Publications

Available on arXiv.

ORCID https://orcid.org/0000-0001-5415-3318.

Preprints

  • Limit shapes for the asymmetric five vertex model, J. de Gier, R. Kenyon and S.S. Watson, arXiv:1812.11934

Research papers

  1. Kardar-Parisi-Zhang Universality of the Nagel-Schreckenberg Model, J. de Gier, A. Schadschneider, J. Schmidt and G.M. Schütz, Phys. Rev. E 100 (2019), 052111.
  2. T-Q relations for the integrable two-species asymmetric simple exclusion process with open boundaries, X. Zhang, F. Wen and J. de Gier, J. Stat. Mech (2019), 014001.
  3. Exact confirmation of 1D nonlinear fluctuating hydrodynamics for a two-species exclusion process, Z. Chen, J. de Gier, I. Hiki and T. Sasamoto, Phys. Rev. Lett. 120 (2018), 240601.
  4. Integrable stochastic dualities and the deformed Knizhnik–Zamolodchikov equation, Z. Chen, J. de Gier and M. Wheeler, Int. Math. Res. Not., rny159 (2018), arXiv:1709.06227.
  5. Behaviour of traffic on a link with traffic light boundaries, Physica A 503 (2018), 116-138, L. Zhang, C. Finn, T.M. Garoni and J. de Gier.
  6. A curious mapping between supersymmetric quantum chains, Gyorgy Z. Feher, Alexandr Garbali, Jan de Gier and Kareljan Schoutens, Proceedings of the workshop Integrability in Low-dimensional Quantum Systems, 2017 MATRIX Annals.
  7. Dynamical universality class of the Nagel–Schreckenberg and related models, A. Schadschneider, J. Schmidt, J. de Gier and G.M. Schütz, in Traffic and Granular Flow ’17, ed. S.H. Hamdar, (Springer Nature Switzerland AG).
  8. A new generalisation of Macdonald polynomials, A. Garbali, J. de Gier and M. Wheeler, Commun. Math. Phys. 352 (2017), 773–804.
  9. Finite-size corrections for universal boundary entropy in bond percolation, SciPost Phys. 1, 012 (2016), J. de Gier, J.L. Jacobsen and A. Ponsaing.
  10. Koornwinder polynomials and the stationary multi-species asymmetric exclusion process with open boundaries, J. Phys. A: Math. Theor. 49 (2016), 444002, L. Cantini, A. Garbali, J. de Gier and M. Wheeler.
  11. Integrable supersymmetric chain without particle conservation, J. Stat. Mech. (2016) 023104, J. de Gier, G.Z. Feher, B. Nienhuis and M. Rusaczonek.
  12. Matrix product and sum rule for Macdonald polynomials, Proceedings of the 28-th International Conference on Formal Power Series and Algebraic Combinatorics (2016), L. Cantini, J. de Gier and M. Wheeler; HTML
  13. A summation formula for Macdonald polynomials, Lett. Math. Phys. 106 (2016), 381–394, J. de Gier and M. Wheeler.
  14. Matrix product formula for Macdonald polynomials, J. Phys. A: Math. Theor. 48 (2015), 384001, L. Cantini, J. de Gier and M. Wheeler.
  15. Exclusion in a priority queue, J. Stat. Mech. (2014), P07014, J. de Gier and C. Finn.
  16. Traffic disruption and recovery in road networks, Physica A 401 (2014), 82-102, L. Zhang, T.M. Garoni and J. de Gier.
  17. The critical fugacity for surface adsorption of SAW on the honeycomb lattice is 1+√2, Comm. Math. Phys. 326 (2014), 727–754, N.R. Beaton, M. Bousquet-Mélou, J. de Gier, H. Duminil-Copin and A.J. Guttmann.
  18. Discrete holomorphicity and integrability in loop models with open boundaries, J. Stat. Mech. (2013), P02029, J. de Gier, A. Lee and J. Rasmussen.
  19. A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems, L. Zhang, T.M. Garoni and J. de Gier, Transportation Research B: Methodological 49 (2013), 1–23.
  20. Off-critical parafermions and the winding angle distribution of the O(n) model, J. Phys. A: Math. Theor. 45 (2012), 275002, A. Elvey Price, J. de Gier, A.J. Guttmann and A. Lee.
  21. Deformed Kazhdan-Lusztig elements and Macdonald polynomials, J. Alg. Comb. Theory A 119 (2012), 183-211, J. de Gier, A. Lascoux and M. Sorrell.
  22. Relaxation rate of the reverse biased asymmetric exclusion process, J. Phys. A 44 (2011), 405002, J. de Gier, C. Finn and M. Sorrell.
  23. Current large deviation function for the open asymmetric simple exclusion process, Phys. Rev. Lett. 107 (2011), 010602, J. de Gier and F.H.L. Essler.
  24. Traffic flow on realistic road networks with adaptive traffic lights, J. Stat. Mech. (2011), P04008, J. de Gier, T.M. Garoni and O. Rojas.
  25. Separation of variables for symplectic characters, Lett. Math. Phys. 97 (2011), 61-83, J. de Gier, and A. Ponsaing.
  26. Factorised solutions of Temperley-Lieb qKZ equations on a segment, Adv. Theor. Math. Phys. 14 (2010), 795-877, J. de Gier and P. Pyatov.
  27. Combinatorics of Kazhdan-Lusztig elements: Factorisation and fully packed loop models, in Combinatorial representation theory Oberwolfach Reports 7 (2010), 832-835, J. de Gier.
  28. Autocorrelations in the totally asymmetric simple exclusion process and Nagel-Schreckenberg model, Phys. Rev. E 82 (2010), 021107, J. de Gier, T.M. Garoni and Z. Zhou.
  29. Exact spin quantum Hall current between boundaries of a lattice strip , Nucl. Phys. B 838 (2010), 371-390, J. de Gier, B. Nienhuis and A. Ponsaing.
  30. Exact finite size groundstate of the O(n=1) loop model with open boundaries, J. Stat. Mech. (2009), P04010, 26 pp., J. de Gier, A. Ponsaing and K. Shigechi.
  31. Fully packed loop models on finite geometries, Polygons, polyominoes and polycubes, Lecture Notes in Physics 775 (2009), ed. A.J. Guttmann, Ch. 13, 30pp., J. de Gier.
  32. Punctured plane partitions and the q-deformed Knizhnik–Zamolodchikov and Hirota equations, J. Alg. Comb. Theory A 116 (2009), 772–794, J. de Gier, P. Pyatov and P. Zinn-Justin.
  33. The two-boundary Temperley-Lieb algebra, J. Algebra 321 (2009), 1132–1167, J. de Gier and A. Nichols.
  34. Slowest relaxation mode of the partially asymmetric exclusion process with open boundaries, J. Phys. A 41 (2008), 485002, 25pp., J. de Gier and F.H.L. Essler.
  35. The Razumov-Stroganov conjecture: Stochastic processes, loops and combinatorics, J. Stat. Mech. (2007), N02001, 6pp., J. de Gier.
  36. Exact spectral gaps of the asymmetric exclusion process with open boundaries, J. Stat. Mech. (2006), P12011, 45 pp., J. de Gier and F.H.L. Essler.
  37. Bethe Ansatz solution of the asymmetric exclusion process with open boundaries, Phys. Rev. Lett. 95 (2005), 240601, 4pp., J. de Gier and F.H.L. Essler.
  38. Magic in the spectra of the XXZ quantum chain with boundaries at Delta=0 and Delta=-1/2, Nucl. Phys. B 729 (2005), 387-418, J. de Gier, A. Nichols, P. Pyatov and V. Rittenberg.
  39. One-boundary Temperley-Lieb algebras in the XXZ and loop models, JSTAT (2005), P03003, 30pp., A. Nichols, V. Rittenberg and J. de Gier.
  40. Brauer loops and the commuting variety, J. Stat. Mech. (2005), P01006, 10pp., J. de Gier and B. Nienhuis.
  41. Loops, matchings and alternating-sign matrices, Discr. Math. 298 (2005), 365–388, arXiv:math.CO/0211285, J. de Gier.
  42. Refined Razumov-Stroganov conjectures for open boundaries, J. Stat. Mech. (2004), P09009, 14pp., J. de Gier and V. Rittenberg.
  43. The raise and peel model of a fluctuating interface, J. Stat. Phys. 114 (2004) 1-35, J. de Gier, B. Nienhuis, P. A. Pearce and V. Rittenberg.
  44. Exact expressions for correlations in the ground state of the dense O(1) loop model, J. Stat. Mech. (2004), P09010, 24pp., S. Mitra, B. Nienhuis, J. de Gier and M.T. Batchelor.
  45. Nonequilibrium stationary states and equilibrium models with long range interactions, J. Phys. A 37 (2004) 4303-4320, R. Brak, J. de Gier, and V. Rittenberg.
  46. Bethe Ansatz for the Temperley-Lieb loop model with open boundaries, J. Stat. Mech. (2004), P03002, 27pp., J. de Gier and P. Pyatov.
  47. Magnetization plateaux in Bethe Ansatz solvable spin-S ladders, Phys. Rev. B 68 (2003), 024418 (1-8), M. Maslen, M.T. Batchelor and J. de Gier.
  48. Stochastic processes and conformal invariance, Phys. Rev. E 67 (2003) 016101-016104,J. de Gier, B. Nienhuis, P. A. Pearce and V. Rittenberg.
  49. Temperley-Lieb stochastic processes, J. Phys. A 35 (2002) L661-L668, P. A. Pearce, V. Rittenberg, J. de Gier and B. Nienhuis.
  50. The rotor model and combinatorics, Int. J. Mod. Phys. B 16 (2002) 1883-1889, M.T. Batchelor, J. de Gier and B. Nienhuis.
  51. The XXZ chain at Delta=- 1/2: Bethe roots, symmetric functions and determinants, J. Math. Phys. 43 (2002), 4135-4146, J. de Gier, M.T. Batchelor, B. Nienhuis and S. Mitra.
  52. Six – Vertex model with domain wall boundary conditions. Variable inhomogeneities., J. Phys. A 34 (2001) 8135-8144, J. de Gier and V. Korepin.
  53. Exactly solvable su(n) mixed spin ladders, J. Stat. Phys. 102 (2001) 559-566, presented at the Baxter Revolution in Mathematical Physics Conference , (2000), M.T. Batchelor, J. de Gier and M. Maslen.
  54. Exact stationary state for a deterministic high speed traffic model with open boundaries, J. Phys. A 34 (2001) 3707-3720, J. de Gier.
  55. The quantum symmetric XXZ chain at Delta=-1/2, alternating sign matrices and plane partitions, J. Phys. A 34 (2001) L265-L270, M.T. Batchelor, J. de Gier and B. Nienhuis.
  56. Magnetization plateaus in a solvable 3-leg spin ladder, Phys. Rev. B 62 (2000) R3584-R3587, J. de Gier and M.T. Batchelor.
  57. Phase diagram of the su(8) quantum spin tube, Phys. Rev. B61 (2000) 15196-15202, J. de Gier, M.T. Batchelor and M. Maslen.
  58. Exactly solvable quantum spin ladders associated with the orthogonal and symplectic Lie algebras, J. Phys. A 33 (2000) L97-L101, M.T. Batchelor, J. de Gier, J. Links and M. Maslen.
  59. Exact stationary state for an asymmetric exclusion process with fully parallel dynamics, Phys. Rev. E 59 (1999) 4899-4911, J. de Gier and B. Nienhuis.
  60. Bethe Ansatz solution of a decagonal rectangle triangle random tiling, J. Phys. A 31 (1998) 2141-2154, J. de Gier and B. Nienhuis.
  61. Solvable rectangle triangle random tilings, Proceedings of the 6th International Conference on Quasicrystals, eds. S. Takeuchi and T. Fujiwara, World Scientific (1998) 91-94, J. de Gier and B. Nienhuis.
  62. Integrability of the square-triangle random tiling, Phys. Rev. E 55 (1997) 3926-3933, J. de Gier and B. Nienhuis.
  63. The exact solution of an octagonal rectangle-triangle random tiling, J. Stat. Phys. 87 (1997) 415-437, J. de Gier and B. Nienhuis.
  64. Exact solution of an octagonal random tiling model, Phys. Rev. Lett. 76 (1996) 2918-2921, J. de Gier and B. Nienhuis.
  65. Operator spectrum and exact exponents of the fully packed loop model, J. Phys.A: Math. Gen. 29 (1996) 6489-6504, J. Kondev, J. de Gier and B. Nienhuis.

Editorial publications

    • 2018 MATRIX Annals, D. Wood, J. de Gier, C. Praeger and Terence Tao; MATRIX.
    • 2017 MATRIX Annals, D. Wood, J. de Gier, C. Praeger and Terence Tao; MATRIX; Springer.
    • 2016 MATRIX Annals, D. Wood, J. de Gier, C. Praeger and Terence Tao; MATRIX; Springer.
    • Counting Complexity: An international workshop on statistical mechanics and combinatorics (in honour of Tony Guttmann’s 60th birthday), J. Phys: Conf. Series 42 (2006), eds. J. de Gier and Ole Warnaar; HTML.
    • AustMS Gazette 33 (2006), 5 issues, J. de Gier and S.O. Warnaar; HTML.
    • AustMS Gazette 32 (2005), 5 issues, J. de Gier and S.O. Warnaar; HTML.
    • AustMS Gazette 31 (2004), 5 issues, J. de Gier and S.O. Warnaar; HTML