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Abstract—A transhumeral prosthesis restores missing anatom-
ical segments below the shoulder, including the hand. Active
prostheses utilize real-valued, continuous sensor data to recognize
patient target poses, or goals, and proactively move the artificial
limb. Previous studies have examined how well the data collected
in stationary poses, without considering the time steps, can help
discriminate the goals. In this case study paper, we focus on
using time series data from surface electromyography electrodes
and kinematic sensors to sequentially recognize patients’ goals.
Our approach involves transforming the data into discrete events
and training an existing process mining-based goal recognition
system. Results from data collected in a virtual reality setting
with ten subjects demonstrate the effectiveness of our proposed
goal recognition approach, which achieves significantly better
precision and recall than the state-of-the-art machine learning
techniques and is less confident when wrong, which is beneficial
when approximating smoother movements of prostheses.

Index Terms—goal recognition, active transhumeral prosthe-
ses, process mining

I. Introduction

Given a collection of candidate goals and observations of
actions performed by an agent in an environment, a solution to
the goal recognition (GR) problem suggests the true goal the
agent strives to achieve in the environment [1]. Process mining
(PM) techniques were recently used to implement a system
for solving the GR problem [2], [3]. We refer to this system
as the PM-based GR system. Assuming the actions the agent
uses to achieve the various goals do not vary significantly
over time, the PM-based GR system uses process discovery
techniques [4] to construct process models, or behavior mod-
els, from the action sequences the agent performed in the
past to achieve the goals. Each model is constructed from the
historical observations of how the agent reached a specific goal
and represents the exemplary behavior for achieving the goal.
Subsequently, the PM-based GR system uses conformance
checking techniques [5] to align a newly observed action
sequence (a trace) with each discovered behavior model.
Finally, the obtained conformance information regarding the
commonalities and discrepancies between the trace and all the
models is translated into a probability distribution over the

candidate goals. This distribution describes the probabilities
of the agent pursuing the goals.

Goal recognition techniques are used in many real-world
scenarios, such as autonomous driving [6], [7], robotics [8],
[9], and human-machine interaction [10]. This paper inves-
tigates the feasibility and potential benefits of using the PM-
based GR system in active transhumeral prostheses designed to
assist individuals with disabilities [11]–[13]. A transhumeral
prosthesis replaces the function of missing anatomical seg-
ments below the shoulder of a patient, including the hand. An
active prosthesis is equipped with sensors and motors that aim
to recognize the intents of the patient and support them, for
example, by automatically directing the artificial limb towards
the target prosthetic pose, namely the goal.

This study uses the dataset collected for the development of
active transhumeral prostheses. The data collection experiment
involved ten non-disabled subjects in a virtual reality (VR)
environment, aiming to emulate the behavior of patients using
transhumeral prostheses [12]. Each subject was requested to
accomplish forward-reaching tasks that involved achieving
three elbow poses, namely the goals. They were required
to extend their sound upper limb forward in a series of 30
iterations for each goal. The reaching targets are placed along
the parasagittal plane. A small sphere in the VR environment
communicated a reaching target to the subject, and the subject
had to reach it with their hand. The subjects were requested
to stay still for approximately one second after reaching the
goal. During each iteration towards a goal, 47 features were
extracted from the measurements of kinematic and surface
electromyography (sEMG) sensors attached to the subject at
regular intervals. These sequences of features constitute time
series of continuous, real-valued data that characterize the
behavior of the subject in achieving the goal.

This work is a natural extension of our previous research,
which demonstrated that the measurements during the one-
second holding period contain features suitable for discrim-
inating between different fixed poses of the subjects, with-
out considering the sequence data [12]. However, intuitively,
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considering the time stamps in the measurements is expected
to improve performance. In this study, we investigate the
potential of utilizing sequences of these measurements to infer
the subjects’ goal poses as they strive to achieve them. By
predicting the patient’s goals, our aim is to inform the design
of active prostheses that facilitate cooperation between the
patient and the prosthesis, ultimately enhancing the overall
user experience. To accomplish goal inference, we leverage
our PM-based GR system. Additionally, since the GR system
operates on discrete event data, we propose a two-stage
approach for transforming the multi-dimensional, real-valued,
continuous measurements into discrete events.

We compared the performance of the PM-based GR system
with two state-of-the-art GR methods in the area of active
prostheses: linear discriminant analysis (LDA) [13] and long
short-term memory (LSTM) neural networks [14]. The results
confirm that the PM-based GR system outperforms the LSTM-
based and LDA-based machine learning methods. The artifacts
constructed by the PM-based system (discovered models and
alignments between new observations and the models) can be
used to explain the inferences. Furthermore, the PM-based GR
tends to provide less confident results when making mistakes,
which is beneficial when approximating smoother movements
of prostheses. The practical solution to the GR problem in
the field of transhumeral prostheses can benefit from further
developments in the GR techniques and their ensembling.
Specifically, this paper contributes:
• An extension of the data-driven approach for goal recogni-

tion grounded in process mining techniques [2], [3] to re-
peated multi-dimensional, real-valued, continuous measure-
ments that characterize the observed behavior of interest;

• The results of an evaluation based on a publicly available
implementation1 of the data-driven GR systems discussed
in this paper, including the one grounded in process mining
techniques, that compares their performance over a publicly
available dataset2 in the domain of transhumeral prostheses.
These results confirm that the process mining approach
achieves significantly better precision and recall in recog-
nizing the target patients’ poses and is less confident when
wrong than the state-of-the-art machine learning techniques.

The next section introduces our transhumeral prosthetic study.
Next, Section III discusses related work. Section IV presents
the extended version of the PM-based GR system, which is
evaluated against state-of-the art machine learning approaches
in Section V. Finally, Section VI discusses the limitations of
the current techniques and future work aiming to address these
limitations, while Section VII concludes this paper.

II. Study Description

A. Background

The main objective of our study is to develop active
transhumeral prostheses that replace missing limb segments
below the shoulder, restoring upper limb function for achieving

1https://doi.org/10.26188/24131493
2https://doi.org/10.26188/23294693

specific prosthetic poses. Active prostheses are robotic devices
with actuators, like electric motors, driving prosthetic joints for
tasks such as reaching. In this work, these joint movements
are controlled by synthesizing data from above-elbow sEMG
and joint movement sensors on the residual limb (upper arm)
and body [11], [12]. Given that the user-intended prosthetic
joint pose is unknown to the prosthetic device, the precise
identification of this goal becomes crucial. Failure to achieve
this can lead to inefficient task execution, user dissatisfaction,
and even potential abandonment of the device [15]. However,
it is challenging to develop goal recognition to accurately
detect the intended goal in prosthetic settings due to significant
human variance in kinematic and muscle activity signals [16].

The goal recognition algorithm is required to be capable
of accurately identifying the intended goals (target prosthetic
poses) based solely on the signals accessible above the elbow.
To this end, it is a common practice to first explore datasets
from non-disabled human subjects [15]. These datasets capture
the above-elbow sEMG and joint movement data for every
sampling time instance while the subjects perform the task of
forward-reaching. Each of these instances is labeled with its
corresponding goal. The studied dataset herein was collected
from ten non-disabled subjects performing forward-reaching
tasks by extending their intact upper limb forward in a head-
mounted display (HMD) VR environment. The data collection
focused on transhumeral prostheses with a single prosthetic
elbow joint. The aim was to attain distinct elbow poses that
corresponded to specific spatial locations for forward-reaching.

B. Methods of Data Collection

This subsection elaborates on the dataset and data collec-
tion procedure. Ten healthy subjects (seven males and three
females), all right-handed, were recruited. The experimental
protocol was approved by the University of Melbourne Human
Research Ethics Committee under project ID 11878. Informed
consent was obtained from all the subjects.

The dataset contains 35 sEMG and 12 joint kinematic
movement features of the subjects intending for three goals
at three different shoulder poses. The features were sampled
at a rate of 10 Hz (the measurements were taken every 0.1
seconds). The goals (target elbow poses) are denoted as T1,
T2, T3 in Fig. 1a which shows the side-view schematic of the
upper limb. The process of extracting the sEMG and joint pose
features has been described in detail in our previous work [12].

The sensor setup and virtual avatar in VR are shown in
Fig. 1b and Fig. 1c, respectively. In the experiment, the sub-
jects stood naturally and unconstrained in an upright position
to perform forward-reaching tasks by extending their upper
limb towards the three goals at three shoulder poses. The goal
is considered reached when the middle finger of the virtual
avatar hits the target sphere, generated to elicit the target
shoulder and elbow poses as shown in Fig. 1c. For each goal,
the subjects completed 30 iterations of reaching. During each
iteration, the subjects were instructed to maintain their final
upper limb pose for one second upon reaching the goal. The

https://doi.org/10.26188/24131493
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(a) (b) (c)

Fig. 1: (a) Target shoulder and elbow poses, T1–T3 denote the three goals, (b) Experimental setup and the placement of VIVE
trackers and sEMG electrodes, (c) VR avatar and reaching target example (side view).

recorded data spanned from the start of the movement to the
end of the holding period.

Given the focus on transhumeral prostheses, the kinematic
movements of the above-elbow joints were recorded along
with the muscle activity of the upper arm. To capture the kine-
matics, three HTC VIVE trackers were strategically positioned
at the upper arm (UA), shoulder acromion (SA), and trunk
(TR). An additional tracker was placed on the forearm (FA),
and a controller was held in the hand solely for controlling
the forearm and hand avatar within the VR environment, as
shown in Fig. 1c. For monitoring the muscle activity, seven
Delsys® Trigno™ wireless sEMG electrodes were attached to
the muscles of the dominant upper arm of each subject.

III. RelatedWork
Existing GR methods can be broadly classified into three

categories: plan library [17], planning-based [18], and data-
driven [2], [3], [19] methods. A plan library GR method
relies on exemplary plans for accomplishing candidate goals,
usually hand-crafted by domain experts. The method proceeds
by comparing the observed agent actions with the available
example plans to infer the true goal of the agent. The planning-
based GR techniques use pre-defined domain models that
describe the environment and possible actions agents can take
in the environment. Once a new observed sequence of actions
in the environment is available, these techniques rely on the
domain models to construct and compare plans toward the
candidate goals to infer the likelihoods of the goals. Finally,
the data-driven techniques use historical data collected from
agents and the environment to perform goal inference.

In the field of transhumeral prostheses, previous studies
have demonstrated that employing diverse features tailored
to individual patients results in improved performance when
classifying target poses [13]. This personalized approach to
handling patients complicates crafting exemplary plans and
domain models, as each patient requires dedicated plans and
models. In this light, data-driven GR techniques appear appro-
priate for the individual user, as they can learn personalized
artifacts from the historical behavior of a patient for subse-
quent goal inferences tuned for the patient. In this work, we
apply the data-driven GR at the level of individual subjects.

The data-driven GR approach based on LSTM neural net-
works [19] learns a model from a set of action sequences.
It then identifies the most likely goal of the agent based on
a newly observed sequence of actions. Based on a collection
of historical sequences of actions towards a candidate goal,
the PM-based GR system [2], [3] uses process discovery
techniques to learn a process model that describes the skill
for accomplishing the goal. Subsequently, it relies on confor-
mance checking techniques [5] to study commonalities and
discrepancies between a newly observed sequence of actions
and all the learned models, one model for each candidate goal.
These commonalities and discrepancies are then translated into
a probability distribution over the candidate goals, capturing
the likelihoods that the actions aim to reach these goals.

Machine learning techniques can be used to implement
accurate prosthesis control [16]. Due to their robustness,
machine learning classifiers are commonly implemented in
upper-limb prostheses [20]. Given an input signal, for example,
from sensors, a classifier predicts the output signal and,
the intended movement of the patient. Linear discriminant
analysis (LDA) is the most commonly used classifier algorithm
in prosthesis control. It can provide high control accuracy
using small training and processing times [21]. Our recent
work [13] confirmed that LDA can discriminate poses reliably.
Recent works explore the use of artificial neural networks
in prosthesis control [16]. Neural networks can achieve high
goal recognition accuracy by learning non-linear dependencies
between signal input and control outputs but require extensive
training over large datasets [16]. For instance, Huang et al. [14]
successfully used LSTM neural networks to predict target
poses based on time series of electromyography signals.

This paper aims to understand how the PM-based GR sys-
tem can contribute to developing active transhumeral prosthe-
ses. To this end, we extend the system to work with repeated,
real-valued, continuous data captured by typical sensors and
propose dedicated training techniques. We use LDA [13] and
LSTM [14], [19] models as performance baselines.

IV. Approach
This section presents the PM-based GR system [2], [3] and

its new training approach based on real-valued, continuous



data. The approach starts by reducing the data dimensionality
by selecting relevant features (cf. Section IV-A). Next, the
data points of reduced dimensionality are clustered to define
discrete events (cf. Section IV-B). Section IV-C explains our
approach to discover process models from discrete events.
Finally, Section IV-D summarizes our technique for goal
inference based on conformance diagnostics between the dis-
covered models and new observations.

To illustrate the approach, we use six traces in which events
are characterized by 30 real-valued, continuous features f1 to
f30; the dataset and tool for replicating the running example are
publicly available at https://doi.org/10.26188/24131493. The
first three traces (1–3) represent the signal sequences collected
when reaching the target pose T1, while the last three traces
(4–6) were recorded when reaching the target pose T2. Table I
shows an extract of the dataset. In the table, each row holds
feature values that were collected simultaneously and the rows
are ordered by their time stamp of data collection.

Trace Goal f1 f2 f3 . . . f29 f30

1 T1 5.19727337 7.02395793 0.00254431 . . . 5.39759498 -0.3722619
1 T1 7.76278776 8.08816201 0.00472689 . . . 1.01557531 1.37592798
1 T1 13.4185557 8.87159453 0.00821896 . . . -4.0004147 1.65328609
1 T1 22.0916619 9.04377674 0.01015369 . . . -5.5399488 -1.7805512
1 T1 31.3641039 9.3586209 0.009165 . . . -3.5156837 1.36367015
1 T1 38.2312577 10.139119 0.00616715 . . . -1.4720033 5.87820456
1 T1 42.0592085 10.8827908 0.00315491 . . . -0.3338844 4.29640897
2 T1 7.39110795 6.07336937 0.00064332 . . . 2.92403705 1.46698529
2 T1 10.5229866 7.44734189 0.00194998 . . . 1.60034347 2.94734496

. . . . . . . . . . . . . . . . . . . . . . . .
6 T2 64.1830578 25.2975943 -0.0003433 . . . -1.1970367 0.92412363
6 T2 66.8916142 27.5304609 -0.0017204 . . . 0.31022101 0.95595258

TABLE I: Extract of the running example dataset.

A. Feature Selection

To reduce the dimensionality of the data, we eliminate
highly correlated features from the analysis. We use the
agglomerative hierarchical clustering method [22] to cluster
the features into N f groups based on the distances defined
by the correlations between the features. Figure 2 shows the
matrix of absolute values of the Pearson correlation between
the features, while Fig. 3 depicts the dendrogram of the
clusters. The dendrogram represents the hierarchical structure
of clusters, which supports the flexible selection of the desired
features using a similarity threshold. A similarity threshold
value defines the desired distance between the constructed
clusters. For instance, Fig. 3 shows the selection of 15 clusters
using the similarity threshold value of 1.23. A cluster is
defined by all the leaf features in a dendrogram branch cut
horizontally by the threshold line. The systematic approach
for selecting the features is discussed in Section V. Here, we
use N f of 15 for demonstration.

As the features within a cluster are highly correlated, we
select the medoid of the cluster, the feature with the smallest
average dissimilarity to all other features in the cluster, as the
representative of the cluster. This way, we obtain N f features
that characterize the source data. In the running example,
we reduce the original 30 features to N f = 15 representative
features highlighted in Fig. 3 in red and listed in Table II.
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Fig. 3: Dendrogram and selection of clusters. The red dotted
line represents the threshold used to cut the dendrogram to
form 15 clusters.

B. Event Discretization

We transform the N f -dimensional time series of real-valued,
continuous measurements obtained in the previous step into
traces of events amenable to process mining. To this end, we
cluster the N f -dimensional data points from the series into Nc

clusters. The data points in a cluster are accepted as the same
event. We use k-means algorithm [23] due to the performance
considerations for clustering high-dimensional data.

In the example, we clustered the 15-dimensional data points
defined by the 15 selected in the previous step features into 10
clusters, represented by events e0 to e9, see the “Event” column
in Table II. Again, the systematic approach for selecting the
number of clusters is discussed in Section V. Here, we use
Nc = 10 for demonstration only. The traces of obtained events
can be split into two event logs, containing the traces towards
goals T1 and T2, denoted by L1 and L2, respectively.

https://doi.org/10.26188/24131493


Trace Goal f3 f6 . . . f27 f30 Event
1 T1 0.002544311 0.121301538 . . . 9.057075924 -0.372261852 e0
1 T1 0.004726894 0.210557727 . . . 10.55266625 1.375927982 e6
1 T1 0.008218956 0.391712037 . . . 4.416704571 1.653286092 e5
1 T1 0.010153689 0.327711654 . . . 1.372325318 -1.780551234 e2
1 T1 0.009165 0.311548058 . . . 5.526959903 1.363670147 e5
1 T1 0.00616715 0.734098175 . . . 8.869853729 5.87820456 e6
1 T1 0.003154906 1.227944362 . . . 4.916643199 4.296408971 e8
2 T1 0.000643317 0.103164637 . . . 12.86040763 1.466985286 e8
2 T1 0.001949978 0.336630569 . . . 13.45204634 2.94734496 e6

. . . . . . . . . . . . . . . . . . . . . . . .
6 T2 -0.000343322 0.410761081 . . . 23.78469914 0.924123631 e4
6 T2 -0.001720367 0.504684583 . . . 21.08908217 0.955952575 e3

TABLE II: Extract of the reduced running example dataset.

C. Process Discovery

Given an event log of discrete events towards a target
pose, we use process discovery to construct a process model
that describes and generalizes the historical traces that were
followed in the past to achieve the corresponding goal. For
example, we use the Directly Follows Miner algorithm [4] to
construct Petri nets M1 and M2 shown in Figs. 4 and 5 from
event logs L1 and L2 obtained in the previous step.

Since event logs L1 and L2 solely consist of traces related to
reaching target poses T1 and T2, respectively, process models
M1 and M2 depict the potential processes involved in reaching
corresponding final target poses T1 and T2. Models M1 and
M2 are stored in our GR system as “knowledge,” which assists
in predicting the target pose of the prosthesis when the GR
system receives new sequences of signals.
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Fig. 4: Process model M1 discovered from even log L1.
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Fig. 5: Process model M2 discovered from even log L2.

D. Goal Recognition

Once a new (prefix of a) trace of multi-dimensional, real-
valued, continuous measurements is observed, it is used to
infer the goal of the patient. The trace is reduced to the
representative features and transformed into an event trace.
The selection of representative features is described in Sec-
tion IV-A. A data point is attributed to the closest event cluster
out of the clusters obtained as described in Section IV-B. For
example, suppose we observe this new trace of events:

τ = ⟨e8, e6, e2, e1, e1, e9⟩ .

The PM-based GR system uses conformance checking to
diagnose discrepancies and commonalities between the event
trace and all the discovered process models. Specifically,
it constructs optimal alignments [5] between the trace and
the models. Below, we show optimal alignments σ1 and σ2
between example trace τ and process models M1 and M2. The
transitions of Petri nets M1 and M2 that participate in the
alignments with τ are highlighted in gray in the figures.

σ1 =
τ e8 ≫ e6 e2 e1 e1 e9

M1 e8 e8 ≫ ≫ ≫ ≫ ≫

σ2 =
τ e8 e6 e2 e1 e1 e9 ≫ ≫ ≫

M2 e8 e6 ≫ e1 e1 e9 e4 e3 e3

An alignment is a sequence of moves. In a table that encodes
an alignment, columns represent moves. A move with the spe-
cial “≫” skip symbol is an asynchronous move. Otherwise, a
move is a synchronous move. A synchronous move represents
that both the trace and model can proceed synchronously by
executing the same action. A move with the skip in the bottom
(top) row is a move on trace (on model), denoting that the
model (trace) cannot mimic the action in the trace (model).
An optimal alignment is an alignment with the “cheapest”
asynchronous moves according to some predefined positive
costs of asynchronous moves that capture the minimal (as
per the costs) deviations between the trace and model. For
example, optimal alignment σ1 starts with a synchronous
move, denoting that both the trace and the model can start
with event e8, followed by five asynchronous moves on trace,
capturing that it is cheaper for the model not to match these
occurrences of events in the trace.

The more synchronous moves between trace τ and model
MG in the alignment, the higher the likelihood that the trace
is following MG, indicating an intention to reach goal G.
In the running example, observed trace τ is more likely to
reach target pose T2. The detailed probability calculation uses
alignment weight between τ and MG, as defined below [2].

ω(τ,MG) = ϕ + λm ×

n∑
i=1

(
i δ × c(τ,MG, i)

)
(1)

In Eq. (1), c(τ,MG, i) is the cost of the move in the alignment
between τ and MG at position i (we use a cost of one for all
asynchronous moves on trace and a cost of zero for all other
moves), n is the length of the alignment, ϕ is a constant, δ is
a discount factor that emphasizes later asynchronous moves in
the alignment, λ ≥ 1 is a penalty for asynchronous moves on
trace, and m is the number of consecutive asynchronous moves
on trace occurring at the end of the alignment. Intuitively, the
more asynchronous moves at the end of the alignment, the
greater the alignment weight.

The alignment weight is used to compute the probability of
reaching the corresponding goal, as captured below [2].

Pr(G | τ) =
e−β×ω(τ,MG)∑

G′∈G
e−β×ω(τ,MG′ )

(2)



In Eq. (2), G is the set of candidate goals, G′ denotes each
goal candidate in the set G, and β ∈ (0, 1] is the level of trust
over the discovered process models. Based on the two example
alignments, the probabilities of trace τ reaching T1 and T2
are 0.06 and 0.94, respectively, using the default parameter
setting [2]. Consequently, the PM-based GR system infers that
trace τ intends to reach T2.

V. Evaluation

A. Experiment

We collected data on ten subjects, each executing 30 traces
to each of the three target poses, a relatively small dataset.
Thus, we use cross-validation to appropriately split the avail-
able experimental data into training and testing sets. In the
cross-validation, we conduct experiments for 30 iterations.
In each iteration, three traces, one trace per target pose, are
selected as testing traces, while the remaining 87 traces, 3
goals × (30-1) traces, are used for training. Hence, we test
each trace once, resulting in 90 training sets for each subject.

The recognition performance is measured by precision and
recall on a micro level. Since the PM-based GR system may
infer multiple possible poses, we follow the method from our
previous work [3] to calculate the precision (p) and recall (r)
for each problem instance and then compute the averages of
these individual precision and recall measurements over all
the instances. In each GR instance, where the number of true
target poses is one, precision (p) is defined as the fraction of
correctly inferred target poses (either zero or one) among all
the inferred poses (T1, T2, or T3). Recall (r) is defined as the
fraction of the correctly inferred true poses. Thus, recall is one
if the unique true pose is inferred, regardless of the number
of inferred false target poses, and zero otherwise.

The configurable parameters in the PM-based target pose
recognition system, mentioned in Section IV, are optimized
through a combination of brute force search method and the
PRIM algorithm [24] with Latin hypercube sampling [25].
The number of selected features N f is chosen from a set
N f ∈ {1, 2, . . . , 47}, and the number of clusters Nc for event
discretization is selected from a set Nc ∈ {10, 20, ..., 200}. We
conduct experiments on every combination of N f and Nc, and
then select the N f and Nc values that result in the highest
recognition performance (F1-score defined by (2p× r)/(p+r)). For
parameters such as ϕ, δ, and λ in Eq. (1), we followed the
method described in [3] to utilize the PRIM algorithm and
explored 100 different parameter configurations, and selected
the configuration that yielded the highest F1-score.

B. Baselines

We compare the performance of the PM-based GR system
with two state-of-the-art target pose recognition techniques
based on LSTM and LDA (cf. Section III for details). The
LSTM neural network is specifically designed to capture
dependencies and patterns in sequential data, making it suit-
able for classifying multi-dimensional, real-valued, continuous
measurements (sEMG and kinematic signals) to identify the

target pose of the prosthesis. We implement the LSTM net-
work using the same settings and hyperparameters outlined in
[14] as a benchmark for comparison. LDA is a trainable clas-
sification function that linearly separates multi-dimensional,
real-valued, continuous measurements (data points) into a
specified number of clusters. However, it is typically applied
to classify single data points, such as the sEMG and kinematic
signals at a specific timestamp, rather than a sequence of
signals. In this transhumeral prosthesis scenario, where the
instantaneous sEMG and kinematic signals at different target
poses are distinct, the LDA classifier is trained with sets
of signals collected during the period when the arm is held
at three different target poses. When testing the recognition
performance of LDA, as the prosthesis moves closer and closer
to a specific target pose, the last observed instantaneous signals
become increasingly recognizable to the trained LDA classi-
fier. Therefore, we implement an existing LDA-based target
pose recognition approach [13] based on the last instantaneous
signal of an observed trace, rather than a sequence of signals
like the PM or LSTM approaches.

All recognition approaches (PM, LSTM, LDA) were exe-
cuted on a single core of an Intel Xeon Processor@2.0GHz,
using the same selected features and employing the same
cross-validation strategy to split the experimental dataset into
training and testing sets. The PM and LSTM approaches were
trained using the sequences of signals collected during the arm
movement towards target poses, while the LDA approach was
trained using 10 data points collected after the arm reaches the
target pose and holds at the final position. These signals used
to train the LDA approach are not used to train the PM and
LSTM approaches. As GR techniques aim to identify goals
before the full sequences of signals are observed, we evaluate
the approaches using prefixes of the full traces that are cut off
at the first 10%, 30%, 50%, and 70% of the full sequences.

C. Results

The average precisions (p) and recalls (r), obtained by
experimenting on each individual subject to recognize the
target poses using different lengths of prefixes (10%, 30%,
50%, and 70% of the full trace), are presented in Table III.
The two columns “Features” and “Clusters” show the number
of selected features, N f , and the number of discrete event clus-
ters, Nc, for each subject. Since the LSTM- and LDA-based
approaches only infer one possible pose for each problem
instance, the precision and recall values for these approaches
remain the same in all cases. The last row shows the average
across all subjects and all levels of observation.

We performed t-tests to examine the statistical significance
of the differences in average precisions and recalls between
the PM-based approach and the other two benchmarks. The
null hypothesis of the t-tests is that there is no significant dif-
ference between the average precisions and recalls. The t-tests
comparing the average precision and recall between the PM-
and LSTM-based approaches yield p-values of 1.185e-03 and
4.173e-34, respectively. Similarly, the p-values between the
PM- and LDA-based approaches are 5.153e-10 and 1.188e-34.



Subject Features Clusters Obs% PM LSTM LDA
p r p = r p = r

1 29 70

10% 0.365 0.967 0.389 0.411
30% 0.431 0.722 0.422 0.378
50% 0.491 0.744 0.500 0.456
70% 0.628 0.822 0.589 0.611

2 1 10

10% 0.328 0.967 0.300 0.289
30% 0.361 0.911 0.333 0.333
50% 0.396 0.967 0.333 0.244
70% 0.435 0.956 0.333 0.311

3 2 150

10% 0.328 0.978 0.333 0.322
30% 0.446 0.878 0.322 0.344
50% 0.524 0.778 0.311 0.333
70% 0.606 0.744 0.333 0.333

4 34 50

10% 0.344 0.956 0.322 0.356
30% 0.352 0.911 0.422 0.433
50% 0.387 0.856 0.433 0.444
70% 0.480 0.833 0.533 0.556

5 32 90

10% 0.356 0.956 0.356 0.244
30% 0.509 0.856 0.478 0.278
50% 0.572 0.756 0.456 0.211
70% 0.789 0.856 0.489 0.422

6 28 160

10% 0.339 0.911 0.367 0.367
30% 0.406 0.722 0.289 0.389
50% 0.454 0.600 0.333 0.344
70% 0.569 0.667 0.467 0.611

7 22 80

10% 0.387 0.911 0.356 0.356
30% 0.391 0.744 0.344 0.322
50% 0.443 0.700 0.444 0.467
70% 0.480 0.733 0.489 0.544

8 34 100

10% 0.322 0.822 0.378 0.378
30% 0.409 0.678 0.389 0.400
50% 0.522 0.678 0.533 0.411
70% 0.689 0.744 0.522 0.700

9 23 100

10% 0.333 0.989 0.333 0.378
30% 0.393 0.878 0.389 0.344
50% 0.383 0.633 0.411 0.344
70% 0.398 0.622 0.478 0.556

10 28 170

10% 0.333 1.000 0.344 0.256
30% 0.567 0.833 0.511 0.233
50% 0.685 0.833 0.511 0.278
70% 0.844 0.911 0.611 0.589

Average 0.462 ± 0.041 0.826 ± 0.037 0.412 ± 0.027 0.389 ± 0.037

TABLE III: Average precision (p) and recall (r) for individual
subjects at different levels of observation (highest in bold).

The results from the t-tests indicate that the average precisions
and recalls for different approaches are significantly different
from each other at a 95% confidence level (Šidák correc-
tion considered). Therefore, on average, the PM-based GR
approach significantly outperforms the LSTM and LDA-based
approaches in terms of precision and recall. Furthermore, in
situations where the system makes mistakes, we analyze the
probability gaps, which are defined as the difference between
the maximum probability associated with the inferred goals
and the probability associated with the true goal. We observe
the following average probability gaps: 0.064 for the PM-based
system, 0.277 for the LSTM-based approach, and 0.623 for the
LDA-based approach. These results indicate that the PM-based
GR system exhibits less confidence when making mistakes
than the other two benchmarks.

Table IV shows the average precisions and recalls, along
with the 95% confidence intervals, across all levels of observa-
tion for each subject. Differences in performance are subject-
dependent. Subjects 5 and 10 lead to a broader performance
gap between all approaches. Still, the PM-based approach
outperforms other methods in eight out of ten subjects.

Table V shows the average precisions and recalls across
all ten subjects for different levels of observation (10%, 30%,
50%, and 70%), along with the corresponding 95% confidence
intervals. The precision of all approaches shows a gradual

Subject PM LSTM LDA
p r p = r p = r

1 0.479 ± 0.035 0.814 ± 0.040 0.475 ± 0.052 0.464 ± 0.052
2 0.380 ± 0.020 0.950 ± 0.023 0.325 ± 0.049 0.294 ± 0.047
3 0.476 ± 0.034 0.844 ± 0.038 0.325 ± 0.049 0.333 ± 0.049
4 0.391 ± 0.023 0.889 ± 0.033 0.428 ± 0.051 0.447 ± 0.052
5 0.556 ± 0.037 0.856 ± 0.036 0.444 ± 0.052 0.289 ± 0.047
6 0.442 ± 0.039 0.725 ± 0.046 0.364 ± 0.050 0.428 ± 0.051
7 0.425 ± 0.034 0.772 ± 0.044 0.408 ± 0.051 0.422 ± 0.051
8 0.486 ± 0.040 0.731 ± 0.046 0.456 ± 0.052 0.472 ± 0.052
9 0.377 ± 0.030 0.781 ± 0.043 0.403 ± 0.051 0.406 ± 0.051
10 0.607 ± 0.037 0.894 ± 0.032 0.494 ± 0.052 0.339 ± 0.049

TABLE IV: Average precision (p) and recall (r) at all levels
of observation for ten individual subjects (highest in bold).

increase as more signals are observed. However, for the PM-
based approach, the recall initially starts high, then slightly
drops, and finally increases slightly again. The PM-based
approach exhibits significantly higher recall than the other
approaches at all levels of observation. For precision, the PM-
based approach is comparable to the other approaches at 10%
and 30%, and significantly higher at 50% and 70% levels
of observation. Note that LDA performs well when the full
trace is observed, achieving a precision (p) and recall (r) of
p = r = 0.709 ± 0.030. In comparison, the PM approach
achieves a precision of p = 0.645 ± 0.026 and a recall of
r = 0.793± 0.027. This is due to the high similarity of LDA’s
training data with the observed signal at the end of the trace,
when the subject already achieved the target pose.

Obs% PM LSTM LDA
p r p = r p = r

10% 0.344 ± 0.009 0.946 ± 0.015 0.348 ± 0.031 0.336 ± 0.031
30% 0.426 ± 0.020 0.813 ± 0.026 0.390 ± 0.032 0.346 ± 0.031
50% 0.486 ± 0.024 0.754 ± 0.028 0.427 ± 0.032 0.353 ± 0.031
70% 0.592 ± 0.026 0.789 ± 0.027 0.484 ± 0.033 0.523 ± 0.033

TABLE V: Average precision (p) and recall (r) for all subjects
at 10%, 30%, 50% and 70% observation (highest in bold).

VI. Limitations & FutureWork
While our work provides a novel and promising approach to

goal recognition for transhumeral prostheses, several aspects
can be further elaborated. Although we used existing datasets
for comparison with the state-of-the-art, real-world deploy-
ment may require more extensive experiments, including a
larger number of subjects (currently 10) and a larger number
of (and more complex) target poses and goals (currently three).

Our experiments confirmed that feature selection and dis-
cretization have a significant impact on the accuracy of the sys-
tem (in our case, of the GR outcome). Our current approach is
arguably simple and we would like to explore elaborate feature
selection and event discretization. For example, it would be
interesting to identify feature conditions capturing meaningful
prosthetic postures/configurations, and test whether sequences
of these yield good predictor for the goal being pursued. Doing
so will also allow us to take advantage of one of the key
features of our PM-based GR approach, namely, the possibility
to explain the outcome of the system based on the process
model and misalignment of the observed behavior.

Yet another area for further exploration is the testing of al-
ternatives alignment approaches. While process discovery can



be done in linear time [4], alignment techniques—including
the one we used in this work [5]—are often exponential in the
worst case. Since our approach does require alignments to be
computed at recognition time, extracting them as fast as possi-
ble is important for real-time applicability. However, the worst
cases often do not come up in practice, and our alignment
system took around 0.04 seconds per goal (note alignments
across goals can be parallelized). Nonetheless, we would like
to experiment with techniques that are specifically designed for
online conformance checking [26] as well as those that seek
approximate alignments, but fast [27]. Indeed, we conjecture
online conformance checking approaches may be a good fit for
our GR setting, since observations are incrementally extended
and such approaches extract alignments incrementally by re-
using previously computed ones.

The used dataset captured the features from forward-
reaching tasks using sound limbs rather than real-time control
of a prosthesis. The difference between real-time prosthetic
states and sound limbs introduces variations in visual feed-
back, which could affect the feature patterns collected dur-
ing movement. The feature patterns can have an impact on
the real-time recognition accuracy of machine-learning-based
techniques [28], [29]. Therefore, collecting data from real-time
control experiments and pre-defining standard traces toward
the goal with distinguishable feature patterns for training the
PM-based GR system has the potential to improve accuracy.

VII. Conclusion

In this paper, we proposed a novel PM-based GR method
to recognize a patient’s intended target pose when moving an
artificial limb, utilizing continuous sensor data. Our approach
transforms the data into discrete events to discover a behavior
model and subsequently predict the goal by aligning the
observed behavior with the model. Experiments on a real-
life dataset demonstrate the effectiveness of our proposed
GR approach, which significantly outperforms state-of-the-art
LSTM-based and LDA-based machine learning methods on
both precision and recall. In addition, our GR approach is
less confident when wrong, which results in a much smoother
movement of the prostheses in less certain scenarios.
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