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Abstract— Regression and classification models have been
extensively studied to exploit the myoelectric and kinematic
input information from the residual limb for the control of
multiple degree-of-freedom (DoF) powered prostheses. The
gross movement control of above-elbow prostheses is mainly
based on regression models which map the available inputs to
continuous prosthetic poses. However, the regression output is
sensitive to the variation in the input signal. The myoelectric
signal variation is usually large due to unintentional muscle
contractions, which can deteriorate the user-in-the-loop perfor-
mance with respect to the offline analysis. Alternatively, the
classification models offer the advantage of being more robust
to the input signal variation, but they were predominantly used
for fine motor functions such as grasping. For gross motor
functions, the discrete output may cause issues. Therefore,
this work attempts to investigate the feasibility of utilising the
classification model to control a 2-DoF transhumeral prosthesis
for gross movement. The performance of 6 able-bodied subjects
was evaluated in performing reaching and orientation matching
tasks with a prosthetic arm in a virtual reality environment.
The results were compared with the case of using their intact
arms and existing results using the regression model. Our
findings indicate that the classification-based method provides
comparable performance to the regression model, making it
a potential alternative for gross arm movement in multi-DoF
prosthetic arms.

I. INTRODUCTION

In the recent development of the multiple degree-of-
freedom (DoF) powered prostheses control, regression and
classification models have been widely adopted as the
Human-Prosthetic Interface (HPI) [1]. These models are us-
ing the electromyography (EMG) and kinematic information
extracted from wearable sensors to estimate the user-intended
prosthetic pose. For the regression model, a continuous map-
ping is constructed between the input variables and the output
prosthetic joint pose estimations [2]. On the other hand, the
classification model predicts discrete joint poses/gestures [3],
[4], and the joints are automatically driven to the pose at a
speed profile, which is also known as pattern recognition in
the literature [4]–[6].

The regression models have been used predominantly in
the control of transhumeral (above-elbow) prostheses for
gross arm movement which involves the motion of the entire
upper limb and prosthesis, such as reaching and hand orien-
tation matching [1], [2], [7]–[9]. This is due to their ability in
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providing continuous prosthetic joint pose estimation which
could enable natural inter-joint coordination. However, the
pose estimation by regression models can be significantly
affected by the noise and variance of the complex input data
[10]. For example, the surface EMG (sEMG) signal variation
caused by unintentional muscle contractions and its inherent
noise could lead to a significant pose estimation accuracy
deterioration when the user is in the loop [7], [10].

Classification-based approaches have been used in the
control of prostheses, mainly in determining hand grasp
types and pre-shapes for object grasping [4], [11], due to
the advantage of being more robust to unintentional muscle
contractions in sEMG signals [10]. However, the resulting
classes capture only the discrete quasi-static poses and not
the intermediate poses during the movements. The discrete
output of the model may also pose challenges for gross
movement tasks. The completion of the task may be impeded
if there are frequent instances of misclassification during
the movement of the residual limb, leading to unintended
switching of the prosthetic poses and hindering the user’s
ability to execute the task effectively. Furthermore, the move-
ment quality could deteriorate due to the discrete output, for
instance, in terms of the movement smoothness [12] and the
inter-joint coordination metrics [13].

Despite the possible shortcomings, the advantage offered
by the classification-based approach prompted the need to
investigate its feasibility as an alternative in prostheses
control for gross arm movement. The objective of this paper
is therefore to evaluate the feasibility of the classification-
based method with the user-in-the-loop performing tasks
involving gross arm movements. To the best of the authors’
knowledge, the classification-based models have not been
applied to gross arm movement. To this end, a 2-DoF
active prosthesis was developed in a virtual reality (VR)
environment, including an elbow flexion/extension DoF and
a wrist pronation/supination DoF. The performance of 6
able-bodied subjects was evaluated in terms of task com-
pletion rate and time. Specifically, we want to investigate
whether the user can complete the task in a reasonable time
using a classification-based prosthesis compared to using
the intact limb and the regression-based method reported
in the literature. The promising results would encourage
further investigation of the classification-based HPI for gross
prosthetic arm movement control, such as the improvement
in movement quality.

II. METHOD

In this section, the reaching and hand orientation matching
task in this study, similar to [7], [9], is illustrated first.
Then followed by the procedure of generating the targets.



The classes to be differentiated are defined as the discrete
target prosthetic joint poses [14], which the authors believe is
more promising to achieve coordinated upper limb movement
than the traditional classification-based HPI of taking each
direction of joint movement as a class [5], [6]. Next, the
experimental protocol is explained, including i) initial data
acquisition for classification model training, and ii) the eval-
uation for the online classification-based prostheses control.

A. Experimental Setup

1) Reaching Task and Target Set: The subjects were asked
to perform reaching tasks in a customised virtual reality
(VR) environment using the HTC VIVE® head-mounted
display (HMD), see Fig. 1. The tasks require the subjects to
match the position and orientation of a target bottle (in blue)
displayed in front, using the same sized bottle (in white)
that follows their virtual hand movement, as illustrated in
Fig. 1(b). Besides, the white and blue lines and translucent
hand in Fig. 1(b) indicate the target upper limb pose for
the current target. The target upper limb poses involve 3
DoFs of the upper limb: shoulder flexion/extension, elbow
flexion/extension, and wrist pronation/supination, such that
the targets lie in the parasagittal plane of the subject. Then,
the position and orientation of the target bottle are calcu-
lated through the forward kinematics of the 3-DoF upper
limb kinematic model reduced from [13], and the physical
attributes of the subjects are measured by the experimenter.
Furthermore, to extend the workspace beyond the parasagittal
plane, the user can rotate the trunk during online control, or
target upper limb poses outside the plane can be added to the
set. It should be noted that transhumeral amputees often find
it difficult to perform internal/external arm rotation through
humerus (shoulder) rotation [15].

The detailed target upper limb poses of each DoF are given
in Table. I. The full combinations of all the 3-DoF poses form
the final target set which consists of 27 target positions and
orientations. The HPI in this work was developed under a
transhumeral amputation scenario and would predict the 3
elbow poses and 3 wrist poses based on two classification
models, each for a DoF [14]. It is worth noting that all
combinations of elbow and wrist poses are repeated at
each shoulder pose, making tasks challenging by requiring
different upper limb postural synergies.

2) Sensor Deployment and Virtual Avatar: Fig. 1(a)
demonstrates the placement of the sensors. Four HTC VIVE®

Trackers (with motion capture sensors and an embedded
inertia measurement unit (IMU)) were placed on the subject’s
hand (HA), upper arm (UA), shoulder acromion (SA), and
trunk (TR) in order to record upper body and arm kinematic
signals and control the virtual avatar. The subject’s wrist was
fixed by a brace such that he/she can only do wrist pronation
and supination, and the hand and forearm are considered as a
single rigid body. Besides, seven Delsys® Trigno™ wireless

TABLE I
TARGET POSES

DoF Target Pose (deg)
Shoulder flexion/extension 30 50 70

Elbow flexion/extension 30 60 90
Wrist pronation/supination -30 0 60

sEMG electrodes were attached to the dominant upper arm of
the subjects: two on the biceps long/short heads, two on the
triceps lateral/long heads, three on the anterior, middle and
posterior of the deltoid. The kinematic and sEMG sensors
sample at 90 Hz and 1,111 Hz, respectively.

Two types of virtual avatars were designed for the two
aforementioned phases of the experiment. The able-bodied
avatar, as shown in Fig. 1(b), was used for the initial data
acquisition, where the virtual hand and forearm follow the
motion of the HA tracker. The prosthetic avatar, see Fig.
1(c), was for the online control experiments. In this phase,
the elbow and wrist joints are prosthetic joints that do not
follow the HA tracker movement but are controlled based on
the kinematic and sEMG signals gathered from the sensors
placed above the elbow. While the socket for prosthesis, see
Fig. 1(c), would follow the movement of the UA tracker.

B. Experimental Protocol - Initial Data Acquisition

1) Participants: Six able-bodied subjects (5 male, 1 fe-
male; all right-handed) participated in the study. The age
range was [27, 30] with a median of 27. The experimental
protocol is approved by the University of Melbourne Human
Research Ethics Committee, project ID 11878. Informed
consents were obtained from all subjects.

2) Protocol: The subjects were asked to complete 3
iterations for each target and hold their final reaching pose
for 1 second upon reaching the target. In addition, instead of
returning to rest (upper limb pointing downwards naturally)
after each iteration, they need to reach a group of 3 targets
consecutively before returning to rest to simulate a realistic
scenario. The order of the targets is randomised such that the
consecutive targets in a group require different target poses
for each DoF. The reach position and orientation tolerance
were set to 2 cm and 8 deg. The angular error is calculated
by the minimum degree of rotation required from the current
orientation to the target one.

3) Feature Extraction: The feature extraction was con-
ducted under a transhumeral amputation scenario. Upon the
subjects reaching the target in a coordinated way, they were
instructed to hold their final pose. The quasi-static data of
shoulder, trunk and scapular kinematics and sEMG during
the one-second holding period were used to extract the
features for the offline analysis. The time-domain sEMG
and joint postural features were investigated in this study.
The kinematic and sEMG features are extracted based on
a moving window. The feature extraction procedure is the
same as [14].

4) Sensor Selection and Classification Model: The sen-
sors and their features are systematically refined using the
method from our previous work [14] such that the informa-
tion content to differentiate the target poses of each DoF is
maximised. The processed features were randomly divided
into training and test sets with a portion of 60% and 40%.
The class separability measure in [14] was used to select,
for each DoF, the best sensors for the number of 1-9 sensors
out of a total of 10 sensors, including UA, TR, SA and 7
sEMG electrodes. Based on the features extracted from each
selected sensor set, a Linear Discriminant Analysis (LDA)
classification model was trained. The offline classification
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Fig. 1. (a) Sensor deployment, (b) Virtual reality (VR) avatar for initial data acquisition phase and a reaching target example, (c) VR avatar for evaluation
of online control of prostheses phase where the socket follows the UA tracker, and elbow and wrist are prosthetic joints without following any tracker.

accuracy of each selected sensor set is evaluated with the
test data set. Finally, the sensor set for the online control
phase was decided using the elbow method by checking the
obtained offline classification accuracy. The corresponding
classifier then serves as the HPI to predict the discrete
prosthetic poses.

C. Experimental Protocol - Online Control of Prosthesis

1) Protocol: The online control evaluation starts with
a familiarisation stage where the subject was given the
opportunity to attempt each target using the prosthesis until
they felt comfortable to start the evaluation. The target order
was the same as in the initial data acquisition phase. The
reaching position tolerance was relaxed to 4 cm and 8 deg.
Different from the last experiment phase, for each target,
the subject was given a maximum of 10 seconds to reach
the target with the prosthesis, otherwise, the target would be
skipped.

2) Virtual Prosthesis: A 2-DoF virtual prosthesis as pre-
viously shown in Fig. 1(c) was designed for the subject
to fulfill the reaching task, whose physical attributes are
customised to the subjects. The HPI predicts the 3 discrete
elbow poses and 3 discrete wrist poses every 100 ms with the
features extracted using the same moving window as offline
analysis [14]. The joints are driven to the predicted poses
using a proportional-integral (PI) controller at a maximum
velocity of 90 deg/s.

D. Performance Evaluation

Two metrics are adopted to investigate the feasibility
of classification-based HPI. First, to see whether the tasks
can be fulfilled using the classification-based prosthesis, the
Completion Rate (CR) (%) is adopted. It measures the rate
of completing the task within a predefined threshold time.
Next, Completion Time (CT) (s) is adopted to assess the
efficiency in completing the tasks, which measures the time
required to hit the targets within the threshold time of 10 s.
Repeated measures one-way ANOVAs were carried out for
CT, where the with-in subject factor was using the virtual
prosthesis or the intact limb. The obtained online control
results were compared to those in [7] where the same 2-DoF
prosthesis was controlled in VR to carry out similar tasks
involving discrete reaching targets as the ones described in
this work.

TABLE II
AVERAGE COMPLETION RATE

Threshold Time Phase
(s) Intact Prosthesis
10 99.0± 2.0% 69.0± 11.5%
8 98.6± 2.0% 62.8± 12.4%
6 97.7± 1.8% 54.5± 11.5%
4 93.6± 2.8% 38.3± 11.5%

III. RESULTS AND DISCUSSION

For ease of presentation, the performance of the subject
using the intact limb and the 2-DoF classification-based
virtual prosthesis are referred to as Intact and Prosthesis,
respectively.

CR (%): The threshold times are chosen as 4, 6, 8,
and 10 seconds. The averaged completion rate and standard
deviation for both Intact and Prosthesis are summarised in
Table II and the individual results in Prosthesis phase are
depicted in Fig. 2(a). In general, the completion rate in
Prosthesis decreases significantly when the threshold time
is reduced from 6 s to 4 s. Whereas, unlike the rest of the
subjects, the S4 shows a quite linear decrease in the rate
versus threshold times. The S2 has the highest completion
rate of 81.5% under the 10 s threshold time whereas the S4
only achieves 50.6%.

The CR results show two clusters of the subjects: the
performance of S1 and S2 are closely aligned, as well as
that of S3, S5, and S6. In addition, most subjects, especially
S4, reported feeling confident in maintaining the prosthesis at
certain poses and successfully hitting targets, but experienced
difficulty in keeping the prosthesis at other poses, making
task completion challenging. This is one of the reasons
why the highest CR is limited to around 80% and S4
performed worse than others. Therefore, the key to further
improving performance lies in developing a way to reject
unintentional movements and maintain the desired prosthetic
pose. Potential solutions can be utilising the post-processing
technique to correct the raw class decision of the classifier
[4], or regulating the joint speed appropriately instead of
using a capped velocity [11]. These techniques will be
investigated in future work to improve the completion rate
and reduce the completion time.

CT (s): The completion time for both Intact and Prosthesis
are shown in Fig. 2(b) where the pairs of iteration are filtered
out for both modalities if the duration exceeds 10 seconds
in Prosthesis phase. The median completion time for the
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Fig. 2. (a) the averaged and each subject’s completion rate in Prosthesis
against threshold times (CR). (b) the completion time CT. For CT the
significance test results are shown at the top with *** denoting p < 0.001.

two modalities is 1.5 s (interquartile range: 1.2-2.0 s) and
3.7 s (interquartile range: 2.7-5.4 s), respectively, with p-
value < 0.001, indicating statistically significant difference.

Overall, 5 out 6 subjects were able to complete more than
half of the total 81 trials within 6s. To have more insights into
the classification-based approach, the obtained performance
is also compared to the results reported in [7] where a similar
reaching and hand orientation matching task is studied in
a VR environment but using a regression-based HPI. The
average completion rate obtained in our study 69.0± 11.5%
under the 10 s threshold time is comparable to the rate
achieved in [7], 71.7±16.2%. In terms of the CT, the median
reaching time of 3.7 s (interquartile range: 2.7-5.4 s) was
comparable to the CT in [7], 4.3 s (interquartile range: 3.5-
5.5 s). It should be noted that the classification-based HPI in
our study achieves this performance despite more restricted
tolerance for a successful reach to target than the one in
[7], i.e. 4 cm and 8 deg (ours) vs. 5 cm and 30 deg (in
[7]). Given the comparable performance, the classification-
based HPI can be considered as an alternative method for
the prosthetic restoration of gross arm motor functions.

In addition to the key focus of the feasibility metrics of
the classification-based HPI, we also checked the compen-
satory motor behavior metrics used in [16]. The subjects
were observed in a relatively natural trunk and scapular
pose when finishing the task. Compared to the results of
using a regression model that adapts to the user’s motor
behavior in an online manner [17], the amount of trunk and
shoulder acromion movement is at a comparable level. The
adaptation process in [17] requires the user to repeat the
same task tens of times with the prosthesis. Whereas the
classification model investigated in this work was obtained
from the offline analysis only. The finding suggests that the
classification-based HPI may hold a potential advantage over
the regression-based method due to its capability to precisely
output the intended target pose, reducing the need for com-
pensatory movements. The movement smoothness [12] and
inter-joint coordination metrics [13] were not investigated in
this feasibility study and will be considered in our future
work.

IV. CONCLUSION

This study demonstrated the feasibility of using
classification-based HPI for the gross movement of
the prosthetic arm. Our findings showed comparable
performance to the regression models. Therefore, the
promising results encourage future investigation of the
paradigm.
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