ε, uniformly in (t0, x0).

Lemma 2. Suppose Assumptions 1-3 hold. Let xε(t, t0, x0)
and y(t, t0, x0) come from Lemma 1. For any δ > 0, there
exists a ε∗2 > 0 such that for any ε ∈ (0, ε∗2), the following
inequality holds∣∣∣∣∫ t

t0

f
(s
ε
, xε(s, t0, x0)

)
ds−

∫ t

t0

fav(y(s, t0, x0))ds

∣∣∣∣ < δ,

(8)

for any x0 ∈ D0, t ∈ [t0, t0 + I], t0 ≥ 0.

The proof of Lemma 2 is provided in Appendix B. By
combining two convergence properties in Lemma 1 and
Lemma 2, the function y(t, t0, x0) is shown to be a solution
xav(t−t0, x0) of the averaged system (6). This leads to the
following theorem which presents the closeness of solutions
of two systems (4) and (6) on a given finite-time interval
[t0, t0 + I].

Theorem 1. Suppose Assumptions 1-3 hold. Given any
I ∈ (0, I∗], for any δ > 0, there exists a small ε∗ > 0 such
that for any 0 < ε < ε∗, for each solution xε(t, t0, x0) of the
original system (4), there exists a solution xav(t − t0, x0)
of the averaged system (6) such that

|xε(t, t0, x0)− xav(t− t0, x0)| < δ, (9)

holds for any x0 ∈ D0, t ∈ [t0, t0 + I], and t0 ≥ 0.

Proof: From Assumption 1, f(τ, x) is continuous with
respect to τ and x, and uniformly bounded with respect
to τ . From Assumption 3, xε(t, t0, x0) ∈ D holds for t ∈
[t0, t0 + I] uniformly in x0, t0, ε. Therefore, each solution
xε(t, t0, x0) of the system (4) is continuous differentiable
for any x0 ∈ D0, t0 ≥ 0, ε ∈ (0, ε0).

Since xε(t, t0, x0) is a solution of the system (4), for any
ε ∈ (0, ε0), it has

xε(t, t0, x0)− x0 =

∫ t

t0

f
(s
ε
, xε(s, t0, x0)

)
ds, (10)

for any x0 ∈ D0, t ∈ [t0, t0 + I], t0 ≥ 0. From the
convergence results in inequalities (7) and (8), by using
equation (10), with ε → 0, it follows that

y(t, t0, x0)− x0 =

∫ t

t0

fav(y(s, t0, x0))ds, (11)

for any x0 ∈ D0, almost all t ∈ [t0, t0+ I], any t0 ≥ 0. The
equation (11) implies that y(t, t0, x0) is a solution of the
averaged system (6), namely y(t, t0, x0) := xav(t− t0, x0),
which is not related with t0 due to the time-invariant
property of (6). By applying Lemma 1, the results of
Theorem 1 can be obtained with ε∗ = min{ε∗1, ε∗2}. This
completes the proof. 2

Remark 4. Theorem 1 indicates that by choosing a suffi-
ciently small positive ε, for each solution of the original
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system (4), there exists a solution of the averaged system
(6) such that two solutions are arbitrarily close for a given
time interval [t0, t0 + I], for any 0 < I ≤ I∗, t0 ≥ 0. This
result is similar to that in classic averaging techniques with
LLC condition in (Sanders and Verhulst, 2007, Theorem
2.81), (Teel and Nesic, 2000, Theorem 1). By comparison,
for our cases, two systems: (4) and (6) might possess
multiple solutions. Moreover, the interval I cannot be
arbitrarily selected as in the existing results with forward
completeness property. ◦

4. FINITE-TIME STABILITY

This section applies the result obtained in Theorem 1 to
conclude the finite-time practical stability of the original
system (4) from the finite-time stability of its averaged
system (6). Firstly, the finite-time stability for the time-
invariant system (3) is defined.

Definition 1. (Bhat and Bernstein, 2000, Definition 2.2)
The origin of the system (3) is said to be finite-time
stable if it is Lyapunov stable and finite-time convergent.
Moreover, there exists a continuous settling-time function
T̂ (x0) such that

lim
t→T̂ (x0)

x(t, x0) = 0, (12)

where x(t, x0) is the solution of (3).

In Haddad et al. (2008), the finite-time stability of the
origin for NLTV system (2) is also defined with a settling-

time function T̂ (t0, x0). In this work, the ”settling time” to
reach a small neighborhood of the origin for the original
system (4) is uniform in t0 if its averaged system (6) is
finite-time stable (see Theorem 2). Thus the definition of
finite-time stability for (3) system is not provided here.

Next proposition shows the equivalence between the def-
inition of finite-time stability and its characterization by
using a class GKL function.

Proposition 1. The origin of the system (3) is finite-time
stable if and only if for any initial state x0 ∈ D0, the
solution x(t, x0) of (3) satisfies:

|x(t, x0)| ≤ β̃(|x0| , t), (13)

for any t ≥ 0. β̃(·, ·) is a GKL function with β̃(x0, t) ≡ 0

when t ≥ T̂ (x0) with T̂ (x0) continuous with respect to x0

and T̂ (0) = 0. T̂ (x0) is the settling-time function.

The proof of Proposition 1 follows the similar proof for the
uniformly asymptotic stability property in (Khalil, 2002,
Lemma 4.5). The proof is omitted due to space limitations.

Next result shows how to conclude the stability property of
the original system (4) provided that the averaged system
(6) is finite-time stable.

Theorem 2. Suppose Assumptions 1-3 hold, and the origin
of the averaged system (6) is finite-time stable with a
domain of attraction containing D0 with the settling-time
function T̂ (·) and β̃(·, ·) ∈ GKL in Proposition 1. Then the
origin of the original system (4) is uniformly practically
finite-time stable in ε. That is, for any δ > 0, there exists
a small ε∗ > 0 such that for any ε ∈ (0, ε∗), each solution
xε(t, t0, x0) of the original system (4) satisfies

|xε(t, t0, x0)| ≤ β̃(|x0| , t− t0) + δ, (14)

for any x0 ∈ D0, t ≥ t0 ≥ 0.

Sketch of Proof:

From the finite-time stability of (6), β̃(|x0| , T̂ (x0)) = 0,

xav(t − t0, x0) = 0 at t = t0 + T̂ (x0), and Ibx0
= ∞.

We consider two arbitrarily small positive constant δ1,
δ2 that satisfies β̃(δ2, 0) ≤ δ1. From the closeness of
solutions result in Theorem 1, considering the finite-time
interval [t0, t0 + T̂ (x0)], with sufficiently small ε∗1, for any
ε ∈ (0, ε∗1), |xε(t, t0, x0)− xav(t− t0, x0)| ≤ δ2. This leads

to |xε(t, t0, x0)| ≤ δ2 at t = t0 + T̂ (x0).

We initialize xav(t−t0, x0) = xε(t, t0, x0) at t = t0+T̂ (x0),
With sufficiently small ε∗2, the closeness of solutions holds

|xε(t, t0, x0)− xav(t− t0, x0)| ≤ δ2 for t ∈ [t0+ T̂ (x0), t0+

2T̂ (x0)]. Since |xav(t− t0, x0)| ≤ β̃(δ2, t−t0) ≤ δ1, we have

|xε(t, t0, x0)| ≤ δ1+δ2 for t ∈ [t0+ T̂ (x0), t0+2T̂ (x0)], and

|xε(t, t0, x0)| ≤ δ2 at t = t0 + 2T̂ (x0).

By induction, we have |xε(t, t0, x0)| ≤ δ1 + δ2 for t ≥ t0 +

T̂ (x0). Therefore, with ε∗ = min(ε∗1, ε
∗
2) and δ = δ1 + δ2,

|xε(t, t0, x0)| ≤ β̃(|x0| , t − t0) + δ1 for t ∈ [t0, t0 + T̂ (x0)],

and |xε(t, t0, x0)| ≤ δ for t ≥ t0 + T̂ (x0). Thus inequality
(14) holds, completing the proof. 2

Remark 5. The uniformly practical finite-time stability
in Theorem 2 is an extension of the uniformly practi-
cal asymptotic stability in (Nesic and Teel, 2001, Defi-
nition 6). For the uniformly practical finite-time stabil-
ity, each solution of the original system (4) converges to
an arbitrarily small neighborhood of the origin at the
settling time T̂ (x0) of its averaged system (6), namely
limt→t0+T̂ (x0)

|xε(t, t0, x0)| ≤ δ. It is noted that the ”set-

tling time” is independent of t0 and small ε. ◦

5. SIMULATION

This section presents two numerical examples to illustrate
two results. The first example shows the closeness of solu-
tions of the original system (4) and the averaged system (6)
on a finite-time interval without any stability assumption
(Theorem 1). The second example demonstrates the sta-
bility of the original system (4) when the averaged system
(6) is finite-time stable (Theorem 2).

5.1 Example 1

Consider the following system

ẋ = x
1
3 + sin

(
t

ε

)
, (15)

where ε is a small positive parameter. Assumption 1 holds
for (15). It is also checked that the following averaged
system

ẋav = x
1
3
av, (16)

satisfies Assumption 2. The initial state of (15) and (16)
is chosen as x0 = 0. It is noted that the origin of (16)
is a finite-time repeller (see (Bhat and Bernstein, 2000,
Definition 3.1)) with two solutions xav(t, 0) = (2t/3)3/2

and xav(t, 0) ≡ 0. This shows that (15) and (16) are
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forward complete, but unstable. Therefore, Assumption 3
holds, and we choose the finite-time interval as I = 5.

Fig.1 shows the solution xav(t, 0) = (2t/3)3/2 of the
averaged system (16), and the corresponding solutions of
the original system (15) with ε = 0.05 and 0.2 respectively.
It shows that when a smaller ε is used, the trajectory
of the original system is closer to the trajectory of the
averaged system. This indicates that the simulation results
are consistent with Theorem 1.

0 1 2 3 4 5

t

0

1

2

3

4

5

6

7

Fig. 1. Solutions of the original system (15) with ε =
0.05 and 0.2, and the corresponding solution of the
averaged system (16)

5.2 Example 2

Now the following system is considered

ẋ = −
√
|x|sign(x) + sin

(
t

ε

)
(1 + x). (17)

where sign(·) is the sign function. The averaged system of
(17) can be written as

ẋav = −
√
|xav|sign(x). (18)

Similar to Example 1, it is checked that Assumption 1-3
hold. The stability analysis of the averaged system (18)
can be found in (Bhat and Bernstein, 2000, Example
2.1), indicating the origin of (18) is finite-time stable.
The initial state of systems (17) and (18) is selected to
be x0 = 2. The settling time of the system (18) can be

calculated: T̂ (x0) = 2 |x0|0.5 = 2.83 (see more details
in Bhat and Bernstein (2000)). We select ε = 0.05 and
0.15 respectively. As shown in Fig.2, the trajectories of
the original system with different ε can both finite-time
converge to a small neighborhood of the origin. The size
of the neighborhood is getting smaller when a smaller ε is
used. The simulation results are consistent with the results
in Theorem 2.

6. CONCLUSION

This paper investigated the closeness of solutions between
a class of nonlinear time-varying (NLTV) systems and
their time-invariant averaged systems when neither of
them satisfies LLC condition. This closeness of solutions
result can be used to conclude that the trajectories of the

0 1 2 3 4 5 6 7 8

t

-0.5

0

0.5

1

1.5

2

2.5

Fig. 2. Solutions of the original system (17) with ε = 0.05
and 0.15 respectively and the solution of the averaged
system (18)

NLTV system converge to a small neighbourhood of the
origin on a finite-time interval by tuning the time-scale
parameter ε sufficiently small when its averaged system
is finite-time stable. Our future work will further extend
these results to a more general setting such as weaker
continuity conditions.
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Appendix A. PROOF OF LEMMA 1

From Assumption 1, f(τ, x) is bounded for any τ ≥ 0,
x ∈ D whereD is a compact set. Here we denote a constant
0 < B < ∞ as the upper bound such that |f(τ, x)| ≤ B,
for any τ ≥ 0, x ∈ D. From Assumption 1 and 3, for
any t0 ≥ 0, x0 ∈ D0, ε-parametrized functions (solutions
of (4)) xε(t, t0, x0) : [t0, t0 + I] → D are continuously
differentiable for ε ∈ (0, ε0).

For any x0 ∈ D0, t0 ≥ 0, we denote Ft0,x0 as a (t0, x0)-
parametrized continuous function space which consists of
all functions xε(t, t0, x0) with ε ∈ (0, ε0). Here we use the
Arzela-Ascoli theorem (Bressan, 2013, Corollary 3.13) to
prove the convergence property in Lemma 1. To apply the
Arzela-Ascoli theorem and show the convergence property
uniformly in (t0, x0), we need to prove the uniform bound-
edness and uniform equicontinuity of the function space
Ft0,x0 uniformly in (t0, x0). Assumption 3 guarantees the
uniform boundedness, since for any x0 ∈ D0 and t0 ≥ 0,
xε(t, t0, x0) ∈ D holds for any t ∈ [t0, t0 + I] uniformly in
ε and D is compact. Then we assume Ft0,x0 is uniformly
equicontinuous, namely for any x0 ∈ D0, t0 ≥ 0, at any
t ∈ [t0, t0 + I), for any δ > 0, there exists h > 0 such that

|xε(t+ h, t0, x0)− xε(t, t0, x0)| < δ, (A.1)

for any ε ∈ (0, ε0). Due to the continuous differentiability
of xε(t, t0, x0) and the boundedness of f(τ, x) uniformly in
τ and x, we have

|xε(t+ h, t0, x0)− xε(t, t0, x0)|

=

∫ t+h

t

|f(τ, xε(τ, t0, x0))| dτ ≤ Bh < δ. (A.2)

The existence of h (0 < h < δ
B ) is proved. Therefore, for

any x0 ∈ D0, t0 ≥ 0, Ft0,x0
is uniformly equicontinuous.

By Arzela-Ascoli theorem, as ε → 0, there exists a
subsequence xεkn

(t, t0, x0) : [t0, t0 + I] → D uniformly
converges to a limit y(t, t0, x0) : [t0, t0 + I] → D for
any x0 ∈ D0, t0 ≥ 0. By using similar contradiction
method in Arstein (1998b), it follows that xε(t, t0, x0)
converges to y(t, t0, x0) as ε → 0 for any x0 ∈ D0, t0 ≥ 0.
Since xε(t, t0, x0) is continuously differentiable, the limit
y(t, t0, x0) is uniformly continuous. This leads to Lemma
1 by choosing a uniform ε∗1 for any x0 ∈ D0, t0 ≥ 0.

Appendix B. PROOF OF LEMMA 2

From Assumption 1, f(τ, x) is uniformly continuous with
respect to x, uniformly in τ . From Assumption 2, fav(·) is
uniformly continuous. Therefore, for any ε ∈ (0, ε0), any
δ > 0, there exists h > 0 such that for any x, y ∈ D, it
follows

|x− y| < h ⇒
∣∣∣∣f( tε , x)− f(

t

ε
, y)

∣∣∣∣ < δ

4I
,

|x− y| < h ⇒ |fav(x)− fav(y)| <
δ

4I
, (B.1)

for any t ≥ 0.

From now on we choose any small δ > 0, and there exists
a corresponding h > 0 from (B.1). From the uniform
continuity of y(t, t0, x0) for any x0 ∈ D0, t0 ≥ 0 in
Lemma 1, we can denote ȳ(t, t0, x0) as a piecewise constant
function with a uniform ”sampling period” T0 such that

|y(t, t0, x0)− ȳ(t, t0, x0)| < h, (B.2)



for any x0 ∈ D0, t ∈ [t0, t0 + I], t0 ≥ 0.

From Lemma 1, there exists ε∗21 > 0, for any ε ∈ (0, ε∗21)
such that

|xε(t, t0, x0)− y(t, t0, x0)| < h. (B.3)

for any x0 ∈ D0, t ∈ [t0, t0 + I], t0 ≥ 0.

For any x0 ∈ D0, t ∈ [t0, t0 + I], t0 ≥ 0, we have∣∣∣∣∫ t

t0

f(
s

ε
, xε(s, t0, x0))ds−

∫ t

t0

fav(y(s, t0, x0))ds

∣∣∣∣
≤
∣∣∣∣∫ t

t0

f(
s

ε
, xε(s, t0, x0))ds−

∫ t

t0

f(
s

ε
, y(s, t0, x0))ds

∣∣∣∣︸ ︷︷ ︸
1

+

∣∣∣∣∫ t

t0

f(
s

ε
, y(s, t0, x0))ds−

∫ t

t0

f(
s

ε
, ȳ(s, t0, x0))ds

∣∣∣∣︸ ︷︷ ︸
2

+

∣∣∣∣∫ t

t0

f(
s

ε
, ȳ(s, t0, x0))ds−

∫ t

t0

fav(ȳ(s, t0, x0))ds

∣∣∣∣︸ ︷︷ ︸
3

+

∣∣∣∣∫ t

t0

fav(ȳ(s, t0, x0))ds−
∫ t

t0

fav(y(s, t0, x0))ds

∣∣∣∣ .︸ ︷︷ ︸
4

(B.4)

Now we turn to bound the right-hand side of (B.4).

Term 1. By using (B.1), (B.3), for any ε ∈ (0, ε∗21), it
follows that∣∣∣∣∫ t

t0

f(
s

ε
, xε(s, t0, x0))ds−

∫ t

t0

f(
s

ε
, y(s, t0, x0))ds

∣∣∣∣
<

∫ t

t0

δ

4I
≤ δ

4
, (B.5)

for any t ∈ [t0, t0 + I].

Term 2 and Term 4. From (B.1), (B.2), for any t ∈
[t0, t0 + I], it is easy to obtain∣∣∣∣∫ t

t0

f(
s

ε
, y(s, t0, x0))ds−

∫ t

t0

f(
s

ε
, ȳ(s, t0, x0))ds

∣∣∣∣
<

∫ t

t0

δ

4I
≤ δ

4
. (B.6)

∣∣∣∣∫ t

t0

fav(ȳ(s, t0, x0))ds−
∫ t

t0

fav(y(s, t0, x0))ds

∣∣∣∣
<

∫ t

t0

δ

4I
≤ δ

4
. (B.7)

Term 3: Define K is the largest positive integer such that
K < I

T0
. For k = 0, . . . ,K, define tk = t0 + kT0. Note

that for the piecewise constant function ȳ(t, t0, x0), for
each tk ≤ t ≤ tk+1, ȳ(t, t0, x0) is a constant. Then for
any t ∈ [t0, t0 + I], we have∣∣∣∣∫ t

t0

f(
s

ε
, ȳ(s, t0, x0))ds−

∫ t

t0

fav(ȳ(s, t0, x0))ds

∣∣∣∣
≤

K∑
k=0

∣∣∣∣∣
∫ tk+T0

tk

f(
s

ε
, ȳ(s, t0, x0))− fav(ȳ(s, t0, x0))ds

∣∣∣∣∣ .
(B.8)

Define a new time scale s1 = s
ε . For any k = 0, . . . ,K,

by using Assumption 2, there exists a small ε∗22 > 0, such
that for any ε ∈ (0, ε∗22), we have∣∣∣∣∣

∫ tk+T0

tk

f(
s

ε
, ȳ(s, t0, x0))− fav(ȳ(s, t0, x0))ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ tk+T0

tk

f(
s

ε
, ȳ(s, t0, x0))ds− T0fav(ȳ(s, t0, x0))

∣∣∣∣∣
=

∣∣∣∣∣ε
∫ tk

ε +
T0
ε

tk
ε

f(s1, ȳ(s, t0, x0))ds1 − T0fav(ȳ(s, t0, x0))

∣∣∣∣∣
=T0

∣∣∣∣∣ εT0

∫ tk
ε +

T0
ε

tk
ε

f(s1, ȳ(s, t0, x0))ds1 − fav(ȳ(s, t0, x0))

∣∣∣∣∣
<T0

δ

4(I + T0)
. (B.9)

From (B.8), (B.9) and (K + 1)T0 < I + T0, it results in∣∣∣∣∫ t

t0

f(
s

ε
, ȳ(s, t0, x0))ds−

∫ t

t0

fav(ȳ(s, t0, x0))ds

∣∣∣∣
<(K + 1)

T0δ

4(I + T0)
≤ δ

4
. (B.10)

From the bounds on term 1-4 on the right-hand side
of (B.4), with ε∗2 = min{ε∗21, ε∗22}, for any ε ∈ (0, ε∗2), it
follows that∣∣∣∣∫ t

t0

f(
s

ε
, xε(s, t0, x0))ds−

∫ t

t0

fav(y(s, t0, x0))ds

∣∣∣∣ < δ,

(B.11)

for any x0 ∈ D0, t ∈ [t0, t0 + I], t0 ≥ 0. And the proof for
Lemma 2 is completed.


