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O. Intoduction

The purpose of Hhese notes is fo peovide an (eeessible intvoduction
to the main_ Concepts of linear logic. The seminal Work, in this
new avean of veseavch is the paper by Tean-Yves Girard, " Linear
Logic¥, Theovetcal Computev Science, 50 (1487), 1-102 (subsequently,
Girard [19%1]).  This lengthy report is not recommended fo»'ligkt
bed-time veading; its quite substantial content denands many
hours in a quiet room and a good Supply of pencis and paper.
Over e last few years, dhe literatwrs on  linear logic has been
glowing at Qa vather mMofe than 'lineav vode. However, the bulk
o[ these papess, including Introductory exposifions such as
Lafont [M8%a] ond Seeh1 UQ%"I], arve to be f()und i Jourmals
ov (enference proceedings inose futended oudience consists of
Computes  scienhsts  aud [or category dneovists.  We hope that
these potes iU be of use 1o /Ogic,}ans of other pussuasions,
We will affewpt fo make pevepicuous the rather elegant mothematics
lAnde/h,'inﬁ linear logic.

Our basic Vefevena: is Gvavd [19871. We Work ‘Hﬂfougk much
OF thot poper, fju)ng out detouls, sSupplying proofs of lemmas,
Yearvowmging things eic. Sechon 5 also incorporotes Work from
Gimml,wfonf;and'raqlor Liag9]). Depavfures fvom andmodjf’ca!\bns
1o e origimal ave noted, as ave references to other papels. One
depavture is our Omission of proposiNonal quanh’ﬁ'efs, S/Jeciﬁcallq
the freotment of them i Chopters 3 and 4, on Comertirt spaces
ond Proof nets fespechvely, of Givavd [19871].  Readels Keen to
9o higher order Wik veed o Good grip on ground level shuff;
hOpefuu% they | get Hiot heve. 'n Spife OFJMS‘}\'ﬁa.ble Complainﬁ-i
by a number of researchers (e&q. Avion (1338], Seely [19847)
about Givard’s  choice of notaton for his logical opesators,
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We have stuck to the original. Appendix A consists of a hanslation
Toble whicn may be helpful to readers of Seely [1989], Awon [1988]
or anyone familiar with relevance logics.

To get a feel for what linear logic is on about, Consider
Hilbert-style axiomahc systems where the onlyy vule of inference
IS Modus Ponens (Mp), as in Avvon [1988]. We restvict our
attenton 1o the implicational fragment of a lanquage fov proposikonal
logic. We can chavacterize n lineay Emof as one n Which every
occurrence of a fovmula ofhes than fue last is used exactly once
as o premise o[? MP. In Conivast, The proofs Aapproprioke to
the System R (the implicahonal subsystem of fhe relevance
!ogic R) Ore Hose in which ever| occuwrence of o fbrmwla
Other thon the last is used ot least once as a premise of
PP In ferms of Gentzen sequent calculi, systems for linear
logic have neither Contvachon nor Jrhimm’ng among thewr
shucturol vules; in the system for R, thinning is dropped
but coniacton is retained. W:inninﬂ (also knovin as Weakening)

ves rise To Spuvious dependencies (' irrelevancies') such
as A—)(B-—)A); in o proof of such & fo_/mula, the hypothesis
B is not used, so we have Wastage. Corvachon cllows
an occurvence of o formula to be used over and over Dgain;
roughly, this means that the first time vou get sometiriig,
You pay fo{ it, but af’re) that you're 991rbng Sﬁng for ﬁee.
I linear logic, nothing is wasted, and nothing is gotlen
]COV ]Qee. ( For more onthe intuibve content of linear loﬁic,
see  Sechon 4 below.)

Linear logic Is atiacting quite o lot of oitenhon nthe
Compytes Science Commuuty.  Regretiably, the cudhov 15
almost ’rotaUq ignovant of Computer Stience, so is in No
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Poﬁiﬁon to say an%*ming chout the signiﬁ‘canw 0(’ lineav
loﬂiC ]COV This field. The veader 1s fefewed to Lafoht [WS%bl
Which 15 an extended version of Civavd avd Lafont [1987].
Lofont intoduces e ‘Linear Abshact Machine' as a Technique
of implementing  functona, programming lanquages based on
inhatonmishe linear 103)‘0, ie. n The sequnt coloulus fov Hus
logic, the vight sides of sequents contain at most one
formula; see Appendix B for the fwo-sided sequent colouls
fov ‘classicod ' and  inhuhowishe lineow loaic, “the mernory
allocation in Lafont's Implementation (s such that Here is
ho need fov o gavbage collector ; Very Vougnly, the Sort
of Waste  produced by thinning Is wWhat you Wotddl need a
qurbage collector «fb« I addihon, the Llinear Abshact
Mochine permits o symthesis of sivict and 1azy evaluakon
swa’reﬁies: ‘coll by Value' along side *cau by need”. !
(For 4hose who have vead aheaol, the mulfiplicorve A®B
Is Q ’ﬂ1pe of svict pars while the additve ALB Is a type
of lazy paivs 5 We have no need fo say any move obout
the mottes here)  For move on the import of lineav logic
for the shudy of parallelismv,  see the jnvoduchon to
Givard [19%7] ond the essay “ Towavds a Geometry of
Intecaction *, Givard [1989].  The lotler presents 'q program
fov proof dngory inspired by ifs growing Connectons With
Computer stence’.

These potes are based on material presented in o series of
ffieen seminars held at the Unvesing of Melbouame , Mavch - July
1991, The authov pishes o Hank, for invalmokle comments and
Corfechons,, The Yequior pawhcipants: Tacinia Lovington, Allen Hazer,
David Qdeld (Univessity of Melbourne) Ongh Damiel Mahlet (Monash Univer sity),

and the ivvegulay pavhiciparts :  Kevin Daveys Tohn Lollins,) Lloyd Humberstne
(Monash), David Kinnick andl Harald Sondergaavel (Melbourme).



l. Sequent calculi

10 Additives and mulhplicatives

SuFPose ouv 102\1 loﬁi(jan has a dim recallechon oF reOdjnoj
Schwichtenberg [1971], remembering gnly that o ene-sided sequent
caleulus fov classicat logic means that thei is oy haif as pany

Yules fo Write out and depl With. Each Awo-sided sequent of e
form

A
15 veplaced by:

)...,A'\ ‘— B',--’-,Bm '

,“"’Al,,,,)'vAn,'Bt)..., Bm .

Being 0 bit Woolly on the details, owr !azo] loﬁicicw hesifades
beheen the folrlow{'ng fWo possible vies fm conjunehon :

FAA FBA FAA B,

H: We have the rules of 'H'ninnmg and conhachon -

E A ard -ALA A

——ee

FAA FAA

)

Veépecﬁva]u}, then, With thinning We com denve the second of
the conyunchom wes from The fivst, ouwd withh Comhachon
We can odlevive the first flom fhe cecond.

Our lazvl log?ciom ogrees to dvoP %mmng cnd ConNachon:
at 4he least, Heve Wil be o few less coses o Wory adout i
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the PVoof of Gentzen's Hau ptoatz ( cut Blimmahon theorem)-
Moreover, Coniachon is Vesponsible for the wadlecidobitity of
precicate calculus. The sub-formuda property (corollany of tue
Howptsalz) Yields o (dhéoretcal) decision procedure for predicate
colculus, provided o bound Can be placed on the Iengﬂ« oF ony
sequent accurring in a cut-fiee proof. In the clpsenice of Contvachon,
all Sequents otcuwing in a cut-free proof have length less Haan or
€7ual to the IW of ‘the end Sequent . (This is noted in Givavd (1989],
P79, and elsewhere.)

In linear logic we have LV“Q quite ouﬁf@/ent conjuncf\'omS:

* an additve conjunchon & (Called ‘with'), characterized by
the vule
~AA =RB.A

&
FAZB A ()

ie. fwo copies of Hhe same parametdic sequence are identfied,
Qving o tape of implicit convachen;  and

* @ Mulbplicatve conjwrcﬂow Q® (called “times’), chavactevized
b\1 the rule

HFA A B r
FA®B A

(8)

ie. parametic sequantes ove accumdloded.

(’ﬂqe terms ‘additive’ and 'mulfiplicabve’  as Weld as the buzz word
‘linear!, hove their ovigms in the coherent Semantes for lineav
Iogic: cee Sechom 5 below.  With respect fo the relevance loﬂic

fradivon, ‘additive’ comesponds to ‘extencionol’ and ‘mlh‘pucaﬁve'
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The olsence of tinning and conachon olso gives rise o
Yo dishnet verum-like Constants: ‘

e an additive one, T , Characterized by the axiom scheme::
FT.A

Wheve A is any sequence of formulae; and

© & mulbplicatve one, 1, charactenzed by the axiom:
F41

A 5“P“"‘5"”ﬂ feature of lineay logic is dnat although tis
construchve — PmPos’m‘onaL Intuihon she logi( s 'Fai)""]c"‘”"]
Yomslaroble info modal lineav logn'c — it vetains an
.L_WO)W"‘/Q Vl@fjab'on/} (-—)L. (W@ pronounce 1t ‘Perp',) As a
Conseauence,  de Morgan —shyle duality is rife Within
lineav " logic :

o 4he addihve disjummom ® ('pws’) js the de Movgan
duadl Of & -

 the muthplicatve disjunchon 3 (par’) is the de Morgon
dual of ®;

o e additive falsum-like (onstomt O is the linear
negahon o[f T, ond

o fhe multplicotve falsum-like constont L is the linear
negahon oF 1.

( We pronounce L as ‘eet’.)
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We get a rather sleek syntax ond sec]uaﬂt @devdus for
lineay logfc iF We toke the Symbols D, 3 O ond_L Qs
Privihve, in addifon fo £, ®, T and 1, and then inoduce

(-)* by dgﬁnih‘ow. A symbol far linear implication, —o,
('entoils’5 We usually cald it ‘lollipop!) wikk also be
intoduced, by def{‘nih'on:

A—B £ A 3B
ie. the muthplicative anodogre of Motenal implicodon.
Justficakory for this act of definihonal fiat with vespect
fo lineps neﬁai(ovt owd lineat imph’cod{ow will be fOund n
dhe phase space semanhcs  ( Sechon 2.).

Historically, Givardl first Worked withv linear inglicahon,
by Wy of o 'decompositon’ of intwitonistic implicaton
(cee sechons 3% and 5-3 below) and fhen built the vest
of the logic avound it.

Somme. Yeodess may e jushfickly pesplexed by the weivd
Synme ivies v Givard's nofohon :

CONTuncTioN VERUM- LIKE.  DISTUNCTION  FALSWM-LIKE
AdDITIVE & T oD @)
MULTIPLICATIVE 2y 1 B 1

In par feular, Why doesnt the notakon veflect e de Morgan,
duakihes 7 Givard Seems to Want to sivess that the
Mulhglicotive Comnectves distibude over thew nofahonally
Sinulov - addifves  (See section 13 below).  One may adAso
derive some consolakon f:-@m The fac{; that it wit tww
out tnat e category of finite dimensionad Vector spaces

over o f‘eld K Vec-ik, Whose morphisms are lineav Maps,
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s a model of [inear logic. The mulbplicatve & is
Inferpretied 05 fhe fensor product &, the odditve @
i5 the direct sum & and linear negahorn ()= is
the dualihy Operator (-)*. (See sechon S5+4 below.)
So linear logic has Somewng to oo with lineaw algelova.

Il The sequent Codouli LL ond LLM.

n later work We will need ‘o r’efer to the pure multpliaative
wcmﬂment, ie. e Symbols @ and B bwt not the Constants
1 and L, so we allow for tiis in ow defintions here.

Defition I-1-0:

We have symbols of the following Kinds:
(i) Cconnechve symbols: &, B, &, @ ;
ty tonstants - 4 L T, O
(i) literads:
(@) propositonal letters: P, q.r, ...
(b) the duals of propositional letters: p*, g% v ...

The lanquage & of (prapositionad) lineas logic s defined
as fﬂ“oWS:
o Constonis and litetads awe formulae m & ;
o if Aad B e formulae in & then so ave
A@B A%B, AEB ad ABR.

Trhe /Mlﬁuage Lm OF the, PUi MMPMCML@ ﬁogm&dg{i hineavy
logic 1S defwned 05 follows -

o Itetals ave formulae n Lim;

o iF A ond B ave formulae i dm then So is AQB ad A%B,



Constants and literals are atomic formudae of &5 literals
ave ofomic formudae of L.

Definition I-|-1:
Tre expression (A" whese A is o formulae in £ (L)
Is defined as follows -

@ % 4 (LY 1
(T % 0 "% T
i{: P Is a propositional letter, | (P*)"gf P ;
if A and B ore foraudae in & (L),
(A®B)'E (A* 5 (B)" (A%B) ¥ (A ®(B)* |
if Awd B ot Pmwlae in £, |
AB £ AraE* (AGB)E (AL (B

The expiession,  A—oB | wher A and B are formudse in
£, is defined as follows:

A—B = (A*ZB .
Torentheses may be owmitled whete afﬂfopfiafe.

Note #at fofmulae in L ove automohcally in neqohon—
nomad form. Capital Romon lefers A B .C.D.E will be
used Solely as metalinquishc Variables vanging over &
(or Low). Med alingwishcolly, Wwe howe the ;‘deM'hz

ALLzA'



Definibon I-1-2.
An K/—seg,;uent (Zm~sequemt) is an expression of the

o E A As

Wwhese A:,.,.,Ar\ ove ’]CO/MM,a@ N i‘ (?CMB.
We use copital Gleek lettets AT Z2. O Ao denote
rnces oF {ormuae.

If- A is the emphy sequnce, them A has fhe Same
meaning as kL.

The Seqvémt dcdus LL COns?éfS oF the Oxiom Schemes:

identity ¢ A A wheve A is o propositonal letter
Odgihve : T, A |
muphcotve: 1

and the {ollowing Inference vules:

struchuwal @ A (ExCH)
F o) AT

where o i5 any pevmutation of A

adduhye: HAA FB A (&) _E'__AA((STGB) FBA (SNDeB)

FAZB A FA®B, A FA®B A
Miliphicaiie: ~ FAL FBIT o0 FABA (g EA )
FA®B, A, FABB,A FLA

‘The sequont. colewims LLM Consists of the axiom scheme of
idenbhy  and the inferencg vudes (Exch), (Cut), (®) and (3).
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The reshichon of the identity axiom scheme to propositionad
letters is due to the ff‘)b(owing:

0 F A,A‘L (ExcH) - B, B*
_téj._A__ FsT@® - B‘L’B (sND D)
FROBA . FA®BB
FA AoB* FB A®B" &)
HFALB, A"®R*

(EXcH)

)

(i FT,0

i FAA  FBB*
- A®B, At B*
- A®B, A5B*

(®)
(%)

™ A1

)
FL 1

n View of the 'mffd‘ﬁl/l(,@ vle (3), an ;,f—sec]uent o+
Lom - sequant

F A A
Wilk be given the same Semantc interpretobom as the formuln,
Alg-.-SAw'

( Assocatuiny s not 90ing o be o problem),
In virtwe of the Sthuchood ride (EXC!“')\ We Condol Word

Wtlv - mMulfi-sets of mulae rathes than Sequences o(: ﬁ)mm!aa;
We Shll have fo dushngquish Occurrences of formudae.
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Gertzen's F/oof of the Hauersm‘z {ov He classicad sequent
Cleulus LK can be readily modlifed (working on Cuts

directiy rathet thow on mixes  Hne latter requiing %innfnﬂ)
to ﬂive

Propositon 1-[-3: ( Hauptsatz for LL)

It Tis a Proofof FA in LL

then T Can be transformed into o Proo{f m of FA
in Which the inference rule (cut) is not used.

Thistlewoite, MRobbie and Meyey [19%23] have independe/ﬁiq
devised a one-sided Sequent calomlus  strikingly similor to
LL. Thar systean, for The relevance logic * R minus dishibubon’,
15 the same as LL P_I_gg contvachon. 'Distribuhont in this
Context 1S an Qxiom stheme expressing the dlistizutivify
of additve conjunchon over odolitve clisjunchon it s
Convenhonally adjomed to the reevarce logic R. Inthe
notakon of lineav logic, the axiom scheme s

AL (BBC) — (ALB)BC.

With contvacton, one reacily derives
A& (BOC) — (ALB) @ (A&C).

For more on the relaton between linear logic and velevance
logicg, see  Avron [19%%].

In Append/ix B Wo set out the dwo-sided sequent calculus
for standavd |\ classicod’ | linear logic o fbf inhut oristic
lineay logic.
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12 Some Hheorems of LL

Definition 1-2-0:

A is a theorem O(: LL ff)rhe SQL]Ment A is provodkle in LL
A and B are provebly equivalent in LL, wtten A=uB,

% both: A—oB owid B—oA ove ﬂ/leorems of LL.

Lemmao, I-2-1:

The following are priovoble eguivolences in LL (omith
the SMbSCH%t L) : i Fomiind

() associatvity and Commutohvihy:

A&(B&c)—
A®(BSC)
A®(BRC)

A% (B%C)

mon |"

(i) constonts:

(i)

T&A
1A

O®A

m W

il

1— A
Q— A

W

)

A—B
(A®B)— C
A—(BBC)

m

(ALB)E C
(A®BY®C
(A®B\®C
(ASB)YBC

A
A
O
A
-

B"— A*
A—(B—C)
(A—~BY3C

AEB = BLA- .
ADB = BDA
ARB = BE®A
AL B = RBSA
QA=A
15A=A
T8A=T
A—ol= A"
A—T =T
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(v d;SMbMKV4'h1 Of Mu)h'plicaﬁves over ‘opposite’ addihves:
A® (BBC) = (A®B) & (ABC)
A% (BL£C) = (ABB)& (ABC)

A—o (B4C) = (A—=B)£ (A—0)

The following ave Hneovem schemes for LL -

(viy half- dish buhvity of Mulbplicatives over ‘hke' adoutives:
AB(B&C) — (A®R)& (ARQ)
(A8BY®(ABC)— AZ(BOO)

(A—C)® (B—0) —o ((A&B)—o C)
(A—B)® (A—~C) —o (A~ (BOC))

(Vid hoif- cistibuhvity of addifives :
(A&B) & (A&C) — A% (BOC)
A@(B&C) —° (AeB4(ASC)

(vii) Weak distributivity of mulhplicatives:
A®(BBC) — (A®B)BC

Poof:  We will Onlyy exhibit proofs {Iof (Vi owmel (viiy. The
reodey 15 invited to tvy one of the others for their own
@diﬁca%on. The first equivalence in (iv) i ‘borrowed’ flom
lineav qlgebrar: e distbuhviny of Fhe Hensor product over direct
sum. In (i), read & as ‘meet’. @ as'jon' ond —o as
Mclusion; Such o wanslavon yields geneal propeshes of
[otfices  (see sechon Z-1 below)-



We omit exchanges.

(vii)
B, B ¢, Cc*
%) —{snp)
EAA  m FBAG®B o _FAA Ly FCABC
FA A®B"  |BecC, A® B”;& A, MO | BB, A*@c*\, £)
F A@BY AZ(BBC) 1 kKBt AR(BOC) \
F (A-@BY & (A0¢+)B (AZ(BOC))
(viii)

B B FCHe ®)
F A A* F B, Bt C ®
F A®B, At B*'®cC*, C %
F A% (B*®CY), A@B,c“s)
F Atg(8*ech) . [(A@B)BC %
F (A*% (B*®CY) 3 (A®BYSC)

(|
The reskicted s%ment colculvs LLM s h'gh!b? conservahve .

Dbservahon 1-2-2.:

Let 1T be o cut-fiee proof of FA in LLM, and let
FAAS . FAaAS be oo list of ol the insfamces of the
idenkty oxiom scheme wiuch occuv in T Then the ofomic

Subformulae ( terals) of A owe exoctny AGAT ... Ad AL

This 15 estabklished bvf a Sfmple inducton on the
Proof cf FA.
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Observahon, 12-3:

Let FA be any povakle sequent of LLM, and
let  Ai... A be o list of all occurvences (as atomic
Subformulae) of positive literads -in A. Then the
neqatve literads  Occurving in A ave exactly AL AT
le. Cuyts deS#O(,’ literadls in dual Fairs_

O%P/\/Odfow 1-2-4: ’
o A fo«mm of Lo of +he form/

A—(ABA)
Is Q. theorem of LLM ;ﬂ: A 15 o theotem O]C LiM.
(ll) No fomwla of Lm of the J]:OVM/ -
(A@ B)—o A

Wheve B# ABA* and B+ A'3SA, is a theorem
of LLMm.

formulae of fype (i) ave chavactenshc of Connachon. Those
of fype (i ave symptoms of thinning; (A®B)—A s
Provakly equivalent To A—e(B—eA) by the associohvty of B.

When We extend, the sequent Calowlus from LLM to
bL, we ose dhe balance € positive and riegatie
Iitesals  (and hence have a more interesting logic).
Howeves, the analogue for L of 124() skl holds
‘FO/ LL and fomulae of £ of he fovm (A®B)— A
e hot i genciod, theorems of LL [ but there are
more Cases o exclude).
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Let us Consider the axioms schemes and inference rudes of
LL o fillle more closely. The dxiom scheme for T is
ﬁen&’oms, but harmlessl% So. Obsewve thot if an instance.
of the axiom Scheme for T occurs in an LL proof them
there must be an occurvence of T In the end sequent
(so T5 cant be 'cut-out’ completely). The rule (L)
ollovs us fo 'thin-in’ as many copies of L as e like.
The vules (Fst@) and (sNb@) also involve a type of
thinning, ol the level of Subformulae, but ave st
Comservotve With fespect fo pavametiC Sequences. Ofhendise
put, these rules, like (@) and (2), act locally, ie. only
on principal formuloe.  In Conkast, the rule (&), With
16 requirement that the Mo premise sequents containg

he same paramedic sequences , involves o globad - conswaint.
In our later work withv an alfematire proof proceduse
(the system of 'prodf nets’ in sechon 6) we Wi have
Wouble dealing Wity & becowse of tnis conshaunt.
(“The problem is fomulios o veleyounce logicians: see
Duan [1986] or Avron {19881
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7. Phase £pace semantcs

n s sechon we give on algebraic semanhcs ]Co lin ear
logic and prove Hne Soundness and completeness of LL Wit
Ygg;mt to s Semanhces. This is, as Givavd puts it, &
“avskion — S""L}'& SempnhesS  ang [n virtwe ofl Completness
We 33& on oﬁg&al bless(rg for the system L. In Sechon
S We present o alternotve, ‘dJS‘hArblnﬁl Semanhcs n
tems of Coherent spaces, thich Givard takes to ke more
In the daditon of Heyting. Coneront Spaces emerge from
Q fexNovkm OF Dona Scolt's ’ﬂaCOVL,, of domains (models
fov imwhomshc logic / h,,ped A- C&Uculus) Givavd uses
them to shows howl lineaw implicaon resuits fom
\decomposion’ of inhitonishe implicator. lnthe fame-
Work of (teheitnt Spaces, We Con nohavally osso Ciote a
Semipnie object Lt each proof v LL.

Rut f«et We must bestow wpon LL a nikil obstat.

2-0 Phase spoces and fads

Defiikon, 2:0-0:
A phace space IS @ quadvple <P, 1, Lp> consishng of
i) @ Commutarive monoid <P« 13
ie. Satisfying @ forall pgre P, pl9r) = (pgr
(b) fovaUPGP, Pl;IF:F
ad  (©) ]Cor ol p.ge P P4 = 9P

and
() a dishrguished subset Lp<F.
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The elements pe P are colled phases  and Lo is the
set OF Oﬁﬁo‘o’&nad phases oF <P-,1,1.>.

As the f‘fst of many abuses of notaton, we shald
refer to P o5 o phase Space apd drop the Subscrpt
o Lp when the context mokes it cleav. We ave
go}ng 1o inféfplet -fbrmulae in £ by Certain subsets
of P not Supn'sinﬁlq, Lp Wik be the irderpre‘!ws'ano\c
the constant L. In what follows, we wilk re-use (and
abuse) the Conmechve Symbols of &£ in giving dlefinitons
of the covresponding Semanhc opesatons.

Definifon 2.0.1: -
Let GeP be any subset. We define the dual of G,
Watten G* Qs follows:

Gt & {16?, for ol FeG(pze..L)%

So G* Consists of those i Which serd all of G into L.
Obsetve that ot any peP,

tps = 39eP| pgeLy
(nd Jov any GEP,
Gt = N3ips| pec

Def\’n]‘kOn 2-0-2:
let GEP. G isa fact of P i{F Cr=G.
A fact G is verified in P iff 1¢C.
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Givard thinks of the peG, where G is a fact of P,
0s phases ‘betdeen the foct and its verificahon’, or
fasks to be undertaken in order o verify G. When
1e G, tnee are no fasks to do; G is veviffeoc in P,

If we wrte *pEG’ instead of ' peG’ (as Gvard
does in his invoductory discussion) the connechon uith

Knpke-style Semanbcs becomes cleaver. (cf. Dunn[186]
on the Semantics of velevance logics.)

Lemma 2.0-3: (Givara fl‘?‘iﬂ])

Let G, HeP.
0 GeGH,

)

i) if GeH Hhen Htc G*;
(v G is a fa(,t oF P ifF G=H* 7%' some HEP .
W) if H is a fact of P and G <H Hen G**c H.

Fr’oof:
() Let peG. Then for ald ?eaf pgeL. But

Gt = %p‘gP | for alt qea*(pcle.LYS.
Hence pe G*+
Gi) BU’ d), G.I.g GJ..L.I.

Let qe G, Then for alt pe G** pge L. Since

G G**, e have that for ald pe G, pge-t.
Hence qe G*.

iy Similay argument o (i) -
(M Immedinte Consequence of iiy.
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) Lt S=NIHSP| CGecH ond H=H**Y
Then Ge S g g4+

Bb’ i), C**c¢c s**c GAras
Bl1 (b, G****= g+t

hence G**t= S5+
To obfain, S5=5" e need the following result.

Lemma Z-0-4 : (Girarl [1987))
I 2G5 5 am1 family of facts of P
then (KI )

ICI

Hence Ahe inter sechon oF any f'amibﬁ of facts is a fact.

PVOO£:
- First obsevve Hhat

L= 1
i&i G ig Qai§ézlpqé s

Let ‘le iLe)z Gi. Then ‘For some 1T, and fov all peGi, Pcze_L.
Thus i pe 1 Gi Hhen pgeL, hence Fe(UC

lex lexr

Conversely, let pe LCIC) Then fov each ieT, fole&
then 616 I.EJIG{' hence P?e.‘_ Hence pe ne*

(€I
Since  Gi= Gt We have pe QG-; ) n

Comnm 2.0.5:
For Olnu’ GEP

(U?‘%F'x“‘] peG‘;)u =G
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Definion 2-0-6:
Fack(P) = 4 Gepr| c=C*Y

Fact (P) is parkally ordertd by inclusion,. Note that G e Fact(P)
i}f G is the infersecton of Some family of duals of singletons,

ie. G = n %{P'S'L l Pe Hl} ]cor Some Sét VH.Q":P-

lemma 2.0-3 (j—(iii) implies that (-)"* is a closure
opefahw on P. So by olei'owfng Vi a Standard vesult
i lodfice theory (eg. Burvis and Sankapponavar [19g1],T-5-2)
We Could have bypassed 2.0-4 and concluded that
the poset < Fact(P), €2 is a Complete lathice, Liith
N G = N G; and _\/Gi=(_UC,iu

1€x 1€T 1lex 1lex

Where  $G.Niex 1S any family of facts of P.

Exomples 2:0-7:

@)~ Le Fact(p) since L =11%"

(i) Deﬁng 1% 1Y <0 Le Fact(P). Nou
L =1{peP|feallgel (Poze.t.\\S

Tws 1c1 and if pel ord re 1 then prel. Heme
1 s a Submonoid of P. Moreover, if pel and 9eli,
o any subset GeP, then ppe Gt

ODbserve Hhat G e Fact(P) s ven'f'ed in P exactiy when G
tontouns 1

leG if CteL nﬁf 1cG, assuming G=G*".
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(ifi) beﬁne T4 @L, hence T =P e Fact(P).
) Defne O % T* Thew e Fact(P), and Since
Q= 1peP| fpallgeP( pgel)y
We have O ¢ (G fa' all Ce Fact (P).
’I?ivia,uﬂ, GET ]Q)r all G e Fact(P),

hence  (Fact(P), € > Is o bownded lathce. (Heneeforth,
We'll use "Fact(P)’ to vefor 4o boththe latice and its undlerlying sct..)

The general pictwe of Fact(P) is as follows:

facts verified. 1;“\
m P G /:\ AN facts vihich awe not venfied
W \ “m P, omd ave not e dual
ﬂ/ g Of afact vgvif\'ed in P
Vi L
/ .
2
( { /
A e o f facte
G _ Veribied in P
SR
\:‘O/

By conshuchon, (=Y" is an involuhon on Fact(P), but it
15 well Vemoveo fiom classical negahon.  We Cerlainly dont
have . ]Co« ol Ge Fact(P), either 1€G or lecC* Moreover,
thewe s Wommg to e out the POSSibiUﬁ/] Of both
1leG md 1eG*, {o/ some Gée Fact(P). However, We do .
howe he following

Llemmp 2.0.8:
Theve is o GeFfact(P) Such that 1€ G omd 1e Gt
lFf iG.LP.
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[@Qf:
Suppose G € foct(P) i Such thot 1e G and 1e G*. Then
G'¢«Ll and 4 ¢ (*. Hence 1el, S leld.

Conversely, Suppose 1e L. But 1 ed always, so we aredone.
|

Phase .spaces <P, -, 1, 1Y Such that le Lp Ve
a bit weird, if not outvight paﬂratojical. Now as a4
CQTOMaVu, to the Houptsatz, ue have that L is
hot proveble in LL. ( Note that this Only 3:‘ves a Weok
Consistency s the- plovobility of fhe emphy Sequent is only
really dongecous in the presence of weakening.) Once e
hove - proved the Complefeness of LL, We'll have o -
quaviantee that not ol phase spaces ave pathodogicad.

2+ The Additives

Obviously, the additives are the lathce operakons on Fact(P).

Definition 2:1-0:
let G, H e Fact(P).
Deﬁne

GEH L CNAH  aa GOH E (QGUH)™

Obzervaron 2.1 ¢

Since Fact (P) 15 o bounded lathce, the operatons § ond,
@ ove gssocahve ond Commutatve, amd odmit identty
elemente T and Q respechvelys

le. TLGC =G wmd OBC =G .
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More gver, for all G H, ke Fact(P),

(GEH) B (GEK) < G4 (HeK)
CO(HEK) ¢ (GOH£(COK).

lemma. 2-0-4 (ields +he de Morgon duality:
GEH = (C*OHY  ad  CGOH=(GEH)*"
Jor ok G, H e Fact(m).

Note the vesificohon conditons for & owd @ :
iy le G&H ;ff 1¢G and 1e H;

() lf 1eG oo 1eH then 1€ GOH, but the (onvesse
does not, in geneml, hold.

Lemma, 2:1-2:
fact(P) is not necessarity o distibuhve latiice.

FProf,

Thete is a plentiful Supply of finite phase spaces ki, provice
Counter-exomples.  Among the Simplest js the  monoid
P=<%/z +,07 with Ll,=3%25".

1 =30%"= *ne Z/ng n+0e€s3zss {mdé]‘g =325% R E
$IST =3neZhz) nti ei2,55 [madb]y = § 1 45 =343
325 =3neZyz | n+2€ 1255 [modbl =} 0 3¢ =58

T=225"n3ist"= 3035, Let G=313"=34%"

x#The paginakon has gone askew; there are np pages 26,17 and 2% %*



,-BO_
We hove examined all the duals of Singletons, so
Faoct(M =34, 1L G, T,0% whee T=2Z4z ond
Q=T"= N = &.

<6

“The Hasse diagfam for Fact(P) is as fbllows:

T

Hence G&(1@1) = G&T =G
whle (G @D (GLL) = OO0 =0 n

Lemmo, Z-1-3:
Fact (P) is not necessarily & modulos lathce,
je. it may fail fo saksfy fhe Modulouiy Conclitian. :

£ GEH then GO (HEK) = HE(GOK)

(0f course, non-modularity implies ron- diskibutiity,
but this Pme our example jsn't 7u}+e so sim,;le.)

Proof. Consider the monoid P= < %4z +, 0> with Lo=}1 2%

L=$0%" =t ne@hz|nvoctizs maa1l =141 24
YIS =ineZlaz] n+i ezl [mud4als =3 0,15
P2 = tne %4z | ne2e b2y [mad4TY = 0,38
13 =3neZz | n+3 e )2y moa 415 =4 2,35
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Now L=1315"ni2s*=30y, T=242z adO=@.
Set  G=gi0y"niitt= iy,
H=341t"=1t0,1%
K=233%" = t23)
ond L =32%Y = 10,39
Then Ht= G,
K*= 325 N3\t = 339
wmd L= toy ni3yt = j2y.

No three of the ti%* i<4. have a non-emphy intersechon
So Fact(P)=t T, H, L K L 1 ¢ L* K*Q.

“The Hasse diagmm showld make “ff'lings Clearer,

I

toy=1

O

Now GeH but GO®(HLEKY =GO =G
while  HE (GOK) = HET = H. .

Exercise 2-1-4: Find o finite phase space such that Fact(P)is

non-mocular and of smalle Cavdinality than the above.
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Note Z7-1.5 :

Given that Fact(P) 15 a complete lalthce | 1t is oinj’m
be faivl% sfvajgwrﬁ)mwamt fo give Semanhc definitons
o‘c (ﬁ'rshomler) 6]uanh'ﬁ'e/$ far linear 1031‘(‘,——%611‘%
Just be infinite generabizatons of the additives. If
A o ﬁwmuld n the Ianguage of predicate lineayr
logic then its nterpretaton in p say sp(A), Witk

be' o fomily of facts of P, and
sp(Ax.A) = Asp(A) = () sp(A)
5 (V. A) = Vsp(A) = (U s (A)) .
The Sequent Calculus fox Freolx'Cafe linear logl'o’ Ccolk 1t

LL,, is obtained flom LL by Switebly modifying the
de?ma lanquage  and  adjoning the familiar

qmam ey Yules
ALy CALEL A ()
- /\x.A,A F Va. A D

provided X is not free in A

Soundness anot completeness of LL, with fespect to
Fhose Space semanhcs Wil Come from tacking onThe
exvo cases to the proofs for LL. On this motter,
We Concur with Giravd : the detouls are *... Shoight-

fi)tf.ward ondh boring and left To the reader! ( Givard
(19377, p.27)
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27 The fnulh'plicawes

Each of the mulhplicakve operatons are definable n
terms Of the P/od,uct oPerajiow (6‘0mmonh1 used in Work
Wrthv Monoids, Semi-gvoups or groups) :

Sinte We are assuming P is A commutadie monoid,
CH=HG. from the definition of ()", we have that
C*G el {o olt G€P. Note, however, that even
when' G and H ave botnv fab’rs, GH Is not necessarily
a foct.

Defh'u"\'ow YAYAL
Let G He Fact(P).
Defme,

GOH £ (GHY™ | GBH £ (GHy
ond  G—H £ (GHY".

Lemma 2-2-2: (Givavd [1987])
The following properhes ate immediate consequences of
the deﬁ'nif\'onS:
for oMl G, H € Fact(P),
GBH = (G*3HY)" COH = (G—oHY)"
G3H =(CG*®HY)" GBH= G'—H
G—H = G*3H G—H=(COH)"
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leyma 2:2-3: (Girard [l%ﬂ)
W The operations & and B are commutodve and associabve

on Fact(P), ond admit identty elements L and L
mspeaﬁvclq-\

ie. 1®G=¢ od LBG=G.

i The operakon — has the following propertes wiith
respect 1o Fact (P) -

@ C—H= H—G*,

®  (COH)—~K = G—o(H—oK) and
G—o(HBK)Y=(G—H)B K ;

© 1l—CG=C ad G—L =G

Proo :

Tvi%me of the previous temma, each pavt of iy is an
immeciate consequence of one of the parts of (). The
Commutphity of ® and B is also immediate. We Show
tot, for any Ge Fact(P), L®C =G, as fllows.

First, observe that for any G, HeP, if Le H Hhen GCGH.
Hence G <€ 141G < (16)* = 1Q¢.

Conversely, if pel and qe G hen pee Gt =AaG.
Hence 16 ¢ G. But then (LG)*" < G, and we ave done.

As o Consequence, 156 =¢.

All We now need Show s +hat @ is associakve. To do
this we Show that

COH)BK = (GHK)** = (G(HK)**= GB(HBK)
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The middle identhy tomes from the associahvitg of the
Monoid operahon, and the outer Mo are Consequences
of the following lemma.

Lemma 2-2-4 : ( Givard [1481])
Let G HEP be any subsets.
Then

G.L.L H.L.L c LGH).L.L‘

Let pe G, g€ H** and re (GH)". We need to Show that
pqre L.  First fix- g¢ G. Then since re (GHY. we
hove that for alk he H, rghe L. Hence vqe H*< H**,
Since éle H**  wWe have rﬂc}/e.l_. Now 36@ Was Qrbitvary,
So ]Qw all ﬂec, (Clr)je.l_ . Hence qr € Gt= G***.
Then since pe G5 ue get pqre L. ]

Lemmp 2-2-5 : (Girard (19811
The fol!ow;ng disHibuhvity properhes hold for ol G H, K e Fact(p):

0 CO(H@K) = (GOH)® (GBK), 086 =0,
G5 (HEK) = (G8H) & (GBK), TsG=T,
(GOH)—K = (G—oK)& (H—K), 0—G="T,
G— (HEK) = (G—H)£& (G—=K), G—T=T,

iy C®(HEK) € (GOH) & (GOK),
G3H)B(GBK) € GB(HBK),
(G—=K) & (H—K) & (G&H)—~K
(G=H)®(G—K) & G—(HBK);

iy G®(HABK) ¢ (GBH)BK.



__36__

froof: We prove one fiom each of (i) and i ; the vest then
follow by Lemma 2-2:2.

0 @ COHOK) & (GOH)® (GOK)
ie. (G.(HUK)*)™ ¢ ((GH*v (GK)“)

Observe that  G. (HUK) GH U GK

(GH)™ U (GRY** .

(G- (HVK))™  sime G=0C**,

((aH)* u (k) =)**

( (GH)“ U(GK)“)‘“.

811 lemma 2.2-4 G.(HUKY*™
Hence G. (HUK)*
By Lewma 2.03(v), ( G. (HUK)™)**

in onon onop

b GH < G.(HUK) € G.(HUK)* ¢ (G(HUK)“)~

By lemmo 203(y,  (GH)™ & (G.(HUK)™)*™
Likewise, (GK)™ € (G (HUK)*)**
Hence (GH)"v (cK)** & (G. (HUK)* )

Aﬂaun by lemma 2:0-3 (v), We have
(G U €K)*)* & (G.(Huk)*)*,

(in G®(HLK

)y ¢ (G®H) £ (G&k)
ie. (G-(HHK§ <

(GH) O (GK)**

Observe that G.(HNK) ¢
owd G.(Hny) &

Hence G. (HNK) &

By Lewma 20310, (C.(HNAK) <

GH <€ (aH)** |
GK & (GR)™
( H)u N (C‘K)_LL—
(GH™ N (ax)™

Exercise 2.2:6: \We've (/Wged ur mind: Hhe P!ooF og (1)
IS left 4o the reader. ((write it out and you'll see
Wiy )
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The followimg lemmo, 3ives an 'tllmminai\'ng chavoctenzahon
oF G—oH.

lemma, 22.7:  (Givacd [1481])
Let G, He Fact(P).
Then

G—oH = %16?] for ok peG (prieH)(s_
ie. G—oH Consists of those q which send of all G into H.

Pr’oo :
Recall that  G—oH & (G H*)*

Let g be such that for all pe G, pae H. Let peG and
re H* hence pre GH*, Then . pg e H=H** hence
(pP)r = 9(pr) e L. "Hence ge (GH*)™.

Convwselq\ Suppose cle(GH‘L)J'. Fix pe G. Then for alf
re H*, g (pr) = (pg)r € L. Hence pge H'“=H.

[
Covollavy 2.2-%:
Let G, H e Fact (P).
Then le ¢—H iff G < H. |

One wWould expect the inclusion relahon on Fact (P)
1o repvesent l'mPh'cah'on\ but 1t i1s nice to have One's
expectahons (onfivmed.  This Corollavy is used repeatediy
in the proof of the Sounclness theorem.
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To give an overview of all the operahons on Fact(P),
We sumwiayize the verificakon concitons:

let G, H < Fact (P).
m ledct if GedL;
i) leGg&H ff 1eGand 1eH,
@ 1eGOH if 1€G or leH™
™ 1lec GRH 4’ leG ad 1eH,*
@ 1€ G%H ;ﬁ C*cH .
vy 1€G—oH G.QH..

* 0f wurse, the Converses of @) amd (ivy need not hold.
The best availakle necessary cmd suffizent Conghans
ave in terms of the duods:

iy 1eGeH i CEH* e L

v LeG®H f  (GH)" &L

Clause (v) is an admission that the only sensivle wWay
o fhink of GEH s as G'—H.

Lemma 7-2-9:

for all G € Fact(P),
@ 1e¢ Ggat,
b 1c¢1
©) 1 e TG .

Poof:

@ lecsat ff G'<Ct. (b has aleady been
noted. For ©) recall that Q<G —féx ol G € Foct(P),
hewe 1le TS G . o
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273 Soundness of LL

Defnition 2:3-0:

Let A‘l’om(ﬁ) denote +he set of ol atomic -fo/mu/ae n the
Ianguage L OF (Ploposmomu) lineas logic.
A phase Stucture for £ Consists of 0. phase space
<P -1, J.,,> togetirer with o funchon Sp: Atom (&) > Fact(P)
Sahs
(M SF(A )= Sr(A)"' A]Co( each Proposrhomzl letfer A of £;
M sp(L)= L, - ond sSp(2)= _L,,,
@y sp(r)= P and  Sp(Q) =

Obsevvaton Z-3-)

let <P - 1,1, 5> be o phase shuctwe for £.
Then the funchon sp has a wuque extension
5p: £ —> Fact(P) sahsfying
- fm’ o Ae Atom( L) é\y(A\)'—: sp(A), ond
i) for alt A BeX,
(A& B) = 3p(A) & 5p(B)
(A®B) = s,,(A) ® S}) (B),
5, (ABB) = 5(A)® 5 (B),
§,> (A3B) = % (A5 5, (B).

S
§

(We tust the notahonad abuses are vot +oo dlswess;”ﬂ')

Def‘mih‘ow 232 :

A formula Ae £ is valid m o phase shucture <P - 1 Ly, Sr7
if - 5e(A) is verifed v (P -1 LY.

Acl is o linear Taufolfogv»; ! A
Phase shucthure (P - 1,1, sSp>.

1S valid in every
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A sequence T of formulae of £, say Ao An s
valid in oo phase stuctwre <P~ 1.1y S50

it 8p(AB...BAY is Verified in <P, -, 1,17y, ( We write 5,(T")
\ for short.) L

’fheorem 2-3-3: (Gimrd [l%ﬂ).
The Sequent coleulus  LL is sound Wity vespect Fo valiciy
17 Plnases Shuctures.
ie. if T is provable in LL
then [ is valid in even/l Phase Stucture, fo(.ﬁ

Froofs bn1 Induckon on a Pmof 1Ll of 1.
Let {P- 1,1y S be any phase shucture for & .
We use s g an abbfevia)\‘owfgr 5.

(@) T is an instance of the identhy pxiom scheme, The
1 oxiom or the T axiom sScheme.
By lemma 229, 1e s(r).

() Tis obtained fom o and 1, by an agplicator of (cum):
A A, H AL A, (cut)
F Ao A
Let S(A)= G \ 5(&0) = H a,nol S(&l\= K.
Suppose 1e GBH and le G*3K. Then C*cH,
hence H*<c G and GEK. Hence H'¢K, so le H3K.

@iy 17 is oblained fom To by an agplicaton of (EXCH):

E A (EXCH)
l— D’(A\ {OV Some Ferv’mufaﬁon o o( A.

By the Commutatvitg of 3,  s(A)= s(o(a)).
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(W T is oblained fom T and T by an afplicaton of the rule (£):
A
H A, FB,A @
FA&B, A

let s(A)=G, s(B)=H and s(&)=K.
Suppose le GBK and 1€ HBK.

Then 1€ (GBKYE(HBK) = (GEH)BK , by the
cisti buhvidy of % over &.

W T is obfained fom To by on afplicoton of the rule (FsT®):
H A A (Fsr @)
- A®B, A

Let s(AY= (G, <(BY=H and s(A)= K.

Suppese 1€ GBK. Then C*c K. Since G*nH*c (G
We have (GOH)" = G*nH" & K.

Hence 1 e (GOH)BK.

(Viy T is obtained fom T by an epplicokon of the vute (snd@):
SymmeNic With case (V).

(Vis T is obtaned fom To and T by an ogplicaron of the rule (8):
" A AO l" B A,
L ' @)
FA®B, Ao A, (

Let s(AY=G, s(BY=H, (Ao)= K, and s{ AN = K,.
Suppose 1€ GBKo and 1le HBKi.
Hence C*< Ko and H*S Ki, 50 Ko €G and KieH.

Hence Ke". Kt ¢ G.H & (G.H)* = GOH.
By Lemma 203 M, (KoK & GOH |

ie. KiK' & GOH.
Hence " (GOH)* & KoB K.,

S0 1e (G@H)%Ko%‘(n.
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(viiy T is oblained from Tlo by an applicaton of the fule (%):
A B A
F ASB, A

(%)

Immediate.

() 17 ic oblained from o by an agplicaton of the vude (1):
A ()

1A

Since Lpis the idently element {for the operakon 4,
s(A) = 1pB s(D). - ) |

Z-4 Completeness of LL

for the purposes Of the proof | e Wil Work withy o Variant
Sequent Calonlus  LL*  Oblaned fYom LL by omitbng the

exthange vule ond adaphng the axiom schemes and
inference vides so os to be appropriate for multi-sets
OF fo/muae of £, ie we dishnguish occurentes of
fovmw!ae but ignoce the ovder.  Clealy, if A is any
Muth-set of {formulae of & . and A is any sequence
OF fowwu!ae of £ whese COMponenJrs are exac+b<1 fhe
clements of A, dhen A is provable in LL®

iﬂf FA js provabie in LL.

Mulh-gets of {o/m»{laﬁ of L fbvm o Commutohve monod:
the opesahion is oncattnahon ( denoted * %) and +he

empty muhset @ is the identhy element. We
denote this monoid by <M, ¥ B>, We wilk buld
A Canonicad phose stucture <M, *, D, L, Sy
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Which resembles the usual Lindenboum odge bvov
Consivuchon in the <sense that ﬁ)/mmae Pnrovabtu{

wivedlent n LL  Wild cowesPonaL Yo' idenncol elements
of Fact(m). This twist in his Constructon is the
choice of _Lm.

Tneovem 2-4-0: ( Givavd [1987])
“The Sequent colculus LU i complete withy vespect to
Validitg v phase stuciuves,
ie.  for any formulo, A of L,
if A is o livear towtology
then A is provable in LL.

Proof.

Consider the monoid <M, * 1) we use A T2, 4o
clenote elements Of M. For the duvahon of the Prooﬁ
We use ' kA’ as an gbbreviaton for * A is
provoble in LL*

Now we define - ={Aem| kAY

le. the nterpretaton of ’ﬂae mulhplicatve falsum 15 the
Set Of cU provakle mulh-sets l

S0 {M ¥ @ Lu> IS q phose space; now we
Neeod O switole interpretaton funchon Sm

for each formula A of £, define
Fr(NY=3Trem| KL AT

(’l’ewnicauq, We showld wnte |t [Al*[" | whee the
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square brackets  [-1 are for muth-sets what cuvly
brockets 1-% ave for sets; we will only oo S0 when
it 15 necessavny for Cclarity.)

lemma 2-4-| -
for any formulne Ae L and Be £,

e A—B iff P-(A) ¢ P (B).
Hene  A=uB if PR (A)= R (B).

Froof:

Suppose e A—B. Ten we must have i A B | ie. in a
Cut-free proof, the last vide used must have been (9)..
let Te P(A). Then K AT But kAT andbAYB
+03e+he} mplyy k. B, b‘«’ (Cur). Hence Te Fe(B).

COHVUS%\ Sugpose Pr(A) c Pr( B). Now A'e Pr(A) since
K AJAY. Hence A'e P(B), so I B A*. Hence
h A—=B by the rue (%). a

We olont ac{vau‘, need this lemma ot the moment —
We do need it lodes in proving the completeress of the
modal sequent calculus LL! [ Sechon 3-2) — but it (s
of help in pvovio(mg mohvahon fcf “the consNuchon.

Lemma. 2-4-2 ;
For eoch fomflulo. Aecl P(A)e Fact(m).

Proof:

Consides the mulh-set  [AT € M. The singleton set
$TATY  has as ifs dual
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SIATS = 3 Fe M| [AT*T € Lm]
=3TeM| - [AT* T}

= Pr(/\).
Hence Pr(A) e Fact(M). o

Lemia 24-3: R (L\=Lu "ond Pe(T)=M.

Proof ) -

‘Ezf_ Ac Pr(L). Then b LA | We have K1 so
b\1 (cur), KA. Hence Ael,

Conversely, let A € L. Then K A, hence
e L, A by the vwe (L), Hence &€ R(L).

Pr(M=3Aem]| ET,a5 =M, in virue of the
fxiom sctheme for T, |

lemma 2-4.4:
For each formulo A € £ R(AY) = P(A)"

Fioof: |
(A =3AeM] foral I (if KA thenw B AT

let A€ P(A). Then & A"A. Suppose b A T” for MeM.
Then by (Cur), K AT, Hence A€ Pr(A)™

CMV@seM, Suppose Act(A. Now K A A hence
£ AN So Ac P(AY). a
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Now set s.= Fr FAtom(£). The previous two-
femmas together imply that the funchon
: Atom(L) — Fact(M) Sahsﬁcs the Condihons
Vlecessarw ]Coy <M, %, B, L, 54> to be a phase
Stucture.

We are not quite finished : we skU have o Check
that 5, = Pr. Otherwise put, We haveto show
et Pr: L — Fact(M) 5 an homomorphism,

Consicleding £ and Fact(m) as olgebras of the
same ‘hﬂoe

L@MM& 2.4-5;

For o, Aed, Bedk

& P(ALB) = Pr(A& P(B) .
iy Pr(A®B)= P (AY® P(B);
iy Fr(A®B) = R (A)® Pr(B),
(v P(A% B) = R (A) B Pr(B).

We give proofs of (iy awd (i) ; (i) and (i) follow by Leawia
7-4-4 together With the defmbons of (A®B)* and
(ABB)"  for formulae A ad B of L.

) Observe Hat F A&B A if KFAA ond EBA
Hence Ae Pr(A&B) if Ae P(A) N P(B).

iy Let IMec Pr(A®B) and fix some Ze (PR(A). R(B)Y.
Then fov all Do ond A, if = A Ao and K B A,
then kK Do, A Zi, Consider the case of Ao=]A]
ondl Ar=[B*]. Since & AA and K BB
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We get K A BY Z. Hence K (ABB)| Z by he
(B) rule. Now e F(A®B) so I A®B, I By
(cuT), we get kK r z.

Hence T"e (Pr(A). P(BY)* = Pr(A)® F (B).

Conversely, suppose A. € Pr(A) and A€ Pr(B).
Then kK A Ao and kK B A« By the vule (®), We
hove b A®B, Ao, Ar. Hence ANokAs € Pr(A®B).
Hence Pr(A). Pr(B) & R (AB®B),
Gnd so Pr(A)® Pr(B) & R (A®B).

And viow for the punchlive ... |

Let A be any lineas Tautology ; ie. A is valiol in
every phose Stucthwe. ln parhenlos, A is valid in

{M, %, D, La PPO. So @ ePF(A), hence ¥ A.
Hence FA is provable in LL. e
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3. The exponential (modod) Operators.,

By enriching - propositonal linear /ogfc With modad
or 'exponenhal’ Connechves, wWe recover expressive
power; jn portenlos, Suﬁ;'cient expressive. powier fo be
able fo jnterpret  jnteihonishc Iogic In the resulfing
sysfem (Sechon 3-3). “Givards slogan is that ‘usual
C intwihonishcl /ogic is obtained from T propositonal]
lineay Iogic b(1 a passage to the limit's the
Mathemoheal Content this slogon is O result

Colled +he App/oxima‘h'on Theovem, | ( Sechon 4-1 ).

Givard calls the modalibes *of course’ ( denoted
‘1) and ' Why not’ ( denoted '71); dneir belaviour is
Similar fo that of hecessity and possibility, respectvely,
n the classical modal logic S4 | modulo the Wieddness
OF the undeclying proposihonad logic. ( Givavds rakonale
for the non-standord notaton is Hhat he oloesnt vant

lineay logic  dismissed as 'yet another moolal system':
Givavd [1987), p.27)

One of the crucial aspects of this extension of |inear

logic 1S that the sivuctwral vules of Cconachon omd

Jmmmmﬁ re-appear, but are oliowed only in moclad
Contexts.

W’nu‘ the tevm 'exponenha/( ’? (Pou(quo'u Po«s?) One
nswer is thot whot else Wik U the blank in fthe
530]\/!@1’?66 ‘add.—ih've, YWUH'PH(‘@‘?*{VC, ’ (Biem Sur!>
An explanaton is that the modad comhachon vule
Yesults n exponentol grovith in the Size of proof
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Nets nder normolizatow (eliminaton of Cuts) : see
seChon o-4. Also, the exponevifed ! is Connected
Withy the ‘internod hom' or ‘exponental’ functor

—2_: C"xC —> € ina Cartesian closed category
C; ie. Intwboniske implicathon::See Sechons 51 and 5:2.

3-0 The Sequent calculus LL!

Definiton 3-0-0: . |
The !Mﬁuage L' of modod hneav IOgic IS deﬁ‘neol In
the same way as the longuage £ ( Defmiton 11-0),
Withy the additonal clause :
e if Alisa formula, of L
then so are 'A and ?A.

The expression A" where A is a formula of L1, is
definee in the Same way as it is for formulae of
L& ( Defmivon I-1-1), with the additonal clause:
if A s a forMula/ of L.
(A € 2(AY)  ad (7A€ 1(AY)

Not unexpectedly, de Morgan duolity shikes again.
Givard does not give names 1o his Sequent Calculi: we
‘have chosen the names LL and LL! for theiv

obviousness. ( The nome LLM is used in Danos and
Reﬂmef [1989] — for the some sysfem e Coll LLM)
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bgﬁ'nikon 3:0-1:

The sequent colculus LLY  consists of the same axiom
schemes and inference Yules 0s LL, deemed now to
apply to L, —sequents, fogether with the following
nference rYules:

F2A,A - 7A A
- A\A (D?) ' = A, ?A (,)
- 7A, A FIA 7A

lf A is the sequence  Bi,...,Bn then 7A is an abbreviohon
‘FO" ?B',---,?Bn. .

Girard uses the name (W?) instead of our (Th?),ie.
‘Weakening’ rather than ‘ﬂfu’nning ', We have changed,
nomes because in the relevance logic Nacuhon (W) is
e name of an oxiom stheme (in o Hilbet-style
system) for contachony, — the nomenclatwe denves
POM COMbinaﬂm, lOﬂiC; n SMUHL’anfl'M terms, ‘W'

1S the ‘wavbler’.  The name (D?) is Short for
‘develichon’ : ' who cares’ about A7?7

Aqain, We ove Sofe to veswict the identy xiom Scheme
to propositored letters amd theiw oluals:

EA A (d7) EAA (D7)
F A Z(AY) y ETAA
FIA 7(AY) F7a LAY

(We omit exchanges.)
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The modol Connechves provide a vather iniviﬁmnﬁ linkage
beMeen the additves ool the mudkplicahies.

Lemma, 3-0-2: ( Giravd [1981])
The following Ove provoble equiquivelences in LL! :
@ !'(A£B) =. (!A®(UB) ;
@ ?(A®B) =u.. (?A)%(7B) ,
(i) 'T =0 4,
vy 70 =wr . L

Pr’_f: We exhibit proofs f0¢ @ and (wvy; @ and (i fhen
follow by dmality.  Exchanges are, as usual, omitted.

(iiy - At A (Fsr@) '+ B' B b @)
FA' A®B ®? F B, A®@B (>?)
FAY 7(A®R) 0 FR* 7(A®B) )

LAY, 2(AGBR) Tk 1(BY), 2(A®B) 4
F LAY 1(BY), ?(ADB), ?2(AGB) (
F AR (R . 2(ASB)
((?A) % (2B)) — 7(A®B) |

C?)

-}-_-l-'-——A-L—';/-\R(D?) LE;L-?-—@?)
A (h?) LB, 7B (h?)
A~ 7A.28 B 7AZB g

b N4BY A 7B
F U(A&BY) 7A 7B
FOL(A&B). A% (78)
- ?(A®B§—”°((?A\%(?B»(%)
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(IV) \"IL th?) T (l)
1,70 T W)
F 1L—-70 T L &)
F 70—l

3:) Topolineav_spaces

A semantics for modal linear logic is obtained fion
Hhe phose space semourhcs lao, odoling o bit more
Apporatvs.  “The appavatas in queshon fesembles o
topology on Fact(P) (but is not quite one). We will
hove closed focts (7G) oo open focts (16). The -
closedness in this sense |s quite diﬂéltnt from closure
in the sense of the closure operator (-)**; all elements
of Fact(P) ave closed in the latter sense. ( Maybe this
IS Why Givard makes no menhon of (=)** 0s a closure
opesator.  We prefer to colt & closure operodor o Closuve
operator,)

Definiton 3-1-0:
A ‘h)?o)ineaf space Is quin‘fuple, <P-1,1, F>
Wheve <P -1, 1,> is a phase space ond IF< Fact(P)
15 & family of facts of P sansfying the following Condikons:
(i fo" any XelF, NXeF i in pavheulay, Te F, (T=P>3
W if F.. . FaeF then FB..%5F cF,
(iﬁ) ﬂF = —LF ;
(W f FelF ten F3F =F. (% s idempolent on F)
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Ge Fact(P) is a Cosed fact if GelF.
G e Foct(P) s an open fact iff G eF.

As before, Ge Fact(P) s Verified in <P-1 1, F)
ff 1ed.

Let Ge Fact(P).

The offrmaton of G, G ( of course G is defined as

ollows: L
f 16 £ (ULH|HEG and He F})T

The Considerahon of
follows:

G, ?G ( whynot G) is defined as

CE NIF|GeF ad FeFS

Lewma 31 :
Let G e Fact(P).

@ (¢ =72(¢Y) ad (?6)" = LG

@y G is the lorgest ((wrt.€) Open fact included in G,
and ?G i the smallest (w.r.t.c) closed fact confaining G .

PVO :

(1) (!G)*=(U%H| He G and H*eﬁziyL

= ON{H*] HEG and H*EFY by Lemmo 2:0-4,
N $H*) G*C H* and H*ETFY
= 7(GY).

(7C)l= b(g*) similavly.

() follows fmm iy owmd the def\'ni’f\'ows.

|
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So for ol Ge Fact(P),
Also,

G s closed iﬂ G="7F for some FelF; and
G s open iff  G="'(F*) for some FeF.

lemma, 3-1-2:
For ot G € Fact(P),

le 'G—CG and 1le G—74G.

lG=!C and 2?76 =7C.

Poof:  We have !'Cc 'C. ,
Now MG =(U3HIHe!G and H e FY)™
Since (!G)"€ F, We must have G e !G.

77G=7C follows by dMa»(Jh/l

lemma, 3-1-3:

'T=1 ond 7?0 =L,

Froof:  1T=(UtH|HET adl HeF3)™
= (UtH ]| HeF})™
(N H] HeF %3* bu, lemma 2-0-4,
CaF)*
(J.P)L‘ bby condihon (i) on IF
= 1

1

I

Coollovy 3-1-4: If 1€!G then 'G=1.

Hence 1 is the sum (supremum) of all affirmatons,
(which Sounds befter than * L, is the Infersechon of all
Consideratons” ).

The Corvesponding syntachc fesult 15 Yeadily Ve.y,'f;eal:
if A is powble in LL! fhen A Suy L
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If We set G =1 GeFact(p) | G*€FY hen -Wege’c
a list of properties of open facts just by dualizing
the conoihons on FF :

O for any Ye G, (UY)*e (.

W) i GyoryGne G, then G®..8G. € G,

iy (UG)™ =1,

vy f Ge G Hen C®C=_(.

In Summary, We have the fblfowmg veyiﬁ'cal\fow Conclitons:
for any G e Fact(P),

le?¢ if for aW F2¢ with FEF, 1eF.

e generad pictuve of ov Topoliriear Fact(P) is as follows
(Cf the picture fo”owing Examples 2-0-7).

-
\(/—- N Closed facts (F)
P
o] 7N\
I/ ‘7/

facts verfied in P

\

¢ ST SNV, ’\P\

clopen facts

open {ads (G) dua!sfof facts verdfied

m P
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32 Soundness and Completeness of LL!

Definiton 3-2-0: ‘

A “@’wlmear stucture for L Is a sextuple <P+, 1, Ly, F, 55
where <P - 1,1, F) s o fopolinear space and

Sp: Atom(£:) —> Fact(P) is a funchon satsfying the
same tharee Conditons as in  Definibon 2-3-0.

( Note that Adom(Ly) = A'fom(“f')-)

The funchon sp has a unique extension. 5;: L1 —> Fact(P)

Which, in additon to fespecting & 8 8and B (as in

Observation 23-1), sahsfiea, for alt formulae A B €L,
SUAY=15(A)  ad  5(?8) =75 (A). -

A formda A of L is valid in o tfopolinear Siuctuve

P 1L Fosed> if 1€ 5(A).

A sequence T' of formulae of £: say A.... A« is valid

in o topolineay swucture <P -1 L [ sp>

iﬁ le éf(A.%...%Au); Sp(1") for short.

Theovem 3-2:1: ( Girard (1931])
The Sequent codculus LL! 15 Sound with vespect to
validsty in Fopolinear Shuctuves.

PYoo:E; bv’ indmehon on a PVOO]C"W m LL! Of .
Let <P-1 L, s> be anvl 'l'Of'o[ineav Shucture -fbr L1,
Aquin, s is an abbreviakon for Sp.

The first nine coses of the inducton ore as in the proof
of “theorem 233
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& T 15 oblained ]Qom To by an applicoon of the vule (th?):
i VAN
F?A A

Let 5(A\=‘—‘F and s(A=CG. Assume 1ec G. Then Gt< L.

But since ?F € F |, we have L s 7F. Hece G'€7F
so 1€ GB37F= FsG:

(h?)

Xy T s obfnined flom To by an application of the vule (c?):
F 7A A

Let S(A=F ond s(A)=C. Assume 1¢ ?7F 8?F B (.
Since ?F€ [F, We have ?FR7F = ?F (ldempo#ence
of B on F). Hence 1 7F B G.

(xiiy T is oblained flom T by an agplicaton of the rule (D7)
kAL iy
- 7A, A

Let s(A\=F oand s(A)=G. Assume 1 € FBC. Hence
Fre ¢. But YFY e F*, hence '(FY)SG. So 1e ?FBG.

(Xii) T 1s Obtmined from To by an application of the rule (1):
F A, ?B.,... ?Ba (1)
F'A, 7B, ...,7 B

Let s(AY=C and s(Bi)=Fi. 1=1,...,n.
Assume 1 e CB?F 5...3 ?F.. Hence G'c(3F %...37F).
Now 7FB...97?F. is closed since each 7F:i is closed,

and  ?(GY) 1s the smallest closed fact Containing G
So  72(GY € (7R %...87F.).
Hence 1 e 1¢ % (7R %...92F).
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Theorem 3-2-2.: (Givard fl%ﬂ)

The sequent Calculus LLY is complete with respect to
Validiq i topolinear - structuves.

P(oo :

We adapt he Proof of Completeness of LL. Recall the phase
Shuctuwre <M ¥, @, L., Where

J—mz'%AeM] }TA\{

In this context, ' k= A' is an obbreviohon for ' A is
Provable in LL!* ‘. Where LL!'* s dhe muth-set version

of LL!. As before, We define the functon
Pr: £ —> Fact(m) by

PIN=3Tem| mATY.

Now set IE=%P¢(?A\]A€.£.:‘;
omd  F =4 NX|XeEY.

To tomplete Hhe proof, We need o Shad that
(r) F satsfes Conditons -y of Definiton 3-1-0,
and hence M, %, D Lu F) is a topolinear space
()  R(7A) = ? P (A)

ad Pr(tA) = ! B (A)  for old Ac L.

Recall Lemma 2-4-1. In +his confext, We have the
reSult: =B f  P(A)=P(B) .
Exertise 3-2-3:

Verify the provoble equivolence 7A = TA B A
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Lemma 3-2:4: (Girard ['%ﬂ)
The set E = % Pr(?/\) l Aé‘z:% i $a’h'Sﬁ'eS the fo[(Oanﬂ
Conclihons:

(i) & is closed with respect to fnite B's;

@ L.= NE. -
W for all R(ZA) € E, PR(?2A)= P(?A) 3 P (7A).
PYOO£:

(i) Recalk that  (7A) B (7B) =.. ?(A®B). (Lemma 3.0-2),
Then Pr(ZA) 3 P(7B)-= P ((7A) %3 (7B)) ’
= P(7(A®B)) €E.
8\1 the ovious induchon, [E is closed with respect to
fmd’e, B S. h

W) P (?7@) € E ond Pr(L)= P(?0) sine L=..70
Hence L, = (1) e E.
let Te L. Then KT, hence B I 7A by
the rule (Th?). Hence e Pr(?A).
Thus L € Pr(?A) for at P (?A) € E,

hence -Lm = (“E.

(N) Since  7A Zu:, A 7A,
F(?A) = P (?AB2A) = R (7A) & Pe(2A),

Now if  F=30X|XeE}

then cleavly

M F is Closed with vespect o mbiwan? intersechons;
Ond iy L= (.
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To Ven’fu, tat [ sabsfies the remoining two Condihons,
We need the fol#owing result.

Lemma. 3-2-5: ( Girard 11941])
Let (P, 1,Lp> be any phase space and let $Gilicx
and tHsYsex be families of facts of P.

Then 1 (GsH) = (06 % (O H5)

(1.9)€ IxT 134 jex

ie. % distibutes over avbitavy infersechons.

Poof:  pe Q(Gi%Hj}

ff - pe N (G* Hst)"

f( Viex, V;;ej', VqeGi, Yre Hs* (pgyeL)
B VieI, vqe Gl VseT, Vee Hst (pave _L)-
b vse(ua) Vee(UH) (psted)
f o Vse(QG)" Vie (OH) (pstes)
fo pelacy (ausyy

pe (0G)5 (OHs)

==

“The Equalence of ines & and & 15 due 1o Lemma 204,
O
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i) IF is closed with respect to finite B's since

A Pf(”M\ ( (1P Bs\): @QI'(I P (733 B (785))

1€ L 3¢T

— N P(7(A®BY)

(15)€ Ixy

oand (iV) 3 is l‘deo‘?’ent on fF:

N rea) 5 (05 (A)) = O (R BRCA)
lex ZGI 1EXT
= n Pr(?Ai)

We have now estoablished that {M,*. B, L. F) is
o fopolineav space.

Qur fe,mounmg tasic 15 the vemﬁcou\on of 2R (A)= Pr(?A);
since  Pr(AY)= Pr(A)* (Lemma, 24-4) . we con reodily

devive ! R(AY = P(!A).

Llemmao 3-2-6: (Girmo{ [l%’l])
A= ?B Is provakle in LL!

iﬁ - ?A— 7B s PVoVNole m LLY

Pfoo:
It - A—?B is provable in LL! then sois F A% 7B
A, 7B
1(AY) 2B
l—.(A)‘.B(%)

F7A—7B
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ConverSelq, it F2?2A—7B is provable in LL! then so
s F1(AY, ?B,
AN
F2A A F HA) 7B )
H A 7B
F A—7B

|

Now, Z Fe(A) is the smallest fact in IF containing Pr(A).

TR(AY= N1 0X| RAE NX od X< EY
= NYRBY] A(ANe R(7B)%
= N4R(7B)| k A—7?BY
Nin(?B)| & ?A—?B}
N 3 P (?B) | Pe(2A) € R (?B)S
Pr(.?A\. |

I

i

it

33 _Atonslaton of intuikonishc logic

In LL! the modal versions of Contvacton and thinning
yield aS theorems

A — (IAQ A wmi  ('A@IB) — ‘A

We can dhink of otcuwences of “!" and * 7' hich ave
Inside the scopé 0{: one of the  binary pyofosiﬁowa( connechives
as markers jndicatng that coniachon and Jor thinning
may have been used. ( Cut-flee devivahons of ( 1A)3 (7(A)
are an excer’riow.) Since the Sequent Caltuus ﬁ:r
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Infuihonishc logic‘ LT  has contackon and ‘ﬁmnning among
is 'm{crwce/ rules, one |would expect that Q@ Vanslabton
of Intwhonmistic logic info Moo linear logie Wowld make
heavy use of the modolites.  ( cf. the honslabon of
Intuikonishc logic info the classical modal ogic 54-). “the.

following Nansiakon does make heavy use of the modalites,
but not” niformly.

Deﬁni%‘On 3-3-0:

let Lz be a lanquage for jnfuitonisic propositonal
logic, generated from  proposihonal leters and Constants

t- and { using the wnavy Connechve = ond the b
Connechives A v Ond =>.

n afq

~.

We define a Nanslahon functon  ()°: £ —> L,
Induchon on formulae Qs follows:

by

A° = A if Aisa propositonal letter
t° =T ;
fo =0 ;

(AABY = . A&B ;

(AvR) = (A ® 1(B°) ,

(A=B) = !(A)—=B°

A = !(A)—~0.

The mopping Can be extended 1o q language for intwihonishc
predicate logic . with quanifiers ¥ omd 3, as foliows:

(V. AY = Ax. A |
(3. AY = V. (A .
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We Will concenNate on -the Wanslaton for propositional
|ogics; Keen readers Can Supply the extva detoils themselves.

At the moment, the most We (on say about the Virtue
of this Yanslakow is that it works. In fact, it wovks very
Well: the wanslakon is faithfud, not only with vespect
to provable formulae but also with respect o proofs;
We prove this below.  An explanaton as to Why the

Wanslahon Works is 1o be ’fb\md I Coherent Space
semoanhcs ( Sechon 5).

Note that the wonslaton of intihonishe negab‘om/
Invelves the addihve falsum, Q rathe than the
mulkplicahve fodsum L. If we had

CAY = I(A)—L
then (—'AY’ . (' (Ao»l'

Girarde Comment is that intwnonishc neqaton has alays been
Widelu’ critcized ( Givavd 11987], p.79).

There is a formal pnalogy bemeon the deowe Vansioton
ond the definiton of Kleene's ‘Slash’ for formulae of
Heuting - Arithmete( Givaid plisbuies this observahon fo
Andvey Sledrov) The points ob which‘exiva! !'s oare
needed Cowespond o the points in the defurbon of
‘M|E" whee the exva cClose ' and Tk E is proveble
in Heyhing Avifhmehc’ 1S required. (See, for example,
Moschovakis [1980], Definiton 119)  What, if ainyting,
Hic meams s not  Known.
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In What follows, e Will work withy the fwo- sided
Sequent cCalenlus for modal linear logic, DLL! ("D’
for ‘dowble’); the system is presented n Appendix B.
DLL! mokes for o Smoother Nansihon to Gentzen's
Sequent Codeulus for inhihonishe logic LI, and
‘ﬁom/ Gentzen's nehdal decuchon system for
Inhuhowishe logic - NT (achuu,(y), just the pro posihonal
Subsystems thereof ).

Theorem 3-3-1: (Givavd [1987])
let A be ony 'fofmula of L.
Givew o Cut-free proof T of FA° in DLLIY.

We Can Constuct a (wnique) Cut-free proof T(m) of
A n LT.

Pfo :

L_j T be a cut-free proof of H—A° jn DLL!.
Now A° Is o formula in the YO, & @ —o !}
fragment of the longuage Lo: (in which —, and ()"
Ore primihve). Hence T involpes only rules fom the
1O, & @ —, I'§ Subsystem of DLL! | ic. the idend
oxiom scheme, (EXCH), (CuT), the oxiom scheme (OL) for

O omd logicak vudes for the Commechves € @,— and !.
By examining these rules, We Con Convince ourselves that
(L sequents oCCUvving v Hhe proof T Contan only
one formula on ther rigihi-hand sides. Now we obfain
T(m) fom T as follows: () ewmse all octurrences of !;
W) replage eoch occurrence of @ with £ and (il replace
eoch otcuwence of &, & —o With AV, = respectuely.
Then IG7) s o cut-free proof of A in LT.  m
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Theorem 3-3-2.: (Givard [1481])
Let A be any fovmula of L
Given o dedmchow d of [A] A in NT,
te. d'i5 a deduchon of A fom a set of aSSumphons A
We Con consiuct a (unique) proof (d)° of !A°I—A°
n DLL!
(whye if A=3C.,...CnY then !A°HA° means
ee), ..., 1ew) FA).

PY00£: . ‘
The proof (d)° IS deﬁ‘med by indpchon on d.

() d is the deduchon of [A] A Consishing of the
ASSumphon A.
Then (d)° is N = A°

LD!
TA A Y

() d is a deduckon of [A ATAAA obtained fiom a
deduckon di of [AJA and a deduchon
da OF [Aﬂ Az lm1 the  rule of A invodmehor .

Tnen (@) is as follows:

@ il
o 1 o
s !A'o = A',, several (LTh!) ' A e A Several (Lh!)
LA VA, A AL AT AL (RE)

TR TOGF APg AL

And  (AAA) = AT AT
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iy dis a deducton of ‘[A] A, obtained {lom o deduchon
A OF [A] AAAs bu, the ﬁvs{' A eliminaton vule.
Then  (d)° 1s as follows:

o A A
IA° - ACE AL AL AT F AP
N AP

(L&)
(cuT)

(W) e case for the Second, A eliminakon vude is symmebic o iy

M dis a deduehon of [A] Aiv Az obtained from a decucton
de of [A]A, by the first v invoduchon rue.

Then  (d)° is os follows:
@)

100 - A
EA® A
LA YA @ (A

(RY)

(RDY)

Md  (AVA) = (A ® (AD).
(Vi The Case for the second v intvoduchon Yule s Symmeic 1o(v).

Vi) dis a deduchon of [A, 1, 1A obained fonv
decdmehons e of [A]Biv By,
v of {r.,i-] A
Ondl A2 OF [QZ,J A X
Whete Zl, and Zi2 (onsist Of G rumber oF vepetihons oF
Bi ond B2 respechvely).( possibly zero) by V eliminahon.
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Then (d)° is as follows:

lc.l.‘)o ' (d.z)o
Inezi= A° Re 1z - A°
o RCER, T IeF A°§]
9 RO R e R
1IN - I1CC@!Ce e e 1@ ict - A° (cut)

LA IR° 100 - A

0 indicates severat (LC!) or one (LTh!) ;
2 indicates sevemd (LTh!).

Vi) d is a deduchon of [&] A=>B obtained fom a
decuchon di of [A,M1B | whee I consists of a
a number of veperton of A (possibly zevo) by = inivoduchon.
Thew (d)° is as follows:

o
'. Ao. tre - B° severad (LCY) or one (LThY)
& A B o)
A A B

And (A=7 B)® = 'A°—B°

x) dis a deduchon of (A T] B obtmineo fff»w o
dedmnchon d. of [AlA ond o deduchon o
of [PIA=>B, by = clinunahon.

Then (d)° is as fonows;
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(°
(da) LA EA° e -
: A A B°HB (.,
1pe A —B° O S A
Ime A0 - B

® dis a deductow of JAJA  obtwined fom o dedunchon,
d, of [A] £ by the f rule.
Recalt ot (f)° = Q.

Tnen (d)° is as follows:

(d)° Instauce of amiom
A= O o B° ()
| A° |- B°

We dont have to deal Withy — invoduckon or 1 elimobton
05 We can toke TAE ASE. .
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4. What does it all mean?

4.0 A 5’redd¢:;-—s+a+e economy

I this sechon We give an intwihve, informal account of
e Connectives of propositionad lineav logic.  Ouv discussion
dvaws on  Mavh-Oliet ond MeSeguU [1989), Lafont [1983a],’
Appendix A, owid Giravd [1984], Secton IL.

We Hhink, of formulae as denohing States and interpret the.
lineay implicotion Connechve —o  as exp/cssing the poSSl'biuh,‘
of Nonsihon bemeen o given Stakes. So

A—B
I5 read as meaning that states of type B ave actessible
from  states of type A.

Consider the following example:

A:= having a one dollar coin ;
B:= getting a felafel;

= 9eﬁ7n3 o Mughnut

D:= having five Wenty cent (oins.

Our System is o lifite economy: HNansifons are monetavy
homsachons. We rule out bavter, ie. exchange of one
Sort of von-monetary good fer anmother. Al resources
or commodoheS in owr eCononny Qe O[ qual value,
ie. Worth one doliar, Our gwd«nﬁ principle (s that
this is a ‘steady-state’ economy: the fotal value
of resources oftet o Nansachon is the Same s it
Wwos gbgfgg Hat Nansackon. So no value s lost and
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no value is accrued.

The basic pevmissible Nansachons in ouv economy ove
given by the fol(owing d]agram.

More formally, we neeodl o longuage of propositional
linegv Iogic enerated by fow pmposihbnaf letters A,B,C
o D, Qnad a ’rheoxu, Writh  Six non—logic axioms (qven
by fhe owows other than the reflexive ones). With
fespect to the to-sioled sequent cadcwlus DLL, the
non«logical Oxioms Qie AFB AFC et
For more on linear theovies (nd heir connechons ith
petvi nets, all (ast in & Cafegory-theovehe famework,
e Mavti - Oliet and Meseqeur [19%4].

Returning fo our informad oliscussion, we have

A—B = with a one dollav coin we Can get a felofel

D—A := We can exthange five twenty cent Coins for a
one ollav coin

A—o A:= We stat with a dollav coin ond end up
With O dollav coin (maybe o different coin).
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Instances of A, B,C and D corvespond to Cvedits
on our ledgev; their negah‘ows ove debits . First,
the mulhplicative folsum:

L := being obliged to pay-
Then we have:

B*=. B—1 := we have o« felafel and then ase
obliged 1o pay , ie. We eat or
ofherwise cispose of the felafel.

The dual ob'agm;w:

Vepresents Pe.vmissi ble debt Nansactons, For example,

B*— A* := if we eat o felafel then we com fulfil
our ob!?gah'om to pm1 by handjng ouet

A*— D := o debt of o one dollar coin can be

feplaced by a debt of five twenty
Cent Coins.
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The lih'Pl{ca‘}\'ve conjuncton 15 interpretted as an acCumulchon

of vesources. We have A—B ond A— C but from

these wWe Cannot derive A —o (B®C).

A — (B®C) = with 0 one dollar coin we con get
Mo dollars worth of goods, ‘one:
felafd g_’l_’i! one Olnughnut

This Would mean gelhng Sometiung for free. The best We
can oo is (A®A) — (B®C). Retuning fo owr

‘fa\lbwife formulae, charactenshc of contachow and
fhinning  respechively,
prodlucing & dollav coin owt of hin air ;

A — (A®A)

(A@B) — A := having a felafel vapourize before
our 6‘165, '

But what about the addihve covijunchon™ Fromy
A—B ond A—C we Can deve A—(B£C).
Givavd sees & 05 involung the superposibon of stotes:

having o one dollav coin, We con
Choose behieen gethng o felafel
anol gethng ov doughnut;  both

Possibilihes Ove Quoiloble — We
fet o Choose wohich one is realized.

A — (B&£LC) ==

Recolk fhat & is idempotent ( while ® is not): Choosing
beeen o felafel owdt o felafel is no choice at all.
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Nith &, Something external 1o the sysfem ( in this case,
us) 9efs fo make a choice. “Thete is also a choice involved
Whh @, but the choice is not ours fo make. = From
A—C, We con devive A—(COD)

A—(C®D) := Sfav%‘ng With a one dollav cain, We Wil
get cithet n d»ughnut o five Menty
Cent Coins; 4he Choice & made by
Some mechanism jntemal To the sy stem.

ln Hhis system, both C amdt D ave attessible fom A. We

o olso devive A— (C® (DB®D®D)) ; in that case,
e infernpl mechonism Wikt olwoms choose C. -

The choice involved With @ May Seem o bit ivial «
the ‘intemal mechanism' showd odwoms choose the disjunct
from which the disjunchon wos inferred.  Maybe it
Should, but Sometmes it can't make e decision on that

basis.  Consider the following proof in LL ( which Weve
Seen before but is repeaded here 4o moke the point):

FC'C (F51 @) D" D

(snd ®)
F ¢ co&b D" C@®D ()
F C'&D*, CPD %)
- Co&D— COD

With Yegavd to the *COD' OCCuwing In the consequent
of the final implicoton, bockhacking thiough the proof
fo see Whith of the Mo @ vules weit used Wik be
of no help in M}m@ fo predict the decsion of the
"intemal mechanism'.
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As one might guess from the above discussion, things
ave different when & or & oceuv in the antecedent
of an implicabon, ( ov on The left hand side of o
sequent). It seems os though the ‘extemad/ infemal
choice’ choracteniabon s reversed. From A— B
ondt D— B we can deive (A®D)— B. Recalling
that (A®D)—B =u. (A—B) & (d—B), the obvious
reachng is

(AGB D)— B := We (an choose belveen spending o one
db”av Coin  Ond Spenob'mg ﬁvc 'hnlenh/,
Cent Coins  hen, puvchasing o felafel;
both, possibibhes ave OVeulodble. .

Now consider again  (C@®D) —o (CODY. If We choose C
in e anfecedent then it ( the internal mechonism')
must choose C in the Consequent (since D is not acessible
from €Y. But if we choose D in the awtecedent, then
It ton toke its picki, ( There Seems to be a need for
0 generak policy olout prioiity of Choices when there is
Compehtion ; some%tihg like * We alowys choose first,
OF course !/ might do it ) For 'duoad’ reasons, the
Choice between  starting places in, say, (Ac@ D)— B
IS Most ratwally read as an internol choice.

- Note, however, that the 'accumulabon! reocling of &
Works, regavdless of which Side of the —o the & occurs.
For example :

(ABA@D) — (BOCBC) :=  with fido one dlollav coins and fve Men

cent coins we can get one felafel o
tWo dOuﬂh nuts. )
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The mulkplicatve clisjunchon ‘3 is more problematc. As
Giravd ( 11939], p.73) Vightly says, ©...the meaning of * %’
is not that easy’ One Way of thinking of it is in temms
OF —o, ie. ASB= At— B lov, deﬁniko»ﬂ/. “This is
Cortainly the best wWoy Of 'fﬁ}nkl’nq of the ‘excluded
middle ’ axioms A5 A*. The ofher Woy 9( thinking of
B is as the dusd of @ : Instead of accumudason
of resources e have accumulakon of debts. For
eX[)lhf)Ie:

(B 5 c*) — (A3 A‘) = We ton replace a debt of one

fela(‘el and one doughnut by
debt of Mo one dollar Coins.

This, howevet, 9ets us no closer to undesstanding what the
3 Of posihve fo/muiae, means. We are left witiv the

feeling that % is by far the wierdest of the Conaechues
of linear logic.

4.1

A licence to print money (}) and limited vessions Hhereof .

When we adjoin 4he modoal operators 4o linear logz‘c,

the S?’eadq~51‘aje eoonomtl' i5 replaced by economic
chaos: |

LA = unlimited possibilifes for duplicatng one dollay cons.

The inference fom A TA  to F!A A using (1)
15 analogous fo puting A in & memory register so that
it can be Used od nausewn . As Girard notes (12391, p84)
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the fowr modal rules of LL! differ fom the ves for
the additves and multiplicotves in that they do not
Completely chavactenze their connechves. If We were to
Inogluce o Seconcl paiv of additves &' and &' with
the same ruies as for & and @ then A4L'B ond
A® B will pe provedoly equivolent to  AEB and
A @B respettively.. The Same holds for @ ond 3,
but 1t does not hold for ! and 7. To establish
'A = UIA We need proofs 'of both + 7A* VA

owmd F TA AL We can get both H TAY A

and FH A A but then get stuck because we have
the Wiong sort of queshon mork.  However, since we
Womt | and 7 4o be duol, Hhen given the ({)vule,
the ‘inverse’ rwle (D7) is  forced upon us; (?) in
Conjunchon with (CUT) is analoqous to retvieving
data. flom a memovy register.  Continuing fhe metaphor,
the rwles (1h?) and (C?) ave ‘ophonal extvas' (hich
gie us power to Manipulate dota in the memory registes.
Ahis power was Crucial in the ¥anslahon of an NT
denvodion, info a DLL! proof ( Theotem 3-3-2).

A note Of Couuhon 1s 1n order: +he modal opetators
invoduced jn  Giravd and Lafont [1987] Qud Lafont [1233b]
In the Context of intuihonishc linear logic, do d'i[fg‘ﬁom
those under discussion here; see Lafont [1988b], pp. 164165
ond Seely [19%34], p.37.

The opecators | and 7 of LL! ave perhaps best
%ought of as infinite generalizakons of @ and 7B,
Similar 1o the semse in which the quantfiers A ond \'4
are infinive genesalizahons of & and @ but not quite.
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In Girard [1937] we have the proposal:
A ~ & (1&A)
w
2N = B (LOA)

(Since we have Houble understanding whot AS B means, an
infinitary B is going to fair no better at the level of
Comprehension.)  Note that F (L&A —A  and

F A— (L®A) ave provable in LL, but in general
theiv converses ove not. = A —o (L&A) is provable in
LL! when Ais !B, or more genetolly, When FA—-1
I5 provoble. A story might be of Some help. When we
Wont o make use of A, we begin by Considenng the
first in our shing of (L& A) 5. A choice has to be
mode ( either by us or by jt) beteen 1 and A.
“The choice OF 1 is ‘default mode' — 1 contains no new
informakon. If the choice s ours, Hhen we choose as
many copies of A as we need to get on with the proof.
for example, if there is & Cut with 7A* then the
number of Copies of A wWe Choose mox deperd on the
number of copies of A* it has chosen fom the st
of (LOAY)'s. If We ave simulakng an NI denvahon
(as in Theovem 3-3-2) 1n Which A IS an Gssumphon
foomula which is used k tmes, then we'll Keep on
Joing thvough the (L&A)s unhl We've got k Copies
of A. We have an unlimited vrumber of possibilites
for veproducing A in contast 4o the scenavio in Wiick

1A s
24
the latter gives us on unlimited numbes of ochiol copies of A
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The story gives some informal content to Giravd's
Sogan that * infuikonistic logic is obtained flom [non-modal)
linear logic by o passage 1o the limit! Now for the
mathemahcal Content.

Definiton 4-1-0:
Let A be any formula in the lanquage & of propositonal
lineaw logic. For each positve infeger n, we define

WAL (1A ®... @ (ML&A)  (ntims),
A& (J_EDA)% .8 (LOA) (n hmes) .
lemma, 4-|-] :

“The following are devived rules in LL:

’—- A }‘?DA).?M A‘ A
A ) F A A )
A A A A

( -D7) ) - .
FaAA FLA g s P

Where nom k2t Ta A obbreviates 7, C,
n>l, 1=1,..., p, ond ?Kl‘ A Qbbrevictes ?ka, Co)...l?Kn,, Cp.
( ‘a,).’ 15 ‘fov approx"ma‘h'ow.)

Pf00£ :

Almost immediate.  (ap. C?) fequires only the (“5\ rule _
(ap.D?) uses the (sNp @) ruwle with L as fst disjuct
and (ap.’ﬂ«’) requives an appla'cM-on 0( the vde CJ—\ {ot.!owea(
by (FsT@) with A s second disyunct. e give o denvahon
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for (ap!).  Let o be o proof in LL of HAT.B
fof some nzl. Assume +that fom HA B We con
devive In LL the Sequent | 'wA, 7xn B, Jor “kxo.
Then

-1 y LI T

ST [a’] "'2_; 5 : :
P j-’?”B — . A)I?n B (&) F A'. ?h B - []nduch'an]
P ﬂ&A, ?n B - [KA‘ ‘?kn B (';;necas

FUEA@ WA, 2B 7B
’— !k*'lA, .?n(k-ﬂ)B

[d] denctes n (ap.Th?)% ogether with n (B)s. The bage case of the
induckon s just the fop left-hand part of the above. m

Not Supﬁsfmghq, the ‘Minning-—like’ aspects of the vules
fo« 1l oand @ are exploited in 3ivin3 on  approximohon
of the modal Minning rule. In g less direct way, the
implicit conackon involved in the Yue (&) is used to get
the nice polynomyol property in (ap.!).

Lemma 4-1.2:
The follow}ng ove derived vules n LL :
for any n<m,

F A A FlmALA
> (ap.74) ‘
F A A Fl.A A

(ap-14)

Pfoofz

(ap.?’ﬁ Just involves mulhple applicahons of (ay.’ﬂn?) ]Co“owed
bu’ (%)5 (ap. !‘L) Uses (0}).?4‘) ‘b\?e‘ﬂner Wit (CL{T):
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F o A LA
‘_) . (OP-?q‘) ’
F Zm A, 1n A FlnALA
F LA A

~ Suppose that we did Wanslote A as o Shaight
nfinitary ® | and hence had approximants

l:‘A 4 AB..®A (nﬁmcs);
?;Ag-f A%%A , (n%mcs).

Then Ahe approximokon of the modal thinning vule (ap?")
)5 ot Sound with vespect to phase space Sewanhes
and hence the same fate befolls the onalogous
ncrease and  decrease  vules  (op.7'1) and (ap. I'V),
(which of course means these rues avent derivable
v LL).

To see tat we Can have a fact G fail to be verified
but have G®(C vehﬁ"eol, consider the phase space
P=<Z/sz + 0, L;> Where Lp,=%12% and 1=105.
Let

G=145"=t n)| n+4 € 11,2 [mod sl = 12,34

So the idenkhy O¢ G. But GG =}0147,
hence 0 e G®G = (G&)* . In fact, GBG=T.

To put the Complaint move OUI‘(ZCM, the Would- be
UPP{OXimai\'OW (ap.m?') Just Is fuu—bfown ‘Hfl}nninjz
F A "
F A A




And now fo retunm to the 4ask at hand.

Thfimferw 4.1-3- AFP/()x}maﬁOrv Theorem ( Givard [l“lﬁ‘l])
I]C Tis a Cut'fee onof m LL! of F A, A
and, for each 1=1,-..,p, We assign 4o each oCturvence of
l'in Ay a positve irrfeger (Ca,ueé( the Index Of that
OCCurrence of N
then, for each i=1,...,p  ard each octurence of 2 m Ay
We Comn $pecf'f\1 aw  Index ( positve integes) in sSuch
& way that if A7 is the result of veplacing
€ach occurvence oF I in AL bu, v, where Kk is the
indlex of that occumwence of ! and replacing each
ocunence of 7 in A by Tm, Whue m is the index
Spedf‘ed ﬁ)f Hod oClurrence 0( 7 then theve is a
cut- free Proof (TT)' n LL OF F At,,..,A;.

Froof :
By induchon on the cut-free proof .

() T is an instance of the axiom scheme A A*:
the identhy axiom schewe is vesticted to literals so there
'S nothing fo do; similarly if T is the axom 1L

Gl') T is obtained f/om/ 1o bu’ the evther the rule (EXCH) or
the rule (L) : obvious.

(i) I is an instance of the axiom scheme | T, Ar,... An:
the ! induces ‘fol each Aq "PlaCe no restmmchon on the
? ndices ; we tan set them equal to 1.
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(v T is oblained fiow Mo by the rule (FsT@):

FAA

FA®B, A _

Assign an index to eatl occuwence of ! in A®B Aj this

induces  an assignment of ! indices in A A. The induchon

hv,pofhesis gives us o F'OOF (s of F A® A°. Set all

? indices m B 1o | 4o give R® . Thea (‘H’)’ js Obtained

f}om, (ﬂ'o)’ bt1 appl»,inﬂ (FST®) with Yespect to B°®.
Likewise for the vue (SND ).

(FsT &)

(V) T is either obfained fom o and T by (B), orelse
obfgined fom T Ly (8): the occuwences of ! ard?
in e Conclusion Sequent ove exactly fhose of the
premise Sequents (or sequgnt) So the incuchon hypothesis
gives us  odl we need.

iy T is obtained from e by the vule (1h?):
a8 ()
F7A A
ASSiﬂn an index 1o each occuvrence of ! in A A inducing
o assignment of ! mdices l'.n A By e induchon hygothesis,
We have ov proof (o) of A" Set all 7 indices in A
to | fo gve A Then ogply The rule (ap.Th?) to ().

Vij 97 is obiained fom o by the rule (D?):
HAA (>
F2?A A
As in c0se (Vi) except that the induction hypothesis gives us
1 P/oo[: @To)‘ oF - A A% Apply the Vule (ap. DY o
(m)° o give o proof (1r)e Of F2aA A
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(Vill) T is obfained fom To by the vule (!):
H A A (9
FIA 7A
Aesign on index 1o each pccurience of ! in TA A S‘d[)/aése Jrhé'fndex
of e fist ! in A is k. The induchon hypothesis gives o proof
() Of A, 7. A%, Now apply (ap. N o gel & proof (m)* of
FcA® 7 A

The remaining o Cases, the modol contvachion vute [C2) ond the

Yule (&L pose gfenter d.‘fﬁw!h‘es precisely becaunse of theiv ContYackve
noture.

(% T 15 oblaned flom To by the vule (C7):
F?A 7A, A
F A L
Assign an index to epch occurverce of Yo TA AL This induces an
OSSignmemt of ! indices in TA,7TA A . in parteulay, %éa)r/espondil\j
Pindices in the tio occurrences of 7A are identicod. The induchon
hypatvesis  gives us a poof (T)® of F WA Za A A wher
A’ and A" are both approximants of A, but may al':{fu With
respect to 7 indices. If A= A" Ahen apply The vuie (ap.C7)
1o @et o Proo€ Qﬂ‘ of F Zoiem A’y A° . Otherwise, theve are
71 oCcurrences of 7 in A suck that 1f Tand 3 are the
indices specified for that 7 in A" and A" respectvely, then 1#3.
The following procedure is required .
Skpore.  Find the largest subformula, 7D of A sudh that
G and % D” are the Cowesponcling svbformudac of A’ ard A”
fespechvely, with D' and D" both Qpproximants of D, amd 1#5.
If 4here Ore o OF more oCtuwences of @ Subformuda D
of A with This properhy, ov else Theit ave fulo or more dishnd
§ubf0»’mwlae OF A With thrs P/o})erh,’ and ol 0{ maximak SiZ e

(c?)
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then fake dhe one that is in the scope of the least number
of connectives ; if there (S shil o be, fake the leftmost.
Assume 1<j. (when >3, the procedure is symmetic).
Step two. ' Back-Mack' wp eadn bromch of the proof (1),
Making o note of those occurvences of D’ Which ave
Swbformulae of Swoformulae of A* and e direct ancestors
of the occuvrence of the %D’ in A’ under inveshgahon.
Call these the lineage of the %D’
Slep three. On eoch branch of (T)° which involies the lineage
of e %D, fund the lowest sequent in wikichh one of the
lineage of the 7 D’ occurs as o formula | ie. the sequent
Whidw is the premis of o Yude in virtue of Which one of the
lineage of fhe %D’ first becomes a proper subofownudon of some
fo/mula. Coll such o sequent free fer %D’ On eoh branch
of (W) with a sequent of e fom ", 2D, 2 free
for %D opply he denvedl vule (ap.74) fo obfain o
Sequent Of the —fovw - " 2 D',Z. Then vetwm, o ‘f’lqe/[m’ooF
() and replace oll lower occumtnes of 7:D* which are
in the lineage of the %D by HD. A branch of (To)
which 1nvolves the lineage of the % D’ will only fail fo
hove o sequent fiee for %D’ if the eavliest member of the
lineage of Hhe 7D on that branch is either a subformua
of te ‘new' disjunct intoouad by an applicohon of one
Of» the @ rules ov else is o proper Subformulaz of o
formula. occuring in an instance of The axiom Scheme forT.
Now duplicote that ayglicakon of a @ vule ( that instane
of fhe T oxiom scheme) except for replacing  that (Hhose)
Occurvence(s) of 7D which afe in the lineage of the %; D’
bl,’ (& D’\ owd o the same TCaf oA lower OCturrences
of %D which e in The lineage of the % D'
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“The vesult of these modicahons to the PVOOF (e)® Wik be
O Proof  prin LL of b T A% TmA" A where A"
s the same ps A’ except that he occuviente of 7; D' has
beew Hansformed into 753D We claim that A" and A"
hove exactiy =1 discrepant paivs of 7 indices and
hence by the obvious induchion, e will have after g iterabons
OF the three-sStep proceduré ‘o proof Me in LL of
F 7 A® 7mA® A®.  Our Claim is based on the fact that
by odways Working on the Outermast discepant 7 indices
wd by only incieasing indices in fhe lineage of the
occunente of the subformda, undet inveshgahon, We rever
Creafe a discrepancy of 2 indices and once a discrepany
hos been fixed, we never have to altend to it again..

() T is obtained from To ard T by the vide (£):

,” AJ C',..,‘Cr ‘—' B, CC,.,.,Cr (&)
- A&B, Ci... Cr.

This fime We hove proofs (15)* and (TH)® in LL of
F A% CHL... ¢l and B Cl L. e respechvely, (here
for A=t...v,  Clond C5 ore both approximants of Ci
but Moy differ with vespect fo 7 indices, The procedure is
twokogous fo that given i Case (IX). For each distepant
paiv of 72 indiceS, We have fo either mwoke Switcdole
Mocifcokons 1o 7 indices wn (T6)° or else do likewise
100’ (T"-)' The vesult 3ive5 ?(oofs Mo ool M in L O]C
FA%CE ... ¢ and FB,CY, ... CP respechiely; then
obfoin  the proof (T)® of F A°¢B® CI ... Cr by (£).
|

Mnfo/hAnaf@L,L The Efﬁ?vt required To ]W n the nussing detasls
Giravd’s proof [1987),p.93 | tumed out 4o be much greater Thon the
quithov first antcipated.
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An obvious consequence of the Approximahon Theorem
5 Mot Qiven any theoremv  of proposihonal intuihonishe
logic (‘o provable sequent of propesitonal LT) We con
produce  approximosts of its Nansiate which ave provoble
in LL. However, We dont have opproximants Hor the
Wonslate in LL! tof "edck proof in propositonod LT
( goinq via Gentzen's Nanslakon of LI proofs info NI
‘del/l'\/ai\'ons, then appiying Theovem 3.3-2); The hypothesis
of the Approximodion Thearens thot the proof in LLY be
cut-fee is crucial since we need  the Subformuda

pro perfv{-

The polqnorumi stuchue w«oceﬂqmg the ‘exponenhad’
(modat)  Connechves ! and 7 is of partcular note.

Corollav% 4.1-4:
IF T is a cut-flee proof in LL! of A
and x.,... xs Qe Cishinct Vowiodales assotioted With The
S occurences of !in A in, soy, left fo fight ovder,
then  for each occuwence of 7 in A thee is a polynomio
funcﬁow P(?t',..-,xs) such that gn/m assignments
Ki,..., Ks of posihve infegers to the  Varokles ... s
f A is obtained fiom A oy replacing the ith ocuwence
of lin A by !, for i=1,...,5 and replacing each
OCCUyrence Of: 7 m A b\,, %p) , Where pis the
polynomsad for that 7 Qnd  p(K) = p(ki,.--ks),
then there is a cut-free proof ()® in LL of F A




»’-38-—

By Inducton on fhe cut-free proof T In cases except (C7)

ond &), the polynomiad in queshon faUS out of the

P(oof of the Approximah'ow Theovem. Suppose We have a

proof in LL of F ZA 7 A A* | e the polynomials for
the dd'SPla,«,’ed 7T im F7AZA A v fw'id g respechvely,
ot A’ ot A" e *polynomucd’ augproxmmards of A. As in
cose (ix) of the proof above, We Stovt With fhe owtermost
ond left most occurence of ? in A which gives vise to
o distrepancy beMeen A’ ond A”. Suppose P is the polyromiak
for that occurence of 7 in A and § is the polymomial for
thed otcwyrence OF 7 in A" owd p+9. To fepaiv the
discrepancy, We Yeplote both p and g by the polynomial
mMaxtp,qy = p+(q9=p) | and dothe same for both the
ancestors of thot 2 ju A and the Qncestors of that ?
in A" A sintilar Monouvre orks for the rule (&).

[ |

In recent Work, Girard, Stedvov pwmd Scoft [1990] have
developed @ system, Colled  Bounded Lineas Logic (BLy)
With modplites of he {wm lx<p A Whek pis a certan
’h/”)e Of polynomial Vot Con’rw’m’ng the vewmable 2. ( Th
Use a Mo-Sided sequent coleulus  and ignore ‘7))
BLL olso hos full, impreclicatve Second-ordler quankﬁmj{on
So fypes of natural Mumbers ave definable, but the bounded
s give rise fo dishnct levels of natwal numbes.
Their maun result s that there is a one-one Corvespondance
beheen the class P of polynomial-time Computable

funchons and o certain class of closed terms in
BLL.
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5, Cohefe;_g space semanties

The phase Space semonhcs provded, in o Tarskian monner
Q0 algebraic infetpretaton of formuwlae of livear logic.
M alternatve  approach fo Semanits, that of Heyhing, involves
The modelling of proofs. ln this Vacibon, proofs are associsted
With {mch'ons or relahons on Some Kind of Constuchve
space.  Dana Scofts theory of clomains (e Scoff [19827)
5 plominent in this Vaditon.  (Girard fWorks Scotts
theovy o (rate o el kind of Ademain Which, he colls
Coherent spaces. It is Within this ﬁameuork/ od e
get o see how |lineay implication emerqes fom a
olecomyos)%mv of intwhorustc jmplicaNon. In this sechon
We ovow o matenod foom Givavd, Lafont and Taylov
[1989] owd Lofont 11988 @] in order fo fill i the
baokﬂmunot of Cha,ofer 3 oF Covavd [1987].

5.0 Coherent Spaces and Webs

Definiton 5-0-:
A (oherent space X is o fomily of sets sabsfying the
following Conclihons :
i) if aeX and bea fhen bEX;
{ f SseX and for all g beS, aub e X
then  USeX.
f aeX dhen a is called an object of X.

Considering coheient cpace X 0s pavﬁauq ordered
by inclusion, (i says that X 15 closed downiard.
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As a Consequence, PeX; B is the undefined object of
X. Furthermore, if a,beX then anbe X by (. Indeed,
if S s Qny non-emphy subfamilq Of X, then NsSe X,
When 0, beX, avb will offen fail fo be an object of X.
For most Coherent Spaces X, N@=0UX ¢ X. Cala
Subfamily S <X (binanl,q) linkedl iff fo.r all abe5,
AubeX. Combining Condihons (iy and (i), we have
USe X iff S is linked. Concibon (iiy is Known 0
binavy completeness.

Recall thot a fam}lq of sets S is (uPWamls) dlirected
ff for ol o bes Hhere exists ceS Such that aube c.
For o coherent space X, if ScX js directed then S
5 linked, but not conversely. If S is directed, wie
hove UTS e X. For any object aeX, the collechon of
all finite subsets of o is dircted, and

a= U'f% ao' Qo €EQ and aof’mfe.}

This Means thot Cohesent spaces ave, in the terntinoloqy
of universal ogebra,  2lgebraic conditionally complete
inf semi-lalices with binary Completeness with vespect
1o Sups. ( See, for example, Bumis ond Sankap,oanamr [W%[(.)
I what follows, We'll be parheularly interested in e
ditcted family

Xeo & $ 02X | o firites

Where X is o, Coherent space.
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Consider o few examples of (very simple) Coherent spaces.
Emp £ 1 DY ;

59t £ 3P, 1eYs  wher @ is some avbitvaring chosen, fixed element;
Bool & t 3, 15, 155,

nt & 1P3Uing| ne Nk,

DeﬁnHion 5.0.2:
let X be o coherent space. The web of X, dencied W(X),
is o veflexive, unoriented gvaph defined as follows:
M the domain of the graph,

IX] € UX =5x] s e X,

iy the edge velakon, cohelbnce modulo X, is given by
x o’ [Mod X] i{f tx, 'y eX.

The second identty in () is due fo the down Closuve
of X. It Is important to note that the Coherence mod X

relohon is not In 3ene,t‘al Nomsihve: when xSxs [medx]
ool x'Sx” [mod X] | We Wil have xTax” [mod X] pnly if
tac ! xny € X,

We con now see o Cohernt space X S & Subset of
?(IXI). Obseyve that for am,, subget a < |X|,

aeX iff fo all fuite doca, a.eX.

The Crucial Point is fhat not all finite subsets of IX| ave
objects of X excepl in exteme cases. .
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Proposition 5-0-3 : ( Givavgl [1987))

The map W fom the class of conesent spaces fo the class
of reflexive, wroviented graphs given by X > W(x)
is @ bijechon. Moreover, the (ohevent Space may be
recovertd fom its web by meons of the equivalence:

aeX 'l(F ac|x| and pr au x,x'ea(occx'[modX]).

We first establish the equivadente. Let aeX. Then ac|x,
ot for any x,x'e @, wWe have IxXx'5 € hence tx,xVeX
by douwn closure. Conversely, assume ac|X| ond for alk
x,0€ 0, XSX' [modX]. Then JafuinyeX for all x,x'€q.
Hence Uitxslxeas = a € X by binary Completeness.

In Virine of the equivedence, We Con sy that an object
of X is o0 Coherent subset of IXI; as such, it is
the undetlying set of a Complete Subgraph of W(x).
Translatng the Condlitons in the definihon of Coherent
spaces into graph -theorehc Terms,  down closure Says
thot  any subgraph of o Complete subgraph is Complete,
ond  binary Completeness  Says thot if S is a family of
complete Subgraphs, any two of wiuch ave linkeol in the
sense that  between any node of one and eveny node of
The ofher, there is on edge,  Then the wunion of S is
0 complete Subgroph.  Both of these properhes hold
OF Yeflexive, unorievited qraphs. That gefs SMQ‘eciw‘vih,];
Injechviry is Obvious. m
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We will informalb‘,’ assume, but not shpulate defmiﬁonau\j,
that webs ave counfable ( which means Coherent Spaces
may have the power of he Conbruum). If one is
parheularly Concevned with, Conshuchvity, then one
Should  assume that the Coherent spaces in Queston
hove webs whose Cohevence velahon is fecursive ;
We will {"GQMM”A/] have 1o ‘exclude middles’ qmd assume
that for all %, x'€ 1X1, if x#2' Hen either xS [mod X]
or _V_Io_‘l,’( xZx’ [ModX]) s ie. eithe Jx,xieX o X't ¢ X,
Which means membership and ideatty had better be
fecursive. In walogy With, Scols théory of plomains,
We Con think of the ae |X| as finite pieces of data.

N What follows, We will Work. mMainly with webs; in

Pavhculay, We define Coherent spaces by specifying fhe
domain and Coherence relaton of the Web.

}F X ond Y ove coherent paces then gm}ﬂm l/lomomwphism
f«om W(X) into W(Y) is o funchon f: |X|—>1Y]| suh thot

wC ' [modx] i f(x)T f() [mod Y]

100/ ol x,x e X.  Such o funch‘ow induces o (um'qwe\
fumohow F : X =Y defined, for each aeX, by

flay=t}f(0 | xeal.

Observaton 5-0-4:

6 X and Y ave coherent spaces owd F:ixl—=1Yl isa
groph homonorphusm flom W(x) into W(Y)

then  the fmc}{ow %: X—=Y has the following propeshes:
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(I) MOHOfOﬂiCH'\": IF a‘a'ex and Qca e :f_(a)é?-(a');
() preservahow of unions (Hhose that there are) :

i]t 5¢X is lnked then .F(US) = \_)H:(a” ae 5'3 :
() preservaon of ron-emphy intersechons

if S is non-emphy then -F(ﬂ S) =0 % ?(a)] aeSk ;
C[Y) preservaton of Singletons: for all xe|XI, ?({xg) = $ ()

(I) Strong preservaton of undefined objec—ts: -F @)=¢ if a=¢.

(Vef;ficakow Involves mindlessly Wviting out defritons.)

In short, qroph homemorprisms  induce funchons on
Coherent Spaces vikich preserve eveny bit of shuchue thete
15.  Let us say that @ funcﬁon q: X—=Y 15 a
cohevent space _homomorphusm i]ff q sohsfiea conditions
() —(X) above. Such a 9 wnquely e termines o graph
homomor phismv ﬁ fIxX] = | Y] defy.eol by the equivalence

=y i glx) =1ys

Hence we have on isomorphism  fom He cotegory of Coherent

Spaces Withe Cohesent Space hemomorphisms  onto the Ca:fejon,

o[ reflexive, Wnonended gmphs With gmfbv homomor phisms

ﬂivew bL’
X > W(X)

LE X—=Y § X —= Y]

We say that coherent spaces X and Y ave Canonically
isomorphic . written X =Y. f dhere is o graph
isomorpism £ IX| =1V ]  defined un}fow!q fov all
avquments, by Which We mean natwod in the  categqovy-
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In what follows, the classes of funchons we need to
Chavacterize the funchon Spaces X =Y anmd X—oY
Wil pPresexve vother less stuchue fhan Coherent Space
homomorplusms (and hence be more intereshng). he
list (z)~(¥) of propertes is usefil in providing o yard-
stick:  (adthough note that the list Conteuns redundances:
e, (L) implies (T)) as el as clarifing What we toke
Uirard, to mean by Canonicol isomorphism’ —

Giravd [1987], pp. 48-49.

Recall our examples of cohesnte spaces. The otomam,
of theiv webs ave as follows:

|sqt1 = tey
| Bool | = %t,f';
[ Intl =

In ench Cose, the coherence relaton s such, that for ol
x '€ x|, AT [mod XT iff x=n', hente the Webs

Qve cuscrete grophs. Such (ohesence spaces ove Codled
flat. Up To “isomorpism, thete is only one flat

Coherent spoce of a given caicinalihy. for the Case
Of Cafdmabhq zev0 We hove Emp, Where |[Empl= .

At the other exiveme Qwe Cohesent spaces X' such thot
for ok 3, € IX], xTa’[mod XT.  Hleve, W(X) i 0
Complete groph. Observe that UX=IX]eX, so by
down closuve, X =P(IXI). Hence X is a Complete
boolean algebra. We propose the name Yound fo/ such
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Cohevent spaces. Observe that Emp and Sql oare the
only Coherent spaces that are both flat ond vound.

A Word on notokon and termiviology is in order. In
Lafont [198%a], the consthuchon is revessed: Lafont first
defines What We coll webs dud then defines what
We Coll Cohesent spaces. A Shaight danslohes of
Lafont [1988a] into  Givard [1987] is as follows:

Coherent space, A —> IX], domain of W(X),
Coherent subsets of A, Col(A) —> X, oherent space.

Coherent spaces in the sense of Givard [1981] are relatves

Of domaing in the sense of Scoft, Fo?)owing e notakon
of Scoft (1982], We give o ' Wobbly ! (orre spondonce
Wit Givavd (198717

given an information system A=< Dn, An, Lony, 5>,

the domain determined by A [A|l e~ X Coherent space ;
the data objects of A, Da = 'X|-, domain of W(X);
the undefined element BaeDa, 3ANY e~ D e X

a famiy of fimite subsets of Da, Conp €~ Ky,

Givard drops Scotts entailment relakon Iz S Congx Dy,
ond veplaces it with the vather olifferent velanon of
Cohesence mooulo X, contauned in X xIX]. n parhonlay,
We dont hgve: alry if foralixea, xSy [modx]. The
relaton t is Nansihve in the sewnse that

if alxy foral yeb and blxz then alxz.

We can have qubeX and butzy e X but avizy éX.



...q7_
The followfng auxilliavy nohons ave vequired.

Definiton, 5-0-5: |
Let X be a Coherent space, angd let o x'e|X].
(h Stict Coherence :

XX’ [mod X] iﬁ‘ AT A [ModX]  and A F A%

iff Yo, 'y eX and nF N,

iy strict inconerence -
%™~ 2! [mod X] iﬁ _n_o’c_( xZ x’ [mod X]> ;

3o, xy ¢ X,
(i) inCoherence:
xS [mod X] iff not [ 2 x' [mod X]);

i{f S, ¢ X or x=2".

Definition 5:0-b:
f X is o Conerent space then its linear negaton X*
is defined by

IX*] £ |X].

x %! [mod X*+] '.ﬁ 13X x! [mod X] |

So linear negah‘ow exdnanges Coherence and incoherence.

Note that we have the jdenhhy X*'=X. Hence we have
o tertium non datur :

lc°f all x,'€fX|, eiher XxTot' [modX] or AT X’ [mod X4].
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Achmllu,\ tat Is cheah’ng: the above Vomnsates as

for alt 3, %" € IX], either fxnygeX or {x,n'G¢X of x=2x"

How about quartum ron datur ?

Observe that the objects aeX* which are (the under-
lying set of ) Complete subgraphs in W(X*), ave discrete
- Subgrvaphs Of N(x)) ie. Collechons of Isolated nodes.
Gropuicolly, the () Operabon puts in an edge everyunere
there wasnt one and rEmoves all the edges fhat Weve
there, except the reflexive ones. Recalling our previous
examples, the lineav negaton of a flat conerent
Space 15 a round coherent space and vice-versa.
F}O)V example, Int* is a Countalle boolean algebva.

Def»'niﬁow 5.0-7:

14 5 L1, O€Emp; TEO

You've alvendy seen e problem : Sqb and Emp are
both {lat and vound.

|4l =]L] =@y, @Ce[mdl] ad @EZE [modL].
10l =1Tl=@ .

This 15 not mere!u, Qa gli’rdv that Can be patthed up; we
Just have 4o live with it. Our dual constants are shll going o
behave the way We Want them fo and we use the
distinct notahons to indicote this, but wndemeathy the
notaton they ave | in this Semanics, the same.
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The 1/L and O/T diffculty brings to the fore an
importont point = canonical isomorpwisms X are not
ﬁoing to Correspond fo  provable ec)w'valence in LL Ov
LL! (. while identties in the phase semanfics do).

If Mo formulae are provakly equivalent then the
Coherent spaces inTer)oreiﬁng'%m will be canoni
isomorphic. A Counter-example fo the Lonverse is that
1= L (Hhere is nothing more canoncal than identity )
but, of course, N =.L is nonsense. As some
Consolahon, ol the sensible canonical [SOmor phisms

Will  Correspond to provable eqw‘valences.

5.1 Direct sums and stable funchons

The fwo additve operations, & and @, are varighons onine
theme of the direct sum ( disjoint union) : get 1t ?
Definibon 5:1-0:

Let X ond Y be Coherent spaces.
The Coherent Space X&Y is defined as follows:

IX&EY] & IX|+]|YI = t0sxIX] U 13%x1Y] ;

(0,00 (0, 2%*) [mod X&Y] 'n-ff HSn' [modX]
(L) (1, y) Tmed XEYT i 4Ty’ [med VI,
(0,)C (1, 4) [mod X&Y] for alk xe|x|, yelYl.

The Coherent space X@Y is defined as follows:

CIxey | E Ix]+1vI;
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(0, (0x) [mod X@®Y] iff  xCTx' [mod X] ;
(S hy) madxeyv] i y<Tyr [modyT;
(0,X)~(1,v) (Mod XOYT  for all xe|X| and yelY].

The operaton, & puts in all edges (0. X)Z(1,4) across
the divide beleen toSx X[ and t1iyx|Y|, while the @
opefah'ou leaves 10Yx |X| and tisx|Y] ’rofallu, disConnected.
This accords (romghly)  with the jnhahie swy7 about &
as meaning thal  both Comjuncts are availeble, ond We
get to ghoose which one is realized, While With &, the
choice 15 not ours. Choice is involved in both opeatons
because any givenw node  (7,2) 1n |XEY| = X®Y| must
be in exactly one of tosxIX| amd s1¥xIv|.

Observatow 5-I-1: (Givard, Lafont& Taylor {14847)

For all objects ¢ e X&Y, Hhere ave unique aeX and beY
Suth Hhat  C =30xa U tisxb ; wnte c=a+b for
Short.

For all objects Ce XBY, either c=totxa for some
aeX or Cc=%t13xp fo( Some bey.

Observakow 5.1-2 ( Giard (19877

Let X,¥Y and Z be coherent spaces.
We hove the de Morgan jdentties

(X&Y)" = X*@ Y, (XeY) = X'&Vy*,

Ond  Canonical 1Somorpusms Expressing the Commutahvity
ond  gssoCiatuty of' & and @, Qnd indicodng the status
OF T and O 0s idenbes fov & and @ respechvely:
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X&Y = Y&X | XOY = Yy@X,
(X&V)Ez = X£&(v42), (XOY)®Z= X®(YOZ).
X&ET = X, X090 = X.

In each case, the coronicod isomorprism in gueshon is
the most owious one.

We shall return to & and @ a little later. Our task
for the present is on examivaton of classes of funchons
on Coherent spaces.

Deﬁniﬁon,v 5.1-3

Let X and Y be Coherent spaces.

A funchon F:X—Y is cContmous iff F sahshes
the fo”oWMg Condihons .

(1) monofonicity: f a,a’e X and aca’ then Fla)c Fla) ;

C[Il) Preservaﬁon of divected unfonﬁ-(COnﬁnuifq):
if‘ S5cX 15 directed then F(U""S) = UT{F(a)laeS';,

Note that monotonicity implies that the family }Fa)| aes§
Y is directed if s5€X is directed: f avbec then
Fla) e F(e) and F(b) ¢ F(c) hence Fla)uF(b) < F(c)-
ReCaHinj our Checklist of properhes in Observahon 5-0-4,
the Contnuity property (I°) above is of Course weoker than
The preservation of alk the wnions thete ave, |hich Was
properhy (I) on that Iist. The tem *combimiihy’ derives
fom the theory of olomains . when domains ore given a
Jfopologica,l inferpretaton, the properhy of preserving
directed wuens (orresponds 1o conbnwhy in the
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)ropologu‘cal sense; see Scoft [1482].  Scott also uses the
ferm *approximoble’ to refer to a class of funcﬁons
Simulos to those We colh  Conhnuous. That terma (s most
Oppropriate heve :  yecalling that every object aeX is
’{he dicected wnion of its faite subsets, conhnuity
Implies

(FIN)  Fla) = U™ Fla9)] deca and ao€ Xgay

So Continuous fmol\'ows ave Completely determined by
their valuwes on the finite objects of X. With |itite
Wovk, 1t Comt be shown that (FiN) is acholdly equivalent
to the conh'nuih1 Conclifion (1[’).

Lemma 5-1-4: (Girard, Lafont and Tayloy [1489])

Let F: X —> Y be continuous.

If aeX and ye F(a)

then there is o minimal finite A€ 0 such that ye F(ad),
ie. @, such that if begdo and ye F(b) then Qo=b.

FProoy:

From the equation (FIN), We know that if Ye Fla) then
Ye F(b) for some finite bea. Now consider all the subsets
Ceb such that ye F(c) L and pick one of rninimal Cafdinah'h,,. ||

The Catch is that. when ye Fla), +here May be more than
Ohe  minimal ‘fl'nife A, Such that l,1€ F(ao). Ow aim
s do (onstuct a (ohemnt Space uWhose objects are in one-
one Cowespondamce Wwith funchons F: X —>Y of some type.
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Definihon 5-1-5 -
Let F: X—=>Y be tonhnuous.
The drace of F, denoted Tr(F), is defned as follows:

TY(F) - % (ay e X;;nxwl \‘u’eF(a) and if bea and YeF(b) ’rhmd=b\;,

Observe that Tr(F) is a set f< XgxIYl with the
propesty that. for all (ay), (a\ynef,

() if a=a' dhen Yy Imod Yl ond

@ f aca and y=y then a=a'.

Condition () just says that if ye F(a) and y'e Fla) then
2, yry e Y this follows because ty,y't < F(a). Conditon (2)
is an iMmediate consequence of the defmition of Te(F).

Now it cam be shown that given any set fe X xIVl
Sah'éfw'ng Condibons (1) ond (2), we Can defne v Corthnuous
funchon F : X—=Y by the formula

(APP) Fla) = } velvl|3a.ca((a.y)ef)y.

The proof only Makes use of conditon (1) ond
the fact Hhat the do in (0o, ) Ef are fnite.
Specifically, i 0.€Xg, ond 0% IS A directed
subfamily of X, thew if a.< Urai then
Q. € Oy {o{ some keI. Technically, the objects
0o Xp ove the (ompact elements of a Cokerent

SPace X.
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Lemmo. 5:1-6:
let F:X=Y be conbuuous.
for each aeX, define

Gla) = 3 ye 1yl | a,ca ((anw) e W(A) Y

Then G(0) = F(a) for ot o X.

Proof :

Let ye G(a). “Then there is an A.ca Such that
(a0.y) € TW(F). Hence ye F(as). Since F is Continuous,
Fo)= Ut Flad | a.ca ond ace X5y Hence ye F(a).
Conversely, Suppose Ye F(a). Then there is (at least one)
minimal o, ca sucth that ye Fla). Hence (a,y) e Te(F)
and 50 l/]e G(A)- n

Now wWe have a one-one cowespondance between
Conhinious funchons F:X—Y and subsers £ < X x 1Yl
safsfying Condions (1) and (2), hence X x 1Yl is a good
Candiclate for the domain of the web of Hie conerent
- Space we're after. However, we st have to ensuve that the
Subsets £ are Cohevent with fespect to Some (oherence relakon,
let F bLe Coubnuous ond suppose both (ay) € Tr(F) and
(a,y)e T(F). So yeFla), yeF(a) and both a and o' are
Minimal W.rt. this property. But hat is all We know about
A and o’ — they may be disjoint; their union may or mayynot be
On element of X; we dont know. Basically, We havent got enough
informakon about the sets ae Xfi 1o define a cohesrence relahon.
To ovelcome this deficiency, We Consider a smaller Class of funchons.
“Tue exva conditon \ve impose, expressing a. propery called stabiliby
ﬁ/st came tfo light i Berry [1478] n Work on @ semanhe chavacter
1zakon of sequeshal algorithms.
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De{inih‘_ovy 5-1-7:
Let X and Y be coherent spoces.

A continuous funchon F:X—>Y is called stable iff
F safisfies the following Condion:

(III’) stability : if a,areX and ava'e X
thew  Flana?) = F(@)n F(a).

The stabiliv condihon is a special Case of preservohon
of intersechons. By the obvious inducton, if Y0i%iex
15 any :f;'n;’re linked familm' in X, and hence M. i e X,
then

F(Qrai\) = (1 Fa)

161

n Category - theovete temms, fhe stabilihy condibon says
that F preserves the pullback,

ava’

e

Qa a’

Nana””

Wheve the ovrows Gve Inclusions.

Lemma 5-1-3. (Giravd, Lafont £ Taylor [19897)
let F: X—=>Y be conbnuous.
Then F is stable

il for each aeX, if ye F@) Hhen et is o pnique
minimal Qo € Xp  Such that ye Flao) 5 equvalently,
G = Nt beX| beca and yeF(b)Y .
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Proof :

Assume F:X—=>Y is stable and suppose’ ye F(a).
By Lemma 514, there is a mininmald ﬁ'n-ife Ao C Q4 Such
that ye Fao). Now let beca be such that ye Fb).
Since. Q,ub ¢ A, we have a.ubeX. Since Fis
stoble, FlagnF(b) = F(a.nb). Hence ye Fla.nby,

Now since 0o is minimal, We must have 0.=0a.nb.
Hence a,<cb. Hence

Qo= N3 beX| bea and yeFlb)§.

Conversely, Suppose F:X—>Y is conbamous and for
each 0eX wWith ye Fla), thek is a smallest a,c a
Such that ye Fas).  Let a,are X. Then by Wonoton: city,
Flana) € F@ NF(0).  Supose now that ava‘e X,
onol let ye FAYn FlaY. By monotonicity, ye Flava).
let A, € ava' be such that yeF(as) and

As = N3 beX| beavo' and yeF(b)Y .

Since ye F(a) and YeF(a), we have 0.cQ and doca',
hence 0o ¢ ana'. Hence by monotonicity, ye Flano’). g

Exercise 5-1-9 :
Prove the follow{ng:

[ F:X—Y is stable then

(I[[") preservabon of infessectons of linked subfamilies of X:

i)c 5 <X is linked and non-empty, hence US e X and (1S eX,
Hhen F(NS) = N3Fa | aesST.

Hint : the argumcnt above Yeacily 3enefab'zes.
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Recall our checklist of properhes in Observahon 50-4.
Stable funchons are (x) monotone, (IL’) preserve
divected wnions, awd (IL”) preserve intersechons of linked
swofamilies. What obout prope;i\’es (IE) and (I) on
that list 7 What do stoble funchons do  With
Singletons  omd the empty set ?  The short ansies Is
almost anythung they like. For example, a Constant
‘funcb'ow F: X—>Y odefned by Fl@)=b for ot
aeX ., where b+ @, is stoble. For each aeX
and  ye Fla)=b, we have ye F(@)=b, hence
@ is e smallest 0.ca such that ye F(al).

Lemma 5-1-10 ( Givavd, Lafont & Tcu,’lov {H%‘ﬂ)
let F: X—=>Y be stable
Then the troce oF F,

Tr(F) = 3 (a9 eXg.x Y1 ‘ YeF(a) and if bea and yeF(b) then azb'}

has the property that, for all (@), (arvy € Te(F),
() if ava'eX then YTy [modY]; ond

@ if ava'eX and y=y' then a=a’

Proo} :

() We have yeF(a) and y'e Fla*), lf ava'e X then
$y,y't < Flava') hence dy.y'eY.

@ If auare X and y=y' then Y€ F(ava’). Let ao
be the smallest subset of ava’ such that Ye F(a.).
Thew a.ca ond a.ca. But then by the minimolity
Clause m the deﬁm’h‘on of ™(F), a=a.=a’. [
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Lemma 5-1-1t  ( Girard, Lafont and Taylor [M%‘ﬂ)
Let X ond YV be coherent spaces.
i feXpxly|l s such that, for all (ay),(a\y)ef,

() if avareX dhen yZy'modVv], and

(2) iF ava'e X ord Y=y then a=a’,

then  there is a unique stable funchon F:X—>Y
defined by

(Arp)  Flay=tyelyl[Faccallanyef) .

PfOO :

_};}Erst, we vevifq that F is a ﬁm0i~'ow f/om, X into Y
10 show F) e Y, We must check that F(a) is a
Coherent Subset of 1Y[. Let y, u. e Fla). “Then
theve are a.,ca ond 0.c o Such that (00,4.) €f
and (a,y)ef. But then a.ua, ca, %o by (1)
Qpove, YT UL [mod Y],

Now We have to show that F Is Stable.
U monotonicity: if aca' then cdearly F(a)c F(a').
i) Continuity. Let 3aiSiexr be o directed SubfaMilM of' X.
Put o =0, 50 aeX. Since 0ica foreach ieT,
We hove ikQJI’F(ai\ ¢ Fla) by monotonitity. Conversely,
if Ye F@a) then Hhere is a finite @, c @ such that (00,Y Jef,
hence ye F(as). NoW a. < U*a'. , hence Qo€ Ow for Some
keI since the fam:k,’ 10;5iex s dlirected. Bq Mo notonicity,
Faa ¢ Flax) | hence ye u? F(a;).
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(i) stability. Suppose ava'eX. Then F(ana’)e Fla\nFla')
bt1 Monotonicity. Let ye Fla)n F(a’). Then theve are finite
doca and a,ca’ such that (aoyef and (any)€f.
Now aou0, € ava’ heace a.va, e X. So by conditon(2),
A.=0:s. We have ye Fas) and a.< ana’, hence by
Monotonitty, Ye F(ana’).

Since stable funchons ave comhmoms, unigueness comes

‘Ffom Lemma 5-1-6. -

Definitiorv 5-112 -
Let X and Y be Coherent spaces.
The Coherent space X=>Y s defined as follows;

| XS Y1 £ XpxlY];

(a, N\ T (a'y") [mod X=>Y]
Hf () if ava'eX then yCly'Imodyl; and
@ f avaeX ad y=y' then a=a:.

Tneovemy, 5:1-13 = ( Civard, Lafont & Taxylor [ 1934])
let X and Y be Coherent spaces.
Then

XY = %W(?)I F:X->Y ie Stablely.

Bv) Lemmas 5-1-10 and 5-1-11. |
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The mntenkon is that encoding a Stoble fu.nch'on by its
Nace Comesponds to A-abswachow and the fovmula
(APP) defines the applicaton of & funchon. Verification
that fne Cohertat Semanhes developed thus fav s
Suffcient o infetpret the positve ¥ S At fragment of
infwihouishc proposivonal calculus, and hence gives a
mocdlel of typed A-(alculus, Comes from the fo[lowe‘ng
result.

Theorem 5-1.14: ( Lafont [19834])

The cateqovy St. of Coherent spaces, With Stable
funch’ons qs its mMor prisms, 15 cavtesion closed.

Outline Of ’[?Yoj':
We Wik not give all the gory details,

Cleavly, T is the ferminod object in St. For each X,
theve is only one map F: X —>T, gven by
Flay=@ for all aeX, and this F is Stable.

To ensure that & 1S a product we need projechons.

De{;"@ P: X&Y — X by FR(tsxaviixb)= o,
ond Pt X&Y — Y by P-(fo‘sxauklkxb)z b.

(Recoll that each object ce X&Y gdmits @ wnique

decomposition.) By mere (nspechon, fo and P, are
Stoble funchons.

Now let Co:Z-—>X oand G:Z—>Y be stable
funchons. We claim there is a wuque stoble
funci\'ow F: z—> X&Y  Such that the fo“owinﬂ
diagram Commutes.



We define o set fc z. x|[X&Yl by
f=1% (e, (0] (c.x) e Tw(Go)$ US (c\(:,cp)l (C,q)é‘r’(cﬂ)(}

We Wite (1,w) e IX&Y] _ie. ieto1} and welxlulYl,

Let (c,(iw), (¢, (i, w)) e f.

(0 Suppose cuc'e Z. If i=1 then (cw), (¢, W) eTr(G;)
and hence  (i,w)Z (i w) [mod X&YT, If i#i' then
We have (i,w)C (i, w) [mod X£&\] Oudonptically.

@ Suppose cvcte Z and (i,w)= (i w). Then
(c,w), (¢ w) e Tr(Gi) and hence c=c.

Hence f is the tace of 4he stable funchon F:Z->X&Y
Such that the diagvam in queshon  Compmudes.

8(1 Theotem 5.1-13,  the map

Tr: Homg (X, ¥) —> [ X=>V)

s & bijecton. By puthng o Suitable ordenng on Homg, (X,4)
(see Lafont 11988a], Exercise &) it Can be shown that Tr |
Qn isomorphism betjeen Homg, (X y) ond X=>Y cousidered
as parhal orders. So = is the intemal hom on St. To
establish closure, We have to exhibit ¢ biyechon

Homg, (X£Y,2) = Hom,, (X,Y=>Z)
Natuvad in X and Z, A Cononical 1somorphusm,

(X&N2Z = X=>(y=>2)
Wik suffice.



~12-

| (x&Y)=> z]| = (X&), x 121

Note that Ce(X&‘l){;.w iff C=31o5xa viiixb f:z-' Some
(uniquelq determuned) 0e€ X{;-,, ond b6Yﬁn.

I X =3 (Y=22) = Xpx 1Y2Z| = X x (Y x 121).

It Is reacily vevified that the map

(c,z) —> (a,(b,2)
IS Q@ 3YRP|n isomorplusm  and  hence induces the requirec
Conovicod jsomorpusm of (onesent spaces. -

It (an be shown that the cateqory Cont of coherent
spaces with Conhnmons funchons as it morphisms s not
Cartesian closed. One supposes that thete is an
‘exponenhal ' Coherent Spoce Y such that

Homey,e (X,Y) = ¥Y*

ond devives o ConNadichon. A sketch of the proof is
given in  Lafont (19g8g8a], (Exercise 2).

Note that the odditve Conjunchon @ 15 not Q
Co-product on St. The injectons To: X—> X@Y ond
T: Y —=> X®Y defred by To(a)=toixa and
T (b= $15xb ave stable, and every Object Cé€ X®oY
can be writfen a5  Jo(a@) for some a€X ov Ji(b)
for some beY. The expression is unique, except in
the case of D; we have @ = Jol@) = Ti(D). This
Makes it impossible to define a funckon F: X®Y—>Z
Case-wise by

F(T()) = Go(@) , F(T(B) = Gulb)
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from 1Wo stable funchons G.: X—=>Z and G:Y-—=3Z.
The problem is that  Go(P) has no good reason to be

equal to Gi(®D); see Girard, Lafont and Taylor [1989],
Chapter 12.

5-2 Linearization : decamposing intuihoni shc_implicaton
1 3

We have the Coherent space X=>Y | where
IX%Y, g Xf,-,,X'YI‘ and,

(a.NC (a,y") [mod X=> V]

iﬁ (M '\f ava' e X dhen ch'[mody]; ond
@ if ava € X ond Y=y then a=a’.

Such a coherent space begs to be decomposed into
simpler pavts. Girard Called ~ Coherent space semantics
‘disturbing’ 5 the disturbance comes from fhe vealizodon
ot jntuivorishe implicakon Is pot primihve.

Deﬁ'ni%'ow 5.2.0:
Let X be o Cohevent Space.
The Cohevent space !X is defined as follows:

| I1X]| £ Xfw  and  0Z Q" [mod 1X] if( aua'gx.

Definiton 5-2-1:
Let X and Y be Coherent Spaces.
The coherent Space X—oY is defined as fo”owsz

| X—Y] £ |x|x|Y|
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(x,Y) (1, y*) [Mod X—oY]
i“ (1) iF xZx' [modX] then yTy' [modV],
(21 if xTA' [modX] ad Y=y then =2,
In the presence of (1), (@) is equivalent to
(27 if x~ar [mod X] hen Yy~ yr [mod v],

Evidently, X=Y = IX—V.
Exevcise 5-2-2:

Fil in the blonk:
Stable functons are to *=>* 0s funchons areto’—o’.

Definivon 5.2-3:
Let X and Y be coherent spaces.
A stable funchon F:X—>Y is called lineay if F
sohsfies the following condlition:
(I) linearity: if 5€X is linked
then  F(US) = U F@)] aesy.

So linear funct‘ans presevve ol the wnions there ove. By
faking S=@ in (L), we get (X'): F(P)=@. Note that
there 1S nothing to rule out Flal=@ whet a# @ (eg. the
Mops F:X—>T) so (Y) is Weaker than (X} in 5.0-4. The
linegvity Conolion Ql') imph'es Conbinwity (ll") owd Monotonicity
@, <o in view of our Parlier oiscussion (Exemise S+1-9),
We have the following equivalence :

F: X=VY is linear

iff for all linked subfamilies S <X,
(@) F(US)= UiF@laesy ond
(Ir*) F(NS) = N$F(ay] aesy . provided S is non-empty.
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Lemma, 5-2-4 . ( Girard, Lafont and Taulos [lng])
let F: X—=>Y be stable.

F is linear

FTF) =1 6x5,u) e Xpux Iyl | ye F(as) §

Suppose  F:X—>Y is linear and for some yelYl,
(a,y) € Tr(F) but a is not a singleton. Suppose a=¢g.
Then ye F(Q)# D, Contvadiehng linearity., So assume a+ @.
Then for any a7 Such that Ppca'ca With a'#@ and
X+ a, We must have y ¢ F(a"), since a' is minimad.
Now oava'=a so ava‘'eX. Hence we have
Flava’) = F(a) # F)v F(a"), convadichng lineanty.

Conversely, Suppose F:X—3Y is stoble and
Tr(F) =} (4x5,9) € Xgx Y] | ye F(tay)§. Let S€X
be any linked Subfamily. By monotonicity, We have
UiFHa) 1 aesh € F(Us). Let ye F(US). Then thee
IS & unique xeUS sudh thot ye F(txt). Now xea
for some aeS, hence ye Fla)e Ui F@Macss. o

Now if wWe know that a fumc hon F is linear, We can
safely discavd the Singleton symbols in Tr(F).

Definih'on 5.2-5;
Let F:X—=>Y be linear,
The linear Noce of F, denoted Trlin (F)’, is defined as follows:

Trlin (F) & 1 (x,vy) e IX|x)Y] | ye Flixs) Y
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Lemma 5-2-6: (Girard, Lafont & Tawjlor [14897)

let F:X—=VY be linear.

Then  Trlin(F) has the property that, for all
(x.Y), (' y) € Trlin(F),

(1 }F X' [mod X] then y<y' [modY] . and

(2) if xTa [mod X] amd y=y' tnen A=A".

PVOO. :
Recalling that  tx§uixy =txa'yeX iff xCa’ [modX],
the result follows immediately fom Lemnia 5-1-10. [

Lemma, 5-2-7: ( Giard, Lafont £ Tamlor [12397)
Let X and Y be Coheient Spaces. _
If £ eIXixIY] is such that for ol (xy), (xiy) € £,

(1) iF XK (mod X  then ycTy' [WlOd\/]‘ ol
(2) ’f xTa' {I’"OdX] and |1=-l1' then 7l=7("

then there is o wuque linear functon F: XY
defined by |

(LIN-APP) Fla)y=Y% ye Iv] I Jxea((xye f)ﬁ(

Analogous 4o the proof of Lemma S-1-11.  The only exia
item 1o check IS the lmeavity Conocibon. Let S5eX
be linked, We have Ut F(a)lae $3- € F(US) by the
Monotonichy of F. Let ye F(US). Then thert is on xeUS
Such that (x.ye . Hence ye F(Ix5). Now xea for some
acS, hence ye Fla)e UjF@|aesh. a
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Tneorem 5-2-8 - ( Givard, Lafont and Taylor [19897)
Let X and Y be Coherent spaces.

Then 0
X—oV = 3 Trlin (F) l F:X—=>Y Is |meaV§.

Proof : by Lemmas 52-6 awd 5:2-7. B

When F: X =Y is linear then, 3l'ven ae X and ye Fla),
There is o wwique Kea such that ye F(txat). Note, however,
that lineav funchons neecl not preserve Singletons : e
Con have ye F(ixy) and yte F(3ns), provided —yCy' [modY]
(conditon (1)). So linear funchons do not in general
give vise o graph homomorphisms on the Webs.
Concliton (2) is like a local Injechvity propesty:

i ye F(dxy) and ye F(ix'5) and ax+x' then
X~ %' [ mod XJ.

Wi F:X-Y wiy)

Lemma 5-2-9: (Givard (1981])
Let X and Y be Cohevent Spaces.
We hove the following Canonical 1Somorphisms :

x—-—o\/ = Y"'——-OXJ" .
1—X = X, . X— Ll ® Xt
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@ The map (ny) l~—>(l1,7c) gives @ graph (Somov pln sm
Wix—oVY) = W(v*—ox*).

i) The maps (@,x) > x omd (x,@) > X give graph
isomorphisms W(L—oX) & W(X) and W(X-oLl) = W(X*)
Yespechvelys explicithy
(@,2)C(@,xr) [mod 1—0X]

iff O if @C@ [mod 1] then AT’ [mod X), and
@ if xxXn [modX] then @X@ [mod1],

iﬁ x2x' [mod X]J. =

Recoll the other compovient of intuihonishe implicabon
decomposed: Coherence spaces !X wher [1X[2 X
and,  aCo' [wod 1X] iff ava'eX. The objects of
IX ave linked subfamulies Se Xy | ie for alk
aaes, avaeX, For edch object aeX, define

!a f____f %aoexf,’"} aoéall.

S la e !X. This constmchon defnes o funchon
F: X= IX 81'\/644,- bv’ Fla= 'a . Note that F
is Stable, bt not lin€ar; a quek computahon
reveads that  Tr(F) = § (6,00) | Ge € X, Y,

We have o general procecure for tuming stable funchons fnto
lineav ones, ond vice-versa.

Lemma, 5-2-10 : ( Girard, Lafont & Taylor [199])

If F:X—>Y s stable

then there is a wugue linear funchon Lin(F):!X—Y
def‘ncd by the equaton Trlin (Lin(FY) = Tv(F) .
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We shoW that  Lin(F)(!a) = F(a) .

Let Ye F(a). “hen there is a unigue f»m‘fc Ao € O such that
(a0, Y) € Tr(F) = Trlin( Lin(F). Hence ye Lin(F)(3a.%5). Since
10:5€ 'a, e have ye Lin(F)(ta) by monolnicihy, The
avgummt that Ye Lin(F)(ia) implies ye F(0) 15 similav. g

Corollavy 5-2-1l = (Givard, Lafont £ Taylor [19897)

If G: I XY is lineav

then  there is a unique stable funchon Delin (G): X—Y
def{ned by Delin(6)(a) = G(! a) anol
Sabsfring the equokon  Tr(Delin(G))= Trlin(&).

Proot .
The opefahons Lin and Delin ave muiel inverses. »

Let Lin dendte the category of Cohevent spaces ith
lineav funchons as its morphisms. Techm'callv,, the previous
o vesuirs say fhat he functor !:Lin — Lin s the
/eft adjor'nt to The forgc’fﬂd ﬁ/nd‘w f/om Lin w0 St.
Moreover, ! |5 a comonad (o toivipie) - these pve
famihes OF lineav ﬁmcﬁ‘oms Ex: I X—X and
Dy : !X !X that do the Sorts o[ hings they are
Sup/)oscd to do. The ﬁmc'foy U hos other P[easant
propertes Which we'll say o liffle more obout Jater.

Of couvse, there is the dual of | : 4he funclar 7
is defned so 05 to ensure that e have idenhhes
(IX) = 2Xx* amd (7X)* = ' X'
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Defnition 5-2-11 :
Let X be a Coherent space.
fhe Coherent spaces X and ?X owe defined as follows:

I'Xl X 0nd aCla' [mod !X] i{f ava‘eX
[7x | £ (X )ﬁn ond  a"a [mad ?X] iff avaéX*

(The defa'nih'on- of IX is fepemed for Compavison pwPoses)

Observe that  aCa' [mod @)1 ff | axxa' [mod ?X]
if avare X+ iff aCar[modix+].  Similay Computatons
confivm the othes de Movgan identty.

Fact 5:2-12: ( Lafout 119%%a7)

The Cafegory Lin )5 Cartesion awnd co-Coctesian. The
piocduct is &, as in St ; the projechons Fo and P ave
lineav. The co-product is &, +he problem wiich prevents
@ being a Co-product in St S vow fixed because
CG(@)=@ for all lineas funchons G. Emp=T=0 s
both temunod ond inival.

Using the Co-procuct @ in Lin, We can defne a
Co-product shuctuwe on the cotegory St by performing
a ‘lineavizaron'’, For Cohernt spaces X and Y, define

Xvy £ Xy
So IXvY]| = toyxXg, v ttixYe. and

(o,a)C(o,a') [ mod XvY] iff ava'eX |
(1,p)C lb)[dev‘f] iﬁl bub'eVY  oand
(0,2~ (1, k) [modXvY] o all aexf and be Vg..
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The injechons  Ko: X = XvY and Ki: V=2 XvY given
by Ko(@)=totxta and Ki(b)=tiixlb ave stable.
Given Stable funchons  Go: X—2Z omd G:V—Z, We
Can define F: XvY —Z casewise:

‘For Se !X | : F({O‘SXS) = Ll"\(a°\(5> , and
for Tely, F(isxT) = Lin(G)(T),
In pavhoulor, F(@) = Lin(Go)(@) = Lin(G)(P)= @

Fis lincaw, omd hence stable.  And finally, the inital
object in st is O =Emp, as in Lin.

Fact 5-2-13: ( Lafont [14%8a])
Telin : Hom,, (X Y) —> ( X—Y)

n

By Theorem. 5:2:%, We know that Trlin is a bijechon ; the
Venfcation thot it js qn isomorphism of parbal orolers
15 sinulay Fo that requjreol fqr, >.

The Coteqovy Lin s hot, however, (artesian closed;
we dont have :

(X&V)—Z = X—o(Y—z2)

What closufe Here is_ is with respect 4o the monoidal
Shuchuwe on Lin.

Definihon, 5-2-14:
Llet X andY be Coherent Spaces.
The conertnt spaces  X®Y and XEY ae as follows:
IX@Y] £ IX8Yl £ IXIxIYI,
(2. 4) T (x,y") Tmod XBY] .‘« AT 2’ [mod X] omd ySy' [med V] ;
(2 )7 (o, g) [mod X5 Y] ff amx [medX] or y= [med¥].
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Fact 5-2-15 : (Lafont 1198%al)
The operahon ® defines on Lin the siucture of o
sSymmetnc Monoidal Category, With 1 as the unit.

What this means is that ® is a bifurctor and thesre
Ove canonmicod (natwrpd) isomorphisms

X@1 =X . X®Y=RYIX (X@YI®Z= XO(¥®Z).
Sah'sfqing the Mac Lane—K&Ilv, equahons (‘f—':ee MacLane{M?l]).
Fact 5:2-16: [ Lafont [(43% a)

The Category Lin 15 A Closed symmemi monordod
OMegorw; ie. theiv is a natwal bijechon

Hom, .. (X®V, z)

N

Hom,. (X, y—Z),

Which means .
(XeY)—=Z = X—(Y—2Z).

Fact 5:2:)1: (Seelol [W‘é‘ﬂ)

The Category Lin is o ¥ -autonomous Category (in the
Sense of Barr [A19]), which. means it is o closed
symimelic monoidad Cotegory together Withv on involubion
(-)": Lin™ — Lin | isomorphismg X—oY — Yr—oX*
and  isomovpmsms X —=> X**,

Following 566'\1 qug‘ﬂ, Wwe have

DCﬁ'n{‘KOW 5-21%: ,
A linear (otegory 1S & ¥-autonomous Category With
finite products.
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Note hat i[: o *=- aufoniomous cateqory has o product
then it has o coproduct by de moigon oluolity.

Not unmexpectedly, Lin is o lineay category. The
Cateqory Vect, of finite climensional Vector spaces
ovef o feld k, withy lineav maps as its morphisms,
IS also o linear caiegow,, The omality operater (-Y*
IS the involuhon , the mongidad Shtucture is given by
the tensor product ® and the coproduct is the
direct sum @. Unfortunately, Vect, 15 not o terribly
Qood codegoncal model of proposivonal lineas logic:
wn Vect, we have

Vew) = Vew’  (VOW)* = V'@Ww*

S0 in Vect,, ® ond & ave Collapsed into one, and
l'ikewfse’ for ® pnd F. Recent wWork by Lafont, cited
WV Mowti= Oliet and Mesequer [1989), seeks to generolize
he cafegory Vectw. Lafont defines a category Games,,
for ony cet ki, and Shows Hhat Lin is isomorpic fo
0 fub{ Subcafegov’q Of Games;o,.,,

Fact 5-2-19: ( Seely [19897)
The category Lin fogefher withh the comonad ! : Lin— Lin
IS such that

W for each X of Lin, !X is a comonoid ith respect to
the monoidad Stuchare ; » :

(iy theve ave naturad isomovphisms X @Y ~ 1(X&Y)
nd L &XIT, and all the agproprate diagroms
Commute.
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Fél!owmg Seely flﬂ%‘ﬂ/ any lineav cafegon,’ with o
Comonad  sahsfying (ij oawmd (i) above (with the
cletails  suitobly filled in) is called o Givard category.

Seely Takes the (catagoricod) essence of Givards
Monslaon of intwihonishe logic into linear logic to be

the following

Propositon 5:2:20 : ( seely [19%91)

I{l G,! is o Givavd category \

then the Kleisli category K(G) with respect +o |
Is Cartesian closed.

I pavhoular, St is the Kieisli category of Lin,! .
Seelq notes that in generod, K(G) does not have
Co-products. St js o special case because Lin

s & Subcategory of St.

A much move detailed discussion of -the coteqovicol
inferpetokon of linear lo gic is fo be fourd In
Seely 119897, See olso  Mavk-gliet and Mesequer (1989]
and Lafont [193%a].

The genecal procedure in categorical logic is to
associate, Under the Lombek ~ Lawvere Lovvespondance,
Morphisms of the cotegory in queston with equivolence
Classes of proofs in o given logical system, the
equivalence classes b‘emg given b\1 the deﬁ'mng equatons
of the cotegory. In te case of linear categories, a
Voathet )o_h3 list Of equatons |s reqw'reol: sSee
Seelul [1989] owmd Mavti- oliet pmd Meseﬁuer [148‘1];
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O presentohon in terms of Categovicod combinotovs |s gy'ven
n Lafomt [1a33 b].

Girardl fokes o diffevent Course. In the next sub-sechon
We see o direct constuchon of o semanhc object for
each Froof in the Seqwnt codcnlus  LL! . The equivadence
classes of proofs detevmined by this comshuchon ove
of imporrowce in the novmedizaton ( Cut-eliminabon)
process for the System of Proof nets . deodt withs i
Secthon 6. ~

53 Proofs as _objects in Cohevent spaces.

Fix & Countoble Collechon of Coherent spaces (exduounﬂ
Sqt and Emp) and a bijechve mMapping of that collechon
onfo the set of proposihonal letters of £: the (anjuaje/
o[:. Modal lineav logic. Assign the Cohesent cpace 5Sqt
to both the Constants 1 and L, and the Coherent
space Emp to T and O. The duals of propositonal
letters omd  all Compouncl formwae  built fIOM ®, %,
&£ @;! and ? Wil have assigred to them the
aﬂwropriate coherent space fovmed from the semantc
operatons (=), &, 3, & & ! and ?, Hencef?ov-m,
We identfy each formula of L With its Coherent
Space.

If A is a sequence of formulae As.. An then
A= A%..BAn 05 g Coherent space. Hence

IAI = IA.‘X...XlAhl.
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We write  ze|A]l whee z=(z,...,22) ond zielAil
for i=1,...n.  From the definiton of the operaton 7
on Camnerent spaces ( Defniton §2-14), e have

z~z' [mod A] iff Z; ™ z] [mod Ai] fo! some i€y, ..., nY,

ord ZT Z'[mod A) iﬁ z=2z' or z7Z' [ModAa].

We Shall define by induchon - @ (unique) object
Te A for each proof T in LLL of FA.
That 1T* represents the proof T Should become clear
fom the Cconstuchon. As an example, we'll be able
Jo Show that

if 1o is a proof of FA |
M is @ proof of FA—B (ie FA"%B),
ond 'IT,, = Tvlin (F) Whe F: A—>B Is linear
then  FOL*) = 1*  whae T is the proof obtained
from T ond T by applying (CuT).

Theorem, 5-3-0: (Givavd [1987])

If T is o proof of FA in LL!

then there is a wu'qu'e object T € A which
re presents .

The object T* is defued by induchon on the proof
m of FA. In each Case, it Wik be obvious that
T c |Al5 what has to be Verified s that for all
ZeT and z'e W*, ZTZ' [mod A]. We Use Commas
o denote the concatenaon Of Sequences and omit
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Oufermost  paventheses wheit approprate.

() T is an instance of the identhy axiom scheme, sov
- A A-
Define T* £§ (x,%) | xe]AlY.
Recoll that for alh e |A) ond % e Al wWith K+ 2!
We hove eithet 0% [mod Al or 2™ [mod A*]
Hewnce fOi oM (x,%) and (x/, %) € T*,  (2t,0C (% 1’) [mod AsBA*].

() I is obtained f/om Tlo by an a,pplicod\'ow oF (EXCHJ:
Fr
F o(r)
Where 0 is & pevmutaton of T,
Define % £ } oz | ze 5.
P,(SSWMinﬂ 1 is cohevent, so is T

(EXcH)

The addihves:

(iiy 1 is on instance of the axiom scheme —{ior T, say
T,
Defne T*£ B since [TIxIPI=PxINl=0.

(v T is obtained fom Mo and T by the rule (K):
AT kB (&)
FA&B, M
Define ¥ £ } (0,2 ac,,zvoevo't\)k(t.m,zol q,:—:.eﬂ'."s.

Now (0,%),2:C (o, x),Zo [ mod A&B ] since by h\“aoﬂuesis
We have  %,2eC 2/ 25 [mod A T], likewise for pairs of elements
of M* obtained {}om ™. SmCe (0207 (1,4) [ mod A&B]
fo« al xec|A| ond qelBl, N@baVe (0,7(),50 (a,q),z. [ mod A&B,1].
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V) T is obfained from e by the Fule (Fs7®):
AT
F A®B, I

Define ¥ & } (01,2 ] %,z € XY
The Cohevence of * follows immediatehy fom the therence
of T

(FST®)

(viy T is obfauned fom W by the rde (snb®):
B, I
F A®B,IM

Define T* & + (hy), 2| y.z e "%,

(snb B)

The Mulhplicahves .

(viis T is the oxiom F 1.
Define T* < 3@y,

Wil 7 is obtained from T by the rule (L):
sr (1)
Far

Defne T £tez|ze mrs.

(ix T is obtained fom To and T by the fue (®):
FATL FHB, T (
HFA®B, I, I

Defne T & } (x,y),202 | x,2. ¢ T and Y,z € T

®)

Let W= (xY),20,20 ond W'=(x'y) 2, 2.
By hypotnesis, we have  x,z.C x',zs [mod A,I"]
nd Y, z.C Y, z/ [med BF].

Let A be an obbreviakon for A®B, LT,
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We argue by Cases.
Case(): %,2. = x’,2]

and y,z=Y,2' . Thea ,H=,Vf'.
Case@: =x, 2.7,z

[Mod A T,] and y,2 =\, Z.

Now @ither Zo™zs [mod L], in Which case W™’ [mod A,
or else x "~ ' [mod A].. Since y=y', wWe have
()" (', y') [ mod A®B], hence WowW [mod A].

Coce (3): X,2.=%,2d and 4,27 Y,z [mod B,N].

The avgument is symmehic With case(2)

Case (4): 0,27 X', 25 [Mod A,IL] and Y, 27y} 2’ [mod BI1].

Then eithw X~ x’' [mod A1 and Yy~ Y' [mod B],

Or Zo7Zi{med ] or 27z [med ]

in ol cases, We hove W™ W' [mod A].

x T is obtouned fom o by the vde (B):
F AB, T (5)
F AgB, I

Define W& W 7

+ The exponenhols:

(x)) T is obauned fIOM To by the rule [Th?):
E o
- 7A, T
Defne T* & t @,z ze 'Y,
Coherance is imme cdicte: B2~ @,z [mod 7A,7] iff
Z7Z' [mod rl.

(Th?)

(Xiy T is obtained flom To by the Vule (€?):
= ?A_' AT (C?)
F ?7A T
Define T* &} avez| 0,bz€e " ond aub e A
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Let _aub,,. and a'ub,z' e T By m,,»omsas we have
a,b,zC a'\ b,z [mod 7A,7A, '] and aube A" and a'vb'e A,
Hence either (0 abz=a b,z o (3 Z7Z' {mod "]

o (3) ona' [md?A] o (4 b"b' {mod 2AT. In cases (1)
wd @ wWe have 0aub zCZ a'ub! 2! [mod 7A,T']. Assume
eithes (3) or @') obtains. Then either auva'¢ A" or

bub' ¢ A*. Hence (avb)ul(atub) ¢ A* . for otherwise
we hould have ava'e A* and bub'e A* by down
closure. Hemce (0ub)™(a'ub!) [mod 7A]  and so
avb, z 7 avb,z' [mod ?2A ],

(Xiiy T is obtained fom Te by the rue (D?):

FA T (5?)

F2A, 1
Defme ™ 4 tixg z | .z e T )
Let ix%,Z and tx'y, 2' € ¥, By hypothesis, We have
x,2zC x',z' [mod A, l']. Hence eitha () x,z=x,2' or
@ 27z [mod ] o ( X" [mod A). In cases (1)
omd (2), We have txs,z Tty 2! [mod 7A. r]. Assume
(3 obtans, Then X~ x' [mod A*] hence tox, %'y ¢ A*
wnd so  txs say [mod TAT. Hence xs,z 7 fa%, 2! [mod?".f‘].

(Xiv) 1 is obYained flom . by the vue (!):
FA?BL L 7B,
1A 7B, ..., 28

Define T o be the set of ald sequences of the form

Xy, XaY, 20V U Z0 Such that

® n%i;

b 5 2 € A

@ for i=1,.n, xzie W where each Zi is of
the foiM« (bu e b;,‘,) and  bij € (B:i‘-)f;n for §=1,...,k
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(d) fo( j.—:l,...

k. bsu..Ube € Bj
We write

)
U...UZn € T'* ]Cor short.

We may assume the 2xi,...,%n ave dishnct @ it can be
Shown that 2 =22 implies

¢N

Z, =2Z2, so the vepetton
cloes not pdd anq#ling and & Size (n-1) Sequence Would
clo just as well.

Now let t=1%x,.. %a%, ZV...0Z, and

Y=y, Ymy, WU U We be elements of T, o

We argue by cases.
Case (1) :

——

t=u . Then tZu [mod!A, 7r].

Case (2) : t Fu ond tx,. x50y, Ym) €A. Then
0, 08 5y, ym TMod PA)  hence £ U [mod!A,77],
Case (3): t#yu ond 1A, xYVUIY,. Y-l €A, Then
there must be on % and o vy Such That 12435 ¢ A,
hence 2~ y; [mod Al.  But Since xizie TN
Ys, Wy € T, We have
Hence zi™ Wi [mod 7],

ol
%5,2: 8 Y3, Ws [mod A 71

This in fact implies that
ZV..UZn ™ Wi U...U Wm [ mod 777 . Hence £7u [mod 1A,

We have viot forgotien the (Cum) rule. We have left it
unhl |ost becaumse Hie definihon of m* n ts Case
Involves on unbounded existenhal Quantfier ; in all
The other Cases, the defimiton of T* uses only elementary
Set-theorethc operahonts applied to ¥ and T, whete o, T, are subprosfs.

(xv) T (s obtpined flom To and T by the vule (CuT):
AL AT
,' r1°l r’l

(Cur)

Define T* & } 2z, 2 | axe Al ( x.2zee T ond x,g.e‘ﬂ',”)‘;,
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buppose  Z. z. e T* with witness e |Al and wo,w.e1r®
With Witness ye 1A|l. By hypothesis, We have

X,Ze 2 Y, Wo Tmod AL]  Ond  x,2.ZY, W [mod A% 1],
Now either () 22Xy Umod AT or (2 20X Y [mod A*].
If case () ‘holds, e must have Zo™ Wo [mod 137y and
if cose (2) - holds, We have 2.7 Wi Tmod ], Either
NOM, We et Zo 2.7 We, Wi [ mod 13,11,

A tonsolodion, i Fhat the existenhal quantfer has
Wugueness built in cf the existental quantfier i the

formula (APP) by Whitckh & lineav (or srable) funchon
15 recovered fom its Nace.

Suyf?ose %20 € My’ wid YZo € T and 2,z e
Wd Y,z €. Then 2%,2.C Y,z [mod AL] and
UMZT Y Z [mod A D], The frst implies that either
A=y or K7y [med AY; The Second implies that either
X=y or X7y [mod A*]. Sinte we cant have both
Ay imod A] and A7y [mod A*] ) We must have x=y.

This Completes the Consiuchon. o

Now we verify our eaviier claim. Suppose T, is a
proof of FA, T isa proof of FA—B and
M= Win(F) whei F: A= B is lineav. Nou both
0s formulae and as Coherent spaces, A—B =A% B.
We may assume the proof T of - A*3 B 15 obtained
fom o proof M of AL B by the vule B). Then
T, = 1" = Trlhin (F)- ' Hence
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F(T]}ﬂ = } Ye | B8] | Joce ™ ((x,q)e‘l?lin(F))\j
=1 ye el | Ixe|Al (e " and ()€ TB*)3

let 1 be the pYOof of KB obtlained fiom the proof

To of FA and the proof T of FAY B by (Cun.
Then TT* = F(m*).

This is all in accordomce wWith Heyhng's ideal :
the PVoof 1 of FA—oB j_g, In an oppropriode Sense,
o funchon i Takes o proof Te of FA 1o o
proof F(T.)’, je. T, of 3.

Obseyvahon 5-3-1:

. 'We say that two proofs 1o and 1 of a sequent A
differ_only by their order of vules f ) To and
T hove the same occutrences of instances of Oxioms
Schemes ; and (i) for oM rules (R.) of LLY! other than
(ExcH), (R) is applied in T with principad formmla A and
premis formulae Band C (or premis formula B) iﬁ; (R)
15 applied in T With the Same prncipal and premis
formuiae.

lf o and M oave Hwo proofs 0{5 FA which
diffev only by their ovder of vules, then T =TR".

This obsevyvahon gives us some l‘nfofmaﬁ'orv odboout
the equivalence relaton

-Tro’\/TIT 'ff -ﬂ-;*.__'-—n-'#

defved for p/oofs To and T i LLI of 0 given, sequent - A.
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When else do two p(oofs Mo ond T, of A Cowespond,
to the sSame Semanhc object?

Consider the following Mo Confi qurahons of proofs.

Q) . ™
F AYA A A, FAY A,
—— (R ) /
[pd - A*B A ) [ulk A®AL Ao, A, (c 1(1@)
U
KT Ao, O
(2 Tho T,
A Ao EAD
(MIF n., A

The proof T of kDo A is obtained fom the
proof M of F Do, A by ' pushing the cut upwavals '
this is one of a number of possible Conversions in the
procedure for eliminating cuts. Nou Compute the semantics:

T*= Y20z | Fxe Al (,2.€ T ond x,2.€ T¥) S

M=t (uu) | uelAaly.

M= (U) Wo | U We €T and v, U, eT" %

M* =} Wo b | B |Alx|Al (wv)eps and (uv), Wo L€ 7)Y
=} v v | JuelAl ((uw e M and (u),Wo,W: € M)
=1 Wo W, | Juc|AI( uWo e TS aund uwe )Y
= TT*

This is not a coinadence.
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The system of proof nets for linear logic, Which is set
out n the next sechon, 15 Some‘l’hinﬁ of o h\,,bw'at of
sequent Calcudi and natral deduchon systems. Its vules
nve Sivuohww Similav to those of LL!, and by oan
owalogous conshuehon, We can defve a semantc
object B* for each proof net B in the systemu of
proof nets PNIL!. A key feature of the novmolizabon
(cuteliminaton) procedumre for PNIL is that if B
is obtained fom Po by a sequence of one or more
Convevsions, then p¥ = p*.  Moreovet the map N,
Which  3ends eacw proof T in LL! of KA, ... A« to
a  (unique) proof net N(T) with conclusions Ai,...,An,
IS surjechve. In additon i{i N(TT):[S then T*=p*.
So we can start with & proof T of FA in LLy then
foke po= N(TT) and apply any sequence of conversions to
fo 1o get a normal (cut free) FrooF net Bo'(quaranteed,
by the SNon3 Normalizohon Theorem for PNI!). By
Surjechvity, there (S a proof T of A in LL! Such

that PzN(Tr); since 3 [s cut-free, So is T. Then
Wwe have

*

"ﬂ;z}’g::)'}*:‘”’*.

The eager veader, tantalized by this Odverhsement
for Sechon 6, Moy wish to proceed forthwith in
Seavch of the Joys of proof nets. But hold oh;
there 15 something move We can say obout the objects
M*e A, Where 1T is a,p(oof of A they ave big.
If X is & Coherent space, Gn object CEX is moximal iff

‘v’o‘celxl(,if quc(qufmodXD then ote c);

equivolently, for ol aeX, if cca then a=c.
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Theorem 5.3.2,:
If T is a cut-free proof of FA n LL
then T*e A is maximal.

PVOO :
By inducton ow the proof T of A

() T is an instance of the idenhty axiom scheme, say A A"
T* =3 () | xe |AlY.

let (4,2) €)AIxIA). and . suppose +Hhot for all x € 1AL,

(%.%)C(b{,Z) I mod A,A‘-],l Take Oc;v] . Then ’\432 {mod At].

Toke x=z. Then z2Cy [mod A]. Hence y=z qnd (!1,&1)6-_4(?

W T js obtained flom o by 4he vule (EXcH).
T =10z zen'Y, {or Some. peamvtahon o

The moximakity of 1% follows immedipdehy flom that of T1.°

The additves:

W) 1T is an instonce of the axiom scheme for T, say T, 1.
M=, and | T8I =08.

(W T is obtained from o proof T, of FA D wd a F’OOF
T of B, by the rule (£).
ﬂ—* = % (Opx),go ' DC,’Zvo € TT:& V) ; ([,l/’)‘%l l l,’,zo € Tﬁ*?_

Let (1,v),w € |ALB, "] be such that
©) for ot x,z. € T, (4,V),WC(0,%),Zo [mod AZB, "], owd
M for all yzo e (G, 0T (,y),Z [mod ALB, T].

Suppose 1=0, hence Ve |A). Then (0) implies that for all
X,Zo € TTO*y v, y C X, ZO [mool A‘ r‘], BU’ hﬂFO'ﬁ’leSfS, Tro*
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15 maximal. So W € T and hence (O0v), W € ™.
Likewise, if i=1 omd hence velBI, () implies that
VWeTF and So (1,V),We T,

) T is obloined fom o proof o of FA T by Hhe rule (F5d).
T™ =1} (02,z] %z ey

let (3,0),w € | A®B, M| be such that for alh x,zeT,
AV, W (0,x),Z [mod A®B,M). f 1=0 Hhen we have
V,w T xX,Z [mod, A‘F'] ]Coy :a,u %, Z e T.¥. Since TL* is
Moximal, VW € o dnd hence (ov),w € W™ If i=I
then, since: (1,v)~ (0,20) [mod A®B]. We must have
W=z [ mod 1] fov ald z for which. there is an xe |Al such.
that  «,ze ', But now by Choosing any ye|Al such
that for oll a,z e o | YFxL, We Can Create an element
Yw elAT] Which is Coherent Wit eveyy x,z e T, but
not inv W:,- conadichon, So the case i=1 js not possible.

Viy T is obtained from a proof T of | B ' by the rule (SND®).
T™=30z]| 4yzeT*y.

“The avqument is Symmelvic With (v).

The mulhplicatives:

(Vi) T is the axiom FL. T*=10% and |11=}@%.

(Viliy T js obtained fom o proof T, oF F by the rule (1).
‘""*:%@,5 ' z e_n—oﬁ\y‘

The Maximality of T* follows immediately fom that of T.
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Uy T is Q’o‘mineob flom o proof T, of FA L and o P(aof'
m of FB,I7 by the rule (&).
T* =100y, 20,2 | %,20€ T Ond yzem

Let (uv)wewi € |A®B, 13 17| be such that for all
(X,Y),Z0, 20 € T* wWe have (uw), Wo, i C (,4),Zo, Z, [modA]
Where A is shot for A®B NN, We arque by Cases.

Case(1): ‘u,Wo € T and ‘V.y. €M Then (up),Wow € T*
Case@): uWo ¢ ;. Since T is maximal Ihew s Some
X, Zo €M) Such that U, Wo™~" X, zo [mod A;3T. Hence
W= [mod A] ond WeX Zo [mod 1] but not beth u=3x and
Wo=2.. Hence for ol y,z.e W*, we have
@ (UV),Wo, W # (XY),Z0,2 5 and (b) (uv)X(%Y) [mod ARE]
ond (€) WoX Zo[mod L], Then for all y,z, € T*, we
Must have v~z [mod IT]. |

Cose (2+1): U, W ¢ T*. Then since ¥ is maximal, there
exists & Y, 21 e T such that V. WXy, z [mod B,17]. Hence
We have o Y,z € T* such Hhat WXz [mod IT], ConVadkichng
the Conelusion of ().

Case22): v, w. e T*. Then by the conclusion of (2), we

have W W [mod U] 5 Convackichon.
|

ﬂxking on faith the advevtised rvesult that semantic
Objects remain constant nder the eliminaton of Cuts,
we hove the immediote

Covollan,! 5.3.3:
IF mT s ony pfoof n LL of A
thew T*e A is moaximal. .
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Those with less faitv may demand a divect proof that
the vule (CUT) preserves mpximaliny. The author has
laboured long and hard o this one, without Suecess.

The four modal vules in LL! are another stovy.
It is relatvely easy to Shod that modal thinning (Th?)
nd wodal convachow (C?)  presewve maximalihg of
semanhc objects but (B?) and () are vother move

tricky.
Exevcise 5-3-4-

Either prove or find a counter example to the follouﬁna
l?/oPoSi hons.

(0 ’]c mTis o P"OOF Of F2A " obtauned ]Q/om o Proofm
OF HA T 'o\/’ the rule (D?) and T ¥e A
15 mMaximal

thenw T*e 2AST  Is maximeal.

@iy 1f 17 is a proof of !A 7B, ... 7B« obfeined fom
0 Pr’oo{r o oF F AZ?B, ... 7Rk [olq the rule (!)
ond 1) e AB7B,3...87Bx Is maximal

themw T*e 'A% 7B B...82Bx is maxmaed.

Note: (i) does hold, in the cose when T is o proof of

FIA  obfained ‘ﬁofw n pmf To Of FA bv’ (‘)) in that
cose, TM¥=!TS =}aeA, | ac .
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6. Pfoo{: nets and novmalizahon

Givard's System of pv’oof nets s motvated by the desire
fov a System in Whick the process of veducing prosfs fo
Notmal form is reasonably neat ordl Simple. Since
linnear Iogic has an involutve Vleﬁah‘an/‘ normalizakon tn
a notwrod Oeduchon systemn is going to (nvelve
mMessiness similav to that Whchh avises n classical
natwed oledinction systems. (for a Prawitz—shyle
hotwrald deouehon  system for linear logic, see Avron Il%ﬁ]).
Foof ners are graphicod Constuchons e are like sequent
Codculus  proofs in that they have multple conclusons
onel, moveover, each of e Sequent calcudus fules is divectly
mimicked in the system of proof nets; in pavhenlar, a
hormiak  proof net IS one which does not contoin any
instance of the owaloque of the cut ve. ( For eavlier
Work om graphicod Pmo% sysfems for mudhbple Conclusion
103:‘&9, see  Shoespith anol Smiley [19731) On fhe other
haind, fhe  system of proof nets PNIL 1S a quotent
of the Sequent colcwlus LLY n the same woy +hat
e intinonishe natwel deduchon Sysfem NI is o
quonent of the sequent codowdus LT+ sequent coleulus
proofs which oliffe only by The odles of Vules are
identfieol.  So,in o Semse, proof nets ave the veal
proof obijects.

With, f@gamt fo nomencloture, the system wWe calk PN
15 Colled  PN1 in Girard [1981]5 he System we call PHL,
Which (ophares ol of Pmpoﬁﬁ'onqi finepy {ogfa doesnt
have o name in Girovd [19%7].  Gravel goes on To consider
PN2, dhe system (with proposihonal qaffaﬂg\‘ﬁef‘s : We dont
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deal withy PNZ.  We Will Work thiough ( and fill in the
details for) most of The mateaal on proof nefs in
Givard [19%7) up o, but not including, the proof of the
S}{onj No/malizaton Theorem.  Primed b‘,’ tHig gw’d'e,
interested readers Should be able to tackle fhat one

on ther own.

6-0 ‘l?amd'n"ps and PNO

- Following Girard, We start by developing & System of
proof nets PNO  which Wil match the pure mulbplicative
sequent cafculus LM  ( Consishng oF the ldenthy dxiom
scheme ond the rules (Excu), (Cur), (@) ard (%)).

Definiton 6-0-0:

A _P(oof Shucture 15 an object Consishng of consisting of
occurvences of formuloe in Lo (the t® %3 fagment) and
l{inKS between these occuvvences OF ‘ﬁ)‘/mu(ae, “The links
ove of the following Kinds:

(0 axiom link: A I whete A is a literal,
iy cur link: A A
cuT
(i) @ link: A B
ARB
V) 5 link: A B
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An axiom link has no premises and fwo conclusions. With
respect to fhe other kinds of links, occuiences of formulee
obove the line e premises of Hhe link, and an occutvence
of o formula below the line is the conclusion of the link.
The symbol ‘Cut’ is hot a ]Q){mulﬂL (so CUT links have
tWo premises and no cConclusion). Both axiom links and
Cut links ore Copsidered symmetic  ie. A and A*
can be (n’rerchanged.
We also require that
() every occurence of o formula in the shucture is the
conclusion of exactly one link; and
(2 every occutrence of o Jormula in the stuctuce is the
premis of at most one link. .

An occurrence of o formudo. in 4 p/oof Shucture Which (s
not the premis of any link is called Tevminal.

A link in o pmo{f svuctuve (s colled a tevminal link
of hat Pmof Shuctuve iﬁ: eithet 1ts Conclusion (or
conclusions) i (ave) Termined, or else it (s a CUT link.

To be precise, \We Shoulol define an occuvvence of ou formuloy
0s o Ovdlevec parr (A1) Whet Ais & formula Ond
105 (v positve in*eger. And,erwnich, we Should o(ef‘me
binavy velakons  AX((A1),(A59)) and  CUT((A), (A,3))
ang femory yelarons  Q®((A),(B,3), (A®B k) and
Z((AL) (B,2) (ABB, k), but Hhat wowd be neeoliess
precision. We Shalt be conteat With Qraphical repesentatons
ond wheye thefe is no risk of ambigw'h/]) speaky of
formulae vather thaw formuta Occuvrances.
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Examples 6-0-1:
The following diagroms  vepresent proof Shuctures.

@ I
I | I
A B A"~ B
ABB A% B
(b) | l
| |
A B A B
A®B A-@8*

Deﬁm‘ hon/ 6-0-2:
A proof Shuchwe with Fexwunods As ... An IS Coect ot
+the soquent FA.... A is Drovable in LLM.

Cleavlq, examp*e (0) ObOve vepwsems & Cowect pvoo{
Shuchve  Wiile examples (b} amnd [¢) Olo not ( 4he empty
Sequent [ not provable).  So we need A Cntenon, by
Whith we o dishnquishy the covvect P/&af Shuctures
Yiom, Hhe incorrect.  Noting fhe graphical  Similoving of
exomyles (o) and (b), the Crterion must be Such that
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@ and B links can be cleaviy diff%nh'ajed Giravol
colhs Ws Cntedion The lonq 'fvlp Conditon. For Pedagogacat

purposes, e elaborode on the theme of Mavel, SFeaﬁcau,»t,
dram tvavel.

~ B - - N
[ A
Y-A-X7 % i
7 Z
¢ A 4

Deﬁ'm’h’ow 6-0-3:

Each proof Shuctwe determines o network of Wam Nacks.
With eoch formuin occurrence A in a proof stuctwe, we
associote o Nam Stops = the left hand side am stop,
fom whith one catches north-bownd (%) Voms s
clenoted  A* and the Vight hand side Nom stop, from
Which one catches Soudh -bound (¥) Hoams s dendcted Aw.

“The laqomt of Hack in the networic 1S Such that evevy
Mp s a round trip; wWhen 4 tram Stops ot say, A",
Ahen, for some positve integer K, the k™ stop fo which fhe
Nom ravels afte Ie,av/ng AY Wil be A" agoun.

let S be e collechon of ol Nem Stops in the netiork
and let p be the number of formula occurences in the
Corve spondiing  proof stuchuve | so the Cardinolity of S is
2p. A rip in fhe netlovis s A lay'ecbve fzma%ow
t: So—> Zhz . uwhere So€S ( Sok<2p), Subject
to some furthner copoclihons set out below. e say
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’h\/o ‘MPS t: SOQZ/KZ dnd 1 So—_—>z//<z ave
equivalent  iff for ol Nam stops Zle S,

t'(Z) = t(=)+r [mod K]

]COV some K€ §o, ..., k-11. Otherwise put, o tvips are equivalent
When they, oleﬁ'ne the Same Cyclic ordenng (modulo k) on
So. but difer in the choite of inihad wam stop. Two

Mips are oushinct 1ff they ave not equivalent.

Ne define simultomeously the network of Hom tacks fora
PVOof Shucture  and the possiple -}’wps —th'/ougk thed nehvork
by reference to Ane links and termunad formmda occuriences
Contauned in the given proof Stuctwre. The definition is
COmPonwf~ wise.

(1) axiom links:
Tram NOCKs 1 the vicining of an  Oxiom link ave as

'Follows.

il il
I

L A A

The Hacks ale such that every ¥ip t sahsfes
@ tlAY) = (AN +1 | and
iy t(A) = (AN + .
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(2 CUT links:
Tram tracks In the vicinity of a CUT link are as follows.

The Vocks ave Such Haat every trip £ sahsfies
i t(A) = (AN +1, and
i) (A= (A +1.

(3) torminal formula occurrences :

Tam Vacks in the vicinity of tevamwad formua occuwences
ave as follows,

The Nock is suchthat every wip t sahsfies
t(A") = t(AV)+ L.

@r) R links:
Trom Nacks in the Vicinity of X links are Aas fallows.

_.._-_.»‘ -
~
.

o — -

T
14
1

|

A

e
>
@
(VY

4.‘.



—147-

Associated wWith each, & link is A Switch With Mo positions,
“L" ond “R".

When the Switch is on ™ L' Arips t Sah'sfvl the fo!(owmﬂ
Conditons :

0 t(A)=£(BN+I,
iy t(BY) = t(A8B")+I;
d@ip t(A®BY) = £(AV)+1.

When fhe switch is On “R” Wips + sabshy the following
Conclihons:

i t(A) = t(A®B")+1
iy £(BY) = t(A)+1,
(i) t(A®BY) = £(Bv)+1.

(5) % links:
Tram Yacks 1n the Vicinity of 2 links ave as fo!lows.
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Associated with each B link 15 a Switch With o posihons,
\t L-” aﬂd/ u R/u’

When dhe switch is ow “L" 4vips t .sm\'sfv! the follow}‘ng

Condihons ;
fef

0 f(A") t(ABB) +1 ;Ai
..,
s Y

LII) ’t ‘t(BV)+'
When the switch (s on “R" tvips t sahsfy the follown?

\ l

(i t(A’SB W= t(A)+1.
Condihons :

h A7) = AR
( tAY) = t(A)+1; AY fp°
o o= tiaseer; (AL fBY
i) t(ABBY) = £(By) +1. sl

ABB ;

I view of the above specifications, each ip t in the given
fam network / proof Shuchve is wuguely determuned
by the Choice of Wamstop Zi- Such that +(£)=0 and
the seftings of all the ® and 3 switches in the
hetiork. — Given a Yamstop Z €S and a confguakon
of @ ard B SwWifthes, let k<2p be the smallest positve
infegel such dhal HZ)=K oand let 5.5 be the colleckon
of aM Nom stops  Visited in he cowse of the tp. ln this
Cose, + is o bijechon  t:So—>2Z/kz  (and ol Hhe
identdy  symbols in the  obove specificarons ove 4o be
Yeinterpretted  as Congiuence modulo k).
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let t:5—>Zkz be any M’p i the given Yom
networks / proof shucture. £ is o long tvip i# K=2p
equivalently , iff So=5. Othenwise, t Is a Short trip-

(End of Defrition 6:0-3.)

Observe thot if Q pv’oof Shuewe Contouns n ® or 8
links then fov any  given Nom stop 2 in the cowesponour_v__q
Vamy netdork, there ave Z" dishnet dips £ Such that
Zi € dom (t).

Examples 6-0-4:

RecaM e 'Pfoof Shucunes fepﬁesenkd m 6:0-1. We ovau
them oqain, viow enhonted withy Vam hacks, and take
Q ]c%/ Mps.

Lrg ’mwﬁﬁiﬁéﬁﬂﬂ%‘
] £

@

The shaded ack vepiesents the Hips with both the @ cwitch
nd the B SWirch set on “R'"; dhe Melve equivpdent trips
(one fo/ e0ch possible inifial Nam Sp) e long Mps. The reader
is invited fo veafy that the other fhvee confiquatons of
SwWrtch Seﬁmgs odso give rise 1o Iong Mips.
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The shaded Avack Gorresponds to the ’ﬁ’ir stavting )OOM,SM. A?
With  both ® Switches set on “R" (and 1o the other five
equjva}ent ’}Y;fS). So We have a4 short MP o o incorrect
proof Shuctwre.

©

As expected, e also get a short wip i this proof
Shucture.

beﬁn}ﬁow 6£0-5:

A proof shuctwie is called o proof net if every Wip in
the Ngm network detesined by that proof shucthrd s
0 long wip.  Let PNO denote the collecton of all
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Pfoaf nets  built out of axiom links, CuT links, & links
ond 3 links.

Of Course, We Cant yet claim that a pmof Shucture 1
Cowvect i{f it Is G p/oof net ; the vest of 6-0 Wil be
devoted To establishing This vesult. Since a proof
Shucture With N switches give rise o Z" distnct Wips
(which include A given Nom stop), the long Wip crifenon is
not a feasivle method of checking Comectness. In
Pmcﬁ'ce, Wwe Can always work with Pmof stuctres Hhat
Come directly ( by the mefhocl set out below) fom sequert
Codeulus  proofs, or that Come from corvect proof shuchures
by meons of tansibons which preserve Comectness. Indeed,
it is easy do induchvely define @ collechon of corvect
proof Shuctuies (which Will tum out to be idenhcal to
PNO) every element of‘ Wiuch comes from A proof
n LLM. To prove, rather than obtoun by definifonal
theft, fhat PNO s what we Want it fo be, We need
an Obsact properky like e long tip Cnterion.

On the prachcal side of hirgs, Some improvement has been
made by Danos and Regniet [1989]. By Working with om
alfefnatve giophucod representahon of proof Shuctures,
thew Show how comwectness com be verified by clneckinﬁ |
ot most 27 caces, where m IS the number of % links
in the given Stuctre.  In that paper, Danos and Regniev
Qso develop @ genw«uzed Multiplicahve Connechve.
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“Theorem b-0-b* (Gimrd U%ﬂ)

i s a proof of A, A in LLM

then We Can natwally assotiade with T o proof net
N(T) in PNO whose terminal formula occurrences

ove exocty A, ... An.

P(OOE:
N(T) is defined by induchon on the proof TT.

() T is on instance A A of the identhy axiom scheme.
Obviously, N(T) is he proof Shucture

A A

Whick is a proof net: all ips re of the formv

.-, A“, ALV, A‘H‘, Av, AA, eee Winch pve '0”5 'fVlPS

( T is obfaned fom o by Hhe rule (ExcH).
Set  N(M) = N(T).

ity 15 obiouned ]C/Oow To and T, by the rue (CUT) :
*’ A, Ao ?’" A*, Al
F Ao, A,

(cuT)

Bvl the induckon I/IUWoHaeSIS We have PrOor nets N(ﬂ'o ond N(‘lf)
Whitk have as dheic femunads A pud add The fovmulon occuenies
in Do, and A" ond all of Ai respechvely. We Conshud
it Proof Shuctare  N(1T) S fo”oHS

Q@
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The set of terminals of N(T) is Aeu A (considering Ao and As
05 sefs of formula occunences rather than sequences of formulae). Suppose
theve ave p formula occurrences in N(T) and q formula ocCuvrences
in N(Y.  Arbiarily select positious for alk the switches in
N(T) amd N(T). Let to be the resulhng Wip in N(TTo)
Stavtng ot A and let £ be the bip jn NUT) sfarkng -
ot A%, both to and t, ove long hips. Let t be the
vip in N(T), starding ot A' defevmined by the given
Configurakon of swifthes. Then t is such that

t(2o) = to(Zo)  for all voum stops 7, in N(TTo) | gnd

t(Z) = 2p+ £(2)  for all Nom Stops Z, in N(TH),

In parboular, t(A"V)= 2p+29-1 and after A’y the
Yam must vetwin to A*. Hence t is o long dip. Since
the switch Sethvgs Were arvbitary, N(T) is o proof net.

Q‘v)‘ T is obteuned ﬁ'om« To ond T by the vule (®):
FAAs  FBA
HA®B, Ao, A,

From proof nets N(1o) and N(T) whose sets of terminals
are tAYU A, and BYUA, rcspecﬁvelu’, conshuct a
proof shucture N(T). with ferminals t A®BYU AU A,

05 follows :
A B
A®B

ArbiNosily Select posihons for otk the swifches in N(To) am\d
N(m). Let to be the fesuhing (long) ¥ip in N(TH)
stavhing at A* and Jet . be the resultng ( long)
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tip in N(TT) Stavtng ot B for Hhe given confquvation
of Switches in N(To) amd N(T), Fhere are Mo possible

Yips v N{ Sﬂ‘aviiwﬁ at A*: one for each of the Mo

posifons of the fwal @ switch.

f dhe swifch is on “L", the Vam follows the route of
to unkl it gets 4o Av, then goes fo A®Bv, A®B" ond
then B'. Then it follows the' voute of t, unhl it gets
To Bv ond then goes back fo A", (raphicolly, the
Sitwakon s 05 follows: ’

| to t,
‘_.~?""-.~“ /._,')\_\.

: C \
(N NG ;

¥ dhe Switth is on SR", then the wip is as follows:

to €.
.'*"'. /‘F

7 N
NN Av B //'
{ A®B f
—

By inspection, both Hips are long. Hence N(1) is @ proof
net.

V) T is obfained flom Mo by the vule (B):
"" A,B,A ({8)
F A3B A
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from the proof et N(1G) whose set of tevminals is
tABSU Ao, constuct @ proof shuchure N(T). with
tevminals 3 ABBY UBo as Afollows:

N (16o)
A%B

AcoiNorily select posihons for alt the switches in N(To) qund
let to be the vesulbing (long) Vip in N(TR) stavhing at A"
For the given Confiqurakon of Suitthes in N(To), these are
trips in N(T) stardng at A, -

If the finad 3 switchy 15 on “L", the Vam stavts at
A" following the route of te, gets o Bv and loops
avound to B as it does on to, and Conhnuaes on
Yo Av. Then it goes oloin o ARBv, owound to
A%BA od bock to A,

lf the ]t?mal B switth is on “R" the am follows the
voute of 4o wnbl it get to Bv, then qoes down o
ABBy, avound to ABB* and up to B*. Fom B*
onwards 1o Ay the Nam vesumes the course of to.
After Av, it loops back, to A*, as it does on to.

Cugphically, the Mo cases are as follows:

W, to wpn, to
e vyt

@

AP
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In both Cases we have long Wips. Hence N(Wo) is o proof
net.

.

F/OPOSi‘h'ow 6-0-7: ( Givard (19 81])

If 1o and T ove 4o proofs of A in LLM which
differ only by Hheir ovder of yules

then  N(TR) = N(TT). ]

“The onof of 6-0-7 IS just an elabovahon of the fact

that  sequent Calowdus proof's proceed squxen?\‘aﬂq, 0dding
one newW Connechve ot o tme, while proof nets ave

bwlt up in o paroliel fashion. As oan illusirahon,
the proof net

l

I l
A®B  C A B
(A®B)®Cc ¢ A% B

1S the image under the map N: LLM — PNO of both, of
the following proofs of F (A@B)®C, A*EB* C*

FA A  +BB* @
F A®B, A+, Bt Fc, c* @
FHA®B)®C, A~ B* c*(%)
F(A®BY®C, At3B* C*
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EAAN  FB B g
' FA®8, A B (9)
F A®B, A+5B* c,c*
I (A®B)®C, A5 B*, C*

(®)

To establish Hat every proof net in PNO is a Cowvect

onof Shucture, We must show that the map N: LLM—> PNO

s surjecthve. This result requires o vothet delicote
avgwment.

Theotery b-0-% = ( Givavd [1987])
“The map N: LLM —> PNO Is surjechve.

‘Proof :

let 2 bea proof net in PNO and let A, ... A~ be
- a list o[: the terminal formula otcurrences of B- We prove,
|m1 indunchon on the number of links in 3, that there (s
o proof T n LLM of F o(An... A, for some
permutaton U, Such that B = N(T).

Suppose P has exactiy one link. Then . must be of

the form —

A A
in Which case, take T 4o be +he instance | A, A* of the
[denthy axiom scheme.

Supfose P has more than one |ink. Now P tonnot
Consist of two ov more non-connected axiom lkinks
Since al Yips in such pmaf Stuchres avé short.
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So p must Contain  either a CUT link or else a.fevminal
® or B link.

Case () : E has at least one terminal % link. We draw

> as follows :
o

A—B

- A%B

Here, Bo is the p(oo[‘ Shucture obtained fom the proof net [?
by vemoving the G link (so A and B are tevminal in
Be). We claim that p. is a proof net. ArbiNariliy.
select posihons for all the switches in e nd Suppose the
odditonal 9 switCh in P ison®L” In P We have
Q Ionﬁ Vip of the form

A ... B, B ___ Ay, ABB, ABB" A"

IS Q Iohg ’m’p. Since the posiﬁ‘om'ng of Swii tches was
avbivavy, Bo is a proof net.
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Since o has one less link than 3, the inouchon hv;poﬂyesis
qves us a proof Mo Of + A BT (where T" 5 @ -
Sequence of all the feyminals of o other than A and B)
such that  po= N(Te).  Then We tan take T to be
the Pu/oo{Z
o
FA BT
F A%B I" 3

and clearly, = N(T).

Case(ii): B has no terminal % links.  Then 3 must
Contain at least one CUT link or at least one terminal
@ link. Notce that CUT links and terminad @ links
Ove Shuchwvalty similay - if We made o ferminat @
link: out of premises A and A* ) and Shpulated thot
all Nam Wips are to vun express (not Stopping) ’rhr’ough/
the Wam stops (A®ASY and (A®A)* +then Hhe
vesult Would be the same os if we made a Cu
link out of A and A%, :

We say a teminal @ link in o proof net B sphits
f Anee are sub-proof nets o ond fu of P such that
every {o/mwa occurrence in [3 Other fhan the tomclusion
OF the ® link 1S in exactly oneé ol’l [zo and B, ond
the only link bemeen Bo and By is the & link i

ques#on.
olo
T NA B
A®B
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Likewise, We say 4 CUT link in a proof netp splits
f Ahere ave sub-proof nets poand p. of p Such Hhat
every formula occurience i B is in exactiy one of Po
and i, and the only link beteen o and B is the
CUT link in queshon.

CuT

To complete the proof of the surjechvity 0{3 the map N,
We neeol Aae following, by no means Obvious, result.

Theotem 6-0-9 : the Splithing Theorem ( Givavdl [ l%‘lj)

!)C Bisa proof net in PNO  with, more than one link but
no tevmunal B links,

then theve i either g CUT link in B which splits or
else o ternunad @ link in Which Spliis. a

| for now, we ke the Splitting Theorem on faith. Suppose ve
have a CUT link in p, with premises A ond A* Wwhich
splits.  Applying the induction hypothesis to po and e, We
obfain proofs Mo and T in LLM of AT amd FALT,
fespechvely, Such that  B.= N(G) amd pr= N{R). Then
toke T 4o be the proof

e m
FA T F-A*,.r“.( "
Err o

Clearly, = N(T),
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Similavly, 1f there is a ferminal ® link n B Which splifs,
then by afplv’ing e indmchon ht,lpoﬁ/zc’sis fo Pe and By, We
readily Obtain the desived Pfoof T in LLM Suth -hat
N = 2. n

Observaton §-0-10 :

Let B be a proof net in PNO and fix an ordering, soy
Ai,...,An, on the ferminal formula occurrences of p. By
The surjectivity of the map N: LLM —> PNO, there 1S
o onof To in LLM of l-o’(A.,...,An), ‘fo«some permutaton
o, such that B=N@w). Now apply the exchange vule
to M To oblain a proof 1T of FA,.. An. We can
how define an Object p*e ASS...5 An (idenﬁ'f\qmq
‘folmula& with Coherent sPaces) by simply pmﬁn? F,* = *
T enswe fhat p* is Well-defined, we have fo verify
Aol Whenever N () = N(Tﬂ)w m*=1% ‘E(;)’ge'ﬂ:,"f for
some permutaton T. We omit the Verificaton,

If it were the case that in any proof net Without terminal
B links, ' eVery CUT link and terminal @ Tlink splits, fhen
the  Splitting Theorem wWould be frivial. But dhis is not the
Case. For example, Consider the followwg proof net.

l
B

—
A

A B A5B  C3cC* ¢t C
A ®B* ABB ® (CBCY) cut
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The centval @ link Splits  but neithey the CUT link nor the
other @ link are Sph'Hable. Note also that the h»{po\’rhesis
' Without terminal B links' is necessavy : look again at
the proof net labelled (o) in Examples 6-0-l.

We Wwill set out the main lines of argument in the proof
of the 5plithing Theorem | but omit  Some of the details.

Lemma 6-0-1:
Let pbe o proof net, let hgs be & ® link in p ond
let t be. any (necessoviky long) Wip in 3.
If the given & switth i5 on “L" then thetvip t is
of the form ‘

ond if the given @ sWitch 1s on “R" then the tip t is
Of the form

A ... A, B .. _ By ABB, __.__, A®B" A*

Graphically, the tvips ave as follows.

A R
: | . N .- ! ‘
£ . .‘\ ! .: \ o
. y . - . J
YL By P8

( A®B } } A®B

\ ll \ ,

\\ X \ X

Switch on “L" ‘ Switch on"R"
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PYO :

—(;£up}>ose the @ switch s on “L”. Assume, for Q ConvVoduchon,
that the next wam Stop in the ® link To Whch the Ham
Movels after A®Bv is not A®B*  The only other points
of entvy To the ® link are Av and Bv. We tan eliminate
Av, for ofhernise we Would have o short tvip

50 suppose the next Stop in the @ link after A®Bv is Bv.
The the Fip must be of the form

AV, AQBV —————————— BV, AA, coso~ooe, A$8A) BA_, —p v - AV

By then when the @ switch is on “R" e con piece Together
¢ Short Hip

The avgument 15 similay When wWe Stavt With the ® Switch

“pu
on VR B

Using . similar sort of arqument, We (an also chavadenze
the general pattern of  Vips fhrough 3 links.

lemma 6-0-12:

lel B be a proof net, let G be a T lnk in B

and let + be ony (long) Vip in p.

if the given B Switch is on “L", fnen the Mipt s of
the Af'ovm/
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and :'f the given 3 switth s on “R" then the Vip t s of
the form

A'.... By, ABB., _._. —,A%SB* B ____. Av, A®
(aphicalle), the Wips are as follows.
Rt P
’ '.'
A -&@ (_A/~-&'B
A3B } o A{ A% B
o - /
e N
SwWitth on "L" SWitch on “R"

Deﬁ’nH\'M 6-0.13:

Let E be & 'P’OOf net m PNO., Jet A be any fovmu!a,
ofcuvvence i B LWhich 15 @ premis of a link | ond
let t be oy (long\ Np (n B. The intewal denoted
[A* AJ], is the collecton of Ol om siops between A*
ot Av on the Hp t, Together Luth A" ond Av.
[A AVle is Ovdered in terms of the dip t. Whea A
)15 D forrvm-la occurvence in which is the Conclusiorv

of o link, the inferval [ Av, A*)e is defined
Similavly.

Corollavy 6-0-4 :
If Ase is aw @ link in a proof net ps

then fov eoch wvip t in B, the intervals  [A" AV]e,

[B" BJJe and [A®Bv, A®B*], nre pair-wise disjont
and their ynion 15 the collechon of all tamstops in 3. n
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Covollary 6-0-15:

If A s any our link in o proof et P

then  for each Hip ¢ in B. A AJ N [A AN =P
and [A*AJe U [A“ Ale  Contfains evevy Mamsiop
in . o

Definidon 6-0-16:
Let P be Pv'oof net ond let A be éither q F/ervus of
a ® link in B oor a premis of & Cut link in 3.

We defme
(AMA): & T C

thot 15, the colechon of alk formalo occuvences in [ boin
of Whose Vam stops v in the intervak [A* Alle.

We define the empire of A~ olonokd eA, as follows:
# 3| foralmipstinp, Ce (A ALY

50 eA is the intersechon of oll the (A" AV)e ; Mivially,
Aec eA.

Che [AAT: ond Cve (A ALY

Covollavog 6-0-11:
I]C ieg is any ® link v ou proof net [3
then eAneB=9. =

Corollarw b-0-1%-
f L= s ony CuT link in & proof net [3

then  eAneA-=@. s
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Lemma, 6-0-18:  (Giravd (1a87])

Let ';@; be any @ link in a proof net p.

0 If C is linked to C* in P by o axiom link (ll_c‘:"
Then ceeA f creeh.

iy If C is linked 1o C* in B by a CUT link o
Xhen ceeA iﬂ cte eA.

(i lf ET»E is any ® link In g dishnct f}orw
thew  ceceA if cobeeA, and

De eA ;ﬁ CO®D € eA,

W N S is amy % link in P |
then Ceeh and DeeA u‘(f csbe eA.

0 If C is an hereditomy premis of A in B
then CeeA.

V) is a consequence of (i —(v).

(i) awdl (i) are immediote : in the fist case we have
t(Cy) = £+ 1 and H(CV)= tEN+] for Ul
'M’Fs tin B; in the second case e haove
b(Cf) =t(cV)+1 ad {(C) = 1(C)+1 for alt
Mps Lin B.

fhe -proofs of (iiy amd (v involve feasing out the

Consequentes of re generpd patiens of Hips *throu/?n

@ and B links ( lemmas 6:0-1l amd 6-0-12). As an

ilusiaton, We give +he proof of the second part of

(i) if C®D e eA ten CeceA and DeeA.

A B
A®B

Il ceDd ceA then for all ¥ips t in B, CODEIA" A,
ool CODv e [A" Avle. Let t be a tvip in B Such
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that e % SWH'CL\/ IS on “L"

Then, Cve A ATy and D" e [A* AVle. NowW suppose
that Dv ¢ [A*, AV]y. Then eithe Dve [B*BuJt of else
Dve [A®Bv, ABB* . Assume +he fovmer ond Conadet the
Sequence of Nomstops B ... Dv on the tip t. By changing
the CBD switth +o “R" oand, seting the A®B switd~

“R" also, We can piece fogether g short Mip t' of
ﬂoe formy

Av, B* ... Dv, C®Dv, —_ A..

Hence Dv ¢ [B* Buli. For similar reasons, Dv¢ [A®By, ABB'):.
So we rust have Dve [A" Avle {or all tips t in 8 With
dhe C®D swidth on “L", and for all Such tips t,
t(C"=t(Dv)+ 1. Hee De (A A)e and Ce (A" AV
fo« ot Wips t Witly the CAD swiich on “L"

For trips in B with the COD switch on “R" repeat the
(bove avgument with C and D exchonged.

'CbroHqu £-0-19 :

Cut

Let A AT be any CutT link In @ Proof net .

() I C is linked T C* in B by an oxiom link ¢ ¢+
then CeeA }H cte eA.



- 163~

Qi; lg cw,.cL IS @ CUT link jn B dastinct from —}2.,.—5-
ceeA if cte eA.
(i IF v IS A @ link in
then CeeA if co®DbeeA, and
DeeA .'ﬂ‘ cobde eA.
v f S is o B link in

then CeeA and DeeA iﬂ: CsDe eA.
v) lf C is an heeditary premis of A in
Then CeeA.

. | ‘
let AsB be o ferminal ® link in o Proof net 3. The

empires eA ond eB ove ow candidates for the wder-

lying cefs of cisjoint - Sub- proof nets Po andl B Such
that B s split as fouous \

ABB

Now if eA Contains any part ( premis or conclusion) of
either on gxiom link, a CUuT link or a @ link pther

hon LB Ahen alk the formuwda occunences jn that
link owe n eA. The 0{414.1 Problewv cases pwe B links

in B Whowe One prewss is in eA ownd he other pems
5 I €B  So the Conclusion S in neither.

Theorews 6-0-20: he Wip Theorem ( Civavd [1987).
let A be o premis of erfher o CUT link of o & linkin O

poof net p.  Then theve S a tvip t in B Such that
eA = (AA, AV t
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Recall that for all Wips t in p, eAs (A" A)e. The
theoremv assevts he existence of o Vip which rvealizes
eA.

The tvip t in B is defined as follois. For eoch 3

link <22 such +hat exacty one premis is in eA

(so csp ¢ eA), if CeeA then set that B suitch
to “R", oand if D€ eA then set that 5 switchto *L"

"R w D - L C fo
C3D C 38D

All other switthes in B are set mb;ﬁmilm]. -
Now Suppose Ee (A" Av)e  but E¢ eA. Since AceA,
Ow Supposiion Means that at Some stage affer A" in the
interval TA%, Avle, We Navel flom o tomstop of o fowmuar
FeeA 1o say Ev. So either t(EVY = t(FM+]| ov
t(ey = t(R)+!1. What Con the link bedween E ond F be?
F Connot be E*, linked 4o E by erther on axiom link oy
O CUT link, betomse in both Cases we have E'c eA
iff EceA. Likewise, F cannot be ony pavt of o ® link
of which E is a pavt and F connot be the (onclusion of
a B link of which E is & premis. The onley remdjm'ng
pasibiuty is that F is a premis of a B link of
Whith E is the (onclusion, say E is FBC. But then
G¢ eA for otherwise EeeA. So We have exacily
one premis of a B link in ¢A. The Hip t is cle fned
So that after F, We twn back 4o F*, never gething
Yo the Conclusion F%C =E. Hence E & (A" AV). -
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Definition §-0-20:

I]C P T3 Ony Proof net thew IR| is the collechon of
al formMm occurences in 3.

Corollavy 6-0-21:

Let A_B  be any fefminal @ link in & proof net p.

[]3| = eAUueBuUlAB®BY iff theve is no B link CT,,%

n B such that either CceA and DeeB o CeeB .
and De eA.

Proof -

Suppose theve is o 3 link -‘;‘%—’; in [> With one premis
in each of eA and eB, Then C%BD ¢ eA ond-
CB8D¢ eB, hoce IB|+ eAveBuiA®BS.

Conversely, Suppose theste owe no 3B links |n B With
one premus in each of eA amnd eB. Then theve ave no
consiaunts on Jm'Ps Saﬁ;fv’{mg the T./.'/; Thegremt S0 for
all fips t in P, eA= (A" Av)y and eB=(B" Bv)t.
The remaining o Vam Stops in B are A@Bv ond
A®B* hence. Ipl=eAueBu ABBY. n

Covollayy 6:0-22:

Let 'ZWAL be any CuUT link 1n a proo(i net B.
,rél = eA U ehAt i](F theve ave no 5 links in I3 With
one premis in each of eA and eA”. B

Nofe that fernural B links can give rise to the “one premic
eath way' phenomenon (see Examples 6-0- (@) but not all
instances of fhe phenomenon Come flom tevminad 5 links.
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Lemma 6-0-22;

lf ’:\6: s a ferminal ® link i ov P/oof net 3
such nat Ipl=eAveBulAdBS, :
then  the pioof shuchues  po and p. obtained fvorm 3

lo\1 respichon to eA and eB respechvely ave

Pr’oof nets,

The hypothesis implies that for each vip t 1w 3,
eA=(N A), ond eB= (B Bv)e. Moreover, for ald
formulo” occurtences  Celpl,  C*e[A AV, iff
Cve IAY Avly, ond likewice ﬁl" [ B* Bv]le. Let to be
Ony  Hip n o vah'mg of A" Then t. must follow
e Course of an intervad [A" Av)e. ]CO/ some Hip t
in B, ond thew loop back fo A* ( sinte A is termunal
in eR). Hence to is @ long Wip. Likewise, alh ips
t, in f ave long Wips. x

Covoltam' b-0-23:

lf P(‘:“TAL IS 0 CUT link (n & proof net B such
that Ipl=eAveh,

then the proo} Shuchuves g, and p obtoined fom
by resmchon to eA and eA* Vespech'veh,( ave

pyoof nets. |

Now we arve almoct Veado’ fo prove the Splithng
Theovem; we need one more prepavatory lemma.
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Lemma, 6-0-24: (Girard [1981])

let A be a premis of cither a ® link or a CUT link,
m o proof net [3. _

If &2 is a ® link in B such that C®D is an
hefecitary  premis of A

then eCueD ¢ eA.

let + be o fvip in B Such that eA=(A" AV)e and the
CO®D swifth is on “L" Then the interved [TA* AVl IS

Of the ‘form

At L CBD DN L Dy, €A L Cy, C8Dv, ..., Ay

Hence eDe (D% D) € (A ANe=€eA ond hkew;sé,
eC < eA. |

Proof of theorem 6-0-9 (the Splithag Theovem)

Let p be a proof net with more than one linki but
ho ferminal % links.  Survey the Collechon of all
® links See  ond Cut links AZE in B, and choose
One sSuch tat €eAveH is maximal with véspect
fo inclusion, whe H is eifher B o A" depending on
the case.

!f a ® link -’;—05- has been chosen, then we claim
A®B is terminal In }.  Suppose otherwise. Thew
there must be eithet @ termuinal ® link %‘;% or else a
cur link 55 such that A®B i an hledHWu’
premis of , say, C. By lemma 6-0-24, We have
eAveB<c eC, Hnmce eAuveBc eCueD or
ehveBcelCuvelt Convadichng e gssumphon of maxmality.
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f a CUT link % has been chosen, then it is
Necesspvily o tevwunal link of B.
Assume o @ linki has been Chosen; the arqument for a

CUT linky with eAueA* moaximal can be exiacied fom
What follows.

Now Suppose that eAuveBut ABBY + IRpl. Then,
lau, Lemma 6-0-21, there js a B link %@,g such that
either CeeA 0Ond DeeB or else CeeB and DeeA.
Now C2D must be an hel‘ed)fan,’ premis OF one OF the
premises of either a Cut link or a terminal @ link.
For definiteness, let C%BD be an hewolitary premis of
Foin 555, By Corollavy 6:0:1, e have CBDeeF,
CeeF and DeeF. Sothis % link puls no consivaint

on Wips sahsfying the Trp Tneovemr  with vespectto eF.

‘Supfvose CeceA and DeeB. Now we can choose a wp
tin p such that eF=(F"F)¢ ond eB=(B* Bv)t;
n parheulay, dhe CBD Switch s on “L" B"I Lemma 6-0:12,

the interval [F" R is of the form

Fo ... C8D" C* ... DyD' _._ _ Cv CBDv,—cer.—, Fu.

The we must have B* beeen C" ond Dv, and By betieen
D* and Cv. Hence eB=(PB" B, ¢ (F" F\)e=eF,

By inferchomging C and D we get eMceF.
Hence eAveB< eF ueF?, Cowwadx‘chnﬁ maxiokity .
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So we must have eAueBu iA®BS =I1|. And by

Lemma 6-0-22 the ® link A2 splits 3, as reo,w‘-ve:t

61 Normalizaron in PNO

Normalizakon in PNO s qui-re ciw‘ck, and poanless.

Dﬂcfn'l‘kow 6:1-0:
Let > be & proof net in PNO.
We. Sav P IS hormal i# B Contouns no CUT links. -
P Coverts to a proof stuctwe (3!, Writlen p conp!,
When one of the following cases holds .
(i) axiom Conversion (AC):

3' is obtamed from P 5!1 VepfacMg a Cowf'ﬁumhon of the form

A A A A by A Pi\*

. CuT

(ﬁ) mulbplicatve symmetic conversion (@[ -SC):
’3' is oblained f/o,w [3 bt1 reP!aa’mg Qa CowfigwaMn of the form

A B KB S
A @ B A'L % BL A A“' B B.L
CutT Cut cut
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Observe that for any proof net p, there is o B' Such that
Penp iff B Confains at least one CUT link.

The axiom (onversion scheme (AC) may appear too reshichives
We seem to have omitted flom cousideraton  coufiguratons of
the form

Buf fetall that axiom links Can only have literals as their
Conclusions  ( Definifiorv 6:0-0). So Whenever We have a CuT
aqainst the Conclusion of an Oxiom link, the other premis of
e CUT link must also be a literal.

We cowm olso ignove Comﬁ'gwah'ons of the form

[
AN

cut

Since such. proof shuctures are not proof nets ( ©) in
Eramples  6-0-4).

Definiton b-|-1:
Let P be o P/oof net in PNO Contauning p fOfmuia,
occurences.  The size of B, s(p) = P-

We have yet to verify Het When B is o proof net
and  pcon pr then B' s a proof net.
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Lemma 6-1-2.:

If B is o yroof net in PNO nd ] Con p*

fhew p' is a proof net With the Same Terminoh formula
occurvenices QS P and S(F‘)< 5(]3)’

Ffoo :
) Suppose b con Bt by the Oxiom Conversion scheme (AC).
Each (long) ¥ip in B is of the form

AA, A.LV'AA, A.Lv’ . AJ.A’-A-V,—A—J-I\) AV ——-’Al\

)

Where A ( vespechvely, A*) denotes the occurence of +he
formula. A (A*) which is a premis of the CUT links vnder
examination. By idenkfying the o occuivences of A
0md the Mo otcuwences of A, We obtain a long ip in
B of the form

KKy RS A A

But every Wip in B' s of This fom, So p'is & proof net.
If S(p)=p then s(p)=p-2.

(i Suppose 3 Con ! by the Scheme (®/%8 - s¢).

Arbitavily select posihons for all the switches in 3'. This
induces a switch Confiquraton for all the Switches in 3
except -for the Switches fo/ the @ link and the B link
removed by His Covversion.  Suppose both, those Suifches
ae on “R" (e arqument s Similas for the other three
combinaton s.) 5\1 lemmas 6-0-1 and 6-0-12, +he hip
tin p Starkng at A" is of the form

A ___ AV, B ... By, A®B. (A*$B*)" B'* __._ A,
A B, (8B, ABB" A"

AL KR ol
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//"‘\ P ""\
{ ' 7 \
\ / "‘. ," ‘ ""\. :
A A\'/;/'B(: J&\bs&.
AGB e A"3B"
cur
- : <—

Hence the tip t' in B’ determuned bb, the ?ivew COnﬁ'ju/aﬁbw
of switches in p'  must be of the form

AA ,,,,, AV; AJ.A)—-.—?..—‘, B*V, BA, seace, BV) BLA"‘"""—)A&\” AA
. NN
! -* \“ '/‘ \.\‘ ..'- »
AJA 8B
Cut C CuT

Since t is o long tvip, So is t'.  Hemce P' is a proof net.
If s(pY=p then s(p)=p-2. |

Definihonw 6-1-3:

Let p and p' be proof nefs.

We say p reduces fo p! denoted p~ap', if there isa
Sequence of Conversions

B= o Conp.Con ... Conp,., Con ="

\Crom & o B (So the relahon ~ (s the tansihve closure oF
Con)  Such o sequence of Convessions is called a reduchon
Sequence from P to B! of length n. (n»0; n=o when p=p).
We use the hotaton B ~7np' o indiicate the existence
of o reduchon sequence . from p to p! of length n.
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A proof net p is Weakly normakizable iff for some n<w
ond  Some B’ Which, 1 normal, BVap.
In this case, We say P' is & notmal form for p.

For each, proof net p, defne
L(p) & supin | 3p (B~ p)s.

A proof net B is skongly _normadiz olole |'ﬁ L(p)< .

If every teduchon Sequence starhing fom a qiven proof
het p s of bounded length | then every reduchon
Sequence  stavhing ﬁom, p coun be extended to one wWhose
final tevm is normok.  Aud Conversely. )

A proof net p moy fail to be Swomly normatizable
if tere is a Sequerce of conversions starting fone [
Such 4hat the Conversions do not deciase the size of

the proof ners involved ; in parbeulav, if there is a‘loop’
,}NPIMP“MFU,\»P"&.'. W")@’e ’3' a/’d PI( aVe
hot normal.  Such th?ngs do hot happen in PNO.

Propositon 6:1-4 = ( Girard [1481])

The re!ah‘oh ~ on PNO has Hhe Church-Rosser
property. That is, if R and PP Then these
s some B! such thot RBo—r [ ad piop. a

Wa omit the )Woof; it s fm’rlq s?vaj\c}hf{bfewwd but
Messy - If one contemplates for & moment the Conversion
schemes  (AC) and (®]% —5¢) then one readily forms the
belief nat 4he order of any Mo Convessions can be
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Swapped  Without altering the finalk vesult.

Thesrem 61-5: (Girard [1987])
Every pvoof net in PNO is sivongly viormalizable and
has o wnique viormal form.

PIQE:

Let )3 be a onof net in PNO pnd Suppose s(p)=p .
5up;>ose B pr. Bt1 Llemma 6:1-2 n< S(F)' Hewnce
L(Py<s(p). If P and p* are Mo normal forms for
B then by FProposihon 6-1-4, P=p. ]

In the lost pavt of Sechon 5 We ownounced the vesult
Ahat if B~ Thew p*=13,“. We Cowld Venfy this for
PNO now : we would have to find o proof T in LLM
Sich that p= N(T), mimick the conversions in LLM o
obfin & Mo Such Hrat Bo=N(To) dnd then check that
T = To" (cf- the discussion following Obsevvaton 5.3-1).
We could, but We Won't. The normalizohon of proof
nets is a “bottom—up’ procedure: We push Cuts
Upwavds untl e get to axiom links ot the top Ahen
get rid of the Cufs  altogethet.  Induchvely defining
T* for o proof T, and derivatvely, p* for & proof
net p, is a ‘fop-down' process. In Sechon 6-3,
after we have cleveloped the full system of proof nets
PNI!  pdequate for LLI  We Sholl present Giravds
odternghve *bottom-up' characterzohon of p*. Then in
Sechon b4, wheve We set out the vormalizabon proceduve
foy PNIt  We <hall confirm that when R~3p. then B*=pa.
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6-2 Axiom boxes and PNT

Our task is fo extend PNO So as to Obtain Systems
of proof nefs adequate for LL and LLY. Now a cheap
Way  of extending 0 sequent Calculus ov & natuval
deduchon system s bq adding new oxiom schemes.
Can we do that with proof nets?

Def)nv‘hOW 6-2-0:
A axiom box is @ link of the form

o

Wherte Ar,...,Aw are fomulae in the lanquage £ of
Modal lineav logic, nx1. Ay ..., Ax ave the Conclusions
of such o link; nere ave no pfe»wses X

A proof* SWGM(@ is ‘an object Consishng of occuences oF
formulae of L1 and”links beheen these occuwences of
formulae. In additon to axiom links, cur links, @ links
awmd B links, ‘We also allow AXiom boxes to link formula
occurrences.  With each axiom box withv n conclusions,
nzl, We ossotiafe & swilch with (n-yl posihons. Each
position of e switch comesponds o am n-cycle o in
the pemutaton group Sn. When the Switdy Is set at
o, Nom dps t sahsfy Hhe following Conditon:

for i=1,...,n,  t(Ay) = (A" +)

Where  A... An Ove the conclusions of the 9iven axiom, box.

A E_fo_”_'ﬁt is a prooft swucture which admits no Short
trips. Let PNO* denote he collechon of alk proof* nets.
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EXomples 6-2-1:
iy Axiom links A A

are  axiom boxes; the switch
. has one pasition.

i The switth, associaded With an axom box With, thiee
Conclusions  jas Mo positons : the 3-cycles (123) and (132).
When o=(123), long trips are as follows.

=
+ Al- TA:L?

[ ]
[ 4
L

ee? So - '\./

When o =(122), long Vips are as follows.

[~ 1
—-[AH Azﬂm -
T W

|}
]
1
]
- —

i) 'We, ove parh’wlarl«,, |'n'fe/esied i the axiom box With
one ConclusSion '

Ly

Qnd A Switth Withh 0O!=|
of the form

positown , and axiom boxes

T—Au“'—An_,

which have a Switch wrfh Nl positons,



~1%1-

In our defimih’on of proof * siuchwves, we allow an
formula, of* Li 4o be a conclusion of ‘an axiom box.
So Corvespondung 1o PNO* e have the sequent
Calculus  LLM*  |yhich is oblained fom LLM by
addoining infritely many  axioms, one for eack sequence
OF fwmulwe Of L .

Theorem 6-2-2: ( Girard [19871)

£ s a proof of FA,..., A in LLM?

then  We can natwally associade With T o proof * net
N*() in PNO* whose Termmal formula occuveences
ave exactiy A, ..., An

Wodify the proof of Theovem 6-0-b i1 the obvious Liay. m

Theorem 6-2:3: (Giravd [1987])
The map N*: LLM* —> PNO*' IS Surjechve.

Proof (sketch):

We have 1o show that the empives eA . retpin their’
hice properhes ( Lemma 6-0-18 and Corollary 6-0-19) wWhen
axiom boxes ave admilted. In parboenlar, We have to
ensure that when A is a premis of eithet g CUT link
o a ® link In o proof net E m PNOY ond Ci ond
C; ave o Conclusions of on axom box

I;_C.__,,___an

in B, then CieeA iff cjeeA. This follows from
the fact that any long ¥ip t in B can be expressed
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0s the disjoint union of the intervals [Civ, Ci*le
for 1=1,...m. ( Lok again at iy in Examples b-2-1.).
Other thaw this, the rest of the results leading up
and "imcluding ‘the Sph'ﬂmg Theorem go ‘n’hfough/
almost Unchanged. |

of cowse, the system PNO* (and LLM*) is rot
fervibly infevesting; its purpose is only to record the
fact that axiom boxes Work.

If one Strubnizes the inference rules of the sequent
calcwius  LLY dhen, Qfiet & fen moments veflechon,
one Wik nohce that the vules (Fst@®), (swd @), (D?)
and (C?7) ove easily mimicked as links. This
is becowmse these rules, like (®), (8) and (cuT),
Placc no reshichon on the pavametric sequences (or
‘Contexts’, as Givard colls them) occuwing in the
premis cequents, umd wWhatevev parametvic Sequences
there ave  veappear without Change 1n the conclusion
Sequent. Now e have just established that +he
Oxioms Ond Axiom SChemes of" LL! Can be mimicked
0s axiom boxes. So this leoves four inference rules
fo be accounted fov. They pose two dishuct Sorts
of problems:

I. the ‘nothing to link on to* problem :
the rules L) and (h?);  ana

T +the ' global Consvaint ' problem :
the vutes (&) and (!).
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Giravd deals with the four rules Wliform!v, With a device
called o Eroof box. A onof box s [ike an axiom box
except thot it has one or more proof nets inside it. Froof

boxes are o source OF Complicokon uhen it Comes +to

the Normelizatow procedmre. As Girard puts it, they

Gre  “...moments where we restore the Sequent (ie. the
Sequentol !)  stucture. Their use s thetefore a bridle
To paralielism .’ ( Giravd [1987] p.43) P/ooF boxes also
make o mess of WNam networks.
Girard's  stateqy for dealing With the rule (1) isas

fol!ows. Froom a Fvoof het p With terminals G, ..., Ca,
forme a4 proof net pipitih terndnals L C, ... ¢« as

iskated :
m
C

‘—--.—Cn
-

To mimick +he vule (h?) replace ‘L' with *7A' whee
A is ony formula of L.

The problern With Hhe rules (L) and (h?) s that they
‘Create’ o neW formula Out of nothing  (whith is just
To say, they involve thinning) so there is no premis
formula 4o ‘link! on to. But with regard to pavamehic
Sequences, they make no demonds and ave perfecty
Comservahve.  We camot ‘tack on' o L or a 7A
ot the botfom of a proof net (or shucture) but we
con use  axiom boxes so that all our thinning business
is done at the top. I what follows, We part company
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with Girard  omd  cbandon the use of proof baxes o
mimick: the rules (L) and (th?). ( Giard [1987], p. 41,
does remark that the proof boxes {for thinning ‘... seem
OF very limited inf@mSt.’)

Deﬁnih‘ow b2-4:

A new proof stucture is ow object consisting of occurrences
of formulae of Lt and links beleen these occuiences
of formulae. The links are of the following Kkinds:

(1) axiom boxes:

() generalized axiom link:  k+m+2  (onclusions; Kzo, mvo.

Li- i —L—2A— o —7Am—C— 2 )

Where Kk of the Conclusions ove occurences of L,

Ag... Am ove any fovmulae of L1 ond C and C*
Ove atomic {orMulae of £:.

(I-2) 1 axiom box: m+ conclusions: m»o.

Lg—2p—- . —7An]
whete A ... Aw ore any foymulae of L1

(13) T axiom box: m+1 Cconclusions; myo.

Lr— A= —Am

Where A ..., Am ove Omy fwmmlae of L.
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@) unary links:

21 FsT @ link: A
A®B
(22 snp @ link: B
A®B
(2'3) D7 link: ;A_
7A
® _binary links:
(31) cuT link: . AN
Cur
(32) & link: A B
A®B
(3-3) 8 )ink: A B
| Aeg
34 C? link: A 7A
7A

We also require that
(i) every occurience of o formula in o new proof Siuctwre
Is the conclusion of exactly one link; and

@iy every occurrence of o formula in a new proof Shuchwe
15 the premis of at most one link.

Deﬁnh‘ion 6-2-5:

Tram trips in o new proof stucture ave defined

Component -wise.

(1) The scheduling of Wips through axiom boxes is s
specified i Definiton 6-2-0.
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(2) Tram tracks n +he Vicinidy of a unavy ink are
0s ‘fo“oWé.

l
!
cv

A
The Nacks are such that évery Nip t satisfies
Q) tA) =t(c)+1, and

iy tlCv) = E(AY)+1.

(® “The scheduling of Wips thvough cut links, & links
and B links is as specified in Definiton 6-0-3.
The Scheduling of vips thvough €7 links fo"ows
the same pattern, as for % links.

A New proof stuctwre is o new proof net i{f it does
not admit "any short tips. Let PNT denote the
Collechon of all new pmof nefts.

Now that we have got through the defnitons, We can
drop dhe wodifier ‘new'; untl further nohce, * proof net’
Wil meonw on element of PNT. ((The ‘T’ is for
“temporary ' and  also for *vams') Let LLT denofe
the (admittedly umatmrad) subsystem of LL!
obtoined from LL! by Omithng the rules (&) and (1).

Theorew §-2-6 -

i 1T is a proof of FAL. Ax in LLT

then wWe can natwroly aesociate With T o proof net
N(™) wn PNT whose ternmunal formulo otcurrences
are exacty  Ai.o Aa.
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The only cases involving any novelty ave those of the
mles (L) ond (Th?).

() Suppose T is obtained fom Mo by the vule (1):
F Bi,... B
F L B ..., Ba.
Assume we have o Pf’oof net ]3°=N(1\'o) with temanals
Bi,....Ba. We Conshuct @ proof stuctwre B from po as
fvuows,
lf P- has a genesalized  axiom link,

(€8]

l—.L"—?r'— ¢ cod

then mplace that link  With

L—_L—_L"—- ?P—c—c*—l -

]f Po has more than one generalized axiom link, Choose

the ome that contains am heeditovy presmis of Bi for

the least 1 (wiﬂu respect to the OVolIWinﬁ B, .--, B.).
Otherwise, ‘if JPe hos a 1 Axiom box

L4 ond

then replace that box With +he genercw'zed Axiom link

Lor—g—1d

(This is Why We have atomic fvmulae of L1 rather than

literads in the old Miom link’' posivon.) |f there

is tore than ome 1 oxiom box, Choose as above.
Otherwise B, must Contaun a T Ooxiom box, 54y

[+ 5]
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it there is more than one T oxiom box, Choose as above.
Replace that box with

Ly

Let' "t be any Mip iw the proof Shuchwe B Obtained
flom Bo by the above procedure. Then t is the
same 0SS Some M’P to in Bo , except 'f()f Hthe extra
seqment of t avouno the hnew terminad L. It is clear
that £ pust be a long tvip if to is.

(i) Suppose T is obtained fom To by the rule (Th?):
F Bi,... B
F?A Bi,...,Bn
Assume we have a Froof net fe = N(T) with ferminals
Bi...,Ba. We Constuct @ proof shuchue B fom Po
lm1 ‘inseckng o 7A’ following a procecuse amalogous
to the one destnbed in (). And as above, 3 Wi be o

Proof net. u

(1)

Theorem 627 :
The Map N: LLT — PNT s SWJec?\'ve.

Plogf (sketch):

lf B in PNT  consisis of an axom box +then
Chooce any one of the equivelent —wp~to -ex changes
proofS in LLT of the appropnote sequent.

Suppose B Contains more than one link. We Can
readily oeal Wity the cases where 3 Contouns QA
ferminal wnavy link or a termunod B or €7 link.
This leaves Us With +the hypothesis that ol the
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Ternad links in B owe either CuT [inks or B links.
It is clear dhat if A is & premis of eithet & CuT
link, ov @ link +then () the premis of a wnary link
is in eA iff the conclusion is, and (iy the Conclusion
of a C?link is in eA iff both, premises ave. We have
to modify fhe trip specified in The proof of The Trip
Theoreme ( 6:0:20) So as to deal With the Case
Whew exactly one preass of a C7 link is in eA,
in oddivon fo the case When exactiy one premis
of a B link js in eA. Provided We always allow
for this new possivility, e proof of the Splitting
Theoremv 9oes through. a

ln the same Waym as wWas noted in Observohon 6-0-10,
We can define p*, for B in PNT, in fems of ™,
whete  [3= N(1).

63 Proof boxes and PNI!

The vules (&) and (1) of LL! bolh involve o g!obat
Conshount which is onhthetcal 4o the spivit of
localism  inherad in proof nets as developed so
fov.  For these rules, the use of proof boxes seems
Wwiavoidable.

In Chap’fe,r b oF Girard [198T], some tentahve (and
inconclusive) suggestons are given veqaroling the ovoidance
of & proof boxes by Working insteod with families
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Of Proof Stuctares called slices.

Another Oppro athy m{ght be to have a Iol‘navu’ link/
Corvesponcling o the rule of adjunchon .used in Hilbert=
shyle formulohons of relevance logics (see Awvon [19881).
It wWould be as follows:

I} po and B, ave proof nets with A and B,

fespechvely, as their sole tevminal formulae

then  form o proof net as illusiated.

QP
A&B

All other instances of the sequent calculus vule (&) would
hove 4o be captured Uusing appropriate axiom boxes.

Now in & Hilbert-shyle system, We make use of the
axiom sCheme

(C—=A & (c—B) — (C—(AZB)

by deriving an instance of the antecedent using
the vule of adjunchon and then applying Modus
Ponens. To do the same in the context o? proof nets
Would involve essental and inelimnable CUT s
ogainst axiom boXxes.

oo
cC-A C—B

CDA CaB L —|
(CB8AY & (C % B) (C'oAY) @ (c*®@B*)— C— ALB
CUT : :
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Finding the alternatves unsahsfactory, we vesign,
ourselves to proof boxes.

Definiton 6-3-0:

The system of proof nets PNI! is defined inouctveln
os follows.

i If p is a proof net in PNT then [B is & proof
het inn PNI!.

i If p. and B are proof nets in PNIY With feminal
{mmume A GCy....Cn omd B, C, ..., Cn vespechvely
then 3 Is o proof net in PNI! with terminal
formuloe A&B, Ci, ..., Cn where B is as illusivated:

Blo
~C-..-Can ) 1=e"Cn

-C

—AgB- C.--..-Cu

Im nis case, P is colled an  &-proof box.

(Jiiy lf Bo Is Proof net in PNIL  With Tedminal formulae
A 7B ... 7B,

then P s 0 Froof net in PNl withv Tevmmnod formulae
VA, 7By, ..., 7B, Whete E is as Uustvated:

Bo
A'?B!:...‘?Bn
A28 -7

In this case, B is colled a !-proof box.
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The system of proof nets PNI is obiained from PRI
by omiting clause (iij obove, disallowing D7 links ord
C? links,  sethng m=o0 in generalized oxiom links and 1
Oxiom boxes ( Where m js the number of )Qmwlow of the
form 2A)  ond r’esMwng ol links 1o occurences of
foymulae of L.

An &-or I-proof box in a proof net acts as an
impermeaskle bawier betveen the proof nets or et inside
and the rest of the proof net of which the box is a part.
In 4he vegion of a proof net outside all of fhe proof
boxes of the net, the concept of a Wip sku makes: sense.
Fom this perspective, tne conclusions of proof boxes
look ond  behave as if they were conclusions of axiom
boxes, andl ol ofiret links in The region behave as-they
oo in PNT. Likewise in the region of a proof net
inside v proof box but outside any other proof box,
the Concept of o tvip skl makes sense. And an
innes most vegion of o P/oof net i PNI! je. o region
no part of whichy is outside any proof box, is just
0. proof net in PNT. So We can have lots of partal
Wips in & proof net in PNIL  but Navelling Fom
the inside of o proof box fo the outside, or vice-versa,
|5 impossible.

It is possible +o give something like o long trip
chavactelization of proof nets iw PNIL : portial
frips In eoth of the unconne cted r’egions are long,
velatve 1o the vegion.
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Theorem, 6-3-1 :

i 1 is a p/oof oF FA,. Av in LL!

then We con natrally assotiate Wity T a proof
net  N(m) in PNI! Whose ferminal formula
oCturrences ave exactly A ... An.

P/OO{:
,lf therlast rule used in T js either (&) or () then
The proof net N(T) falls out of Defmibon 63-0. ®

“Theorem 6-3-2:
The map N: LL! — PNI! s su;jecls"ve.

Proof (sketch):

f P is either an &-proof box or a I~proof box then the
proof r suth that: p= N(TT) - comes directin forw the
onofs or loroo-f 'given by the indmnchon lm,,po’mesis by
either (&) or (M-

Again, We are reduced to the Case where all the
torminal links of B are eifher CUT links or @ links.
Now we Can Worki just .in the outermost region
of B, considering all proof boxes which border
the vegion as axiom boxes. Then proceed os in
the proofs of the coresponding resutts for PNO*
and  PNT. [ |

As before, we deﬁne p* for B in PNIL in
Terms of AT* whore p=N(m).
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As We noted earlier, +his ' top-down' induchve
definiton of B Is less than optmal for use in the
Context of the normakizahon process.  We NoW present
Girard's altematve * bottom-up’ chavocterizabon of
p*  modifed fo Suit our varant Weatment of (1)

ond @1,?) .

Definiton 6-3-3:
Let B be a proof net iin PNI! and fix an ordenng,
say  Ci,...,Cun, on Hie tevminal formula occurrences of 3.

A basis for_an experiment in 3 is a sequence
W= (.., W) such that W-}&'Ci[ .for 1=1..,n.

An experiment in [} consists of the allocaton oF one or
more elements xe|Al fo each occurence of o formulor
A in P, according to the following procecdure.

(b Avbitrarily select a bosis we |C.%...8Cnl.

i) For each CuT link 42 in [3, Qrbivorily select an
element xe|A|l=1A*]. we consider this X o be allocated

)

To bothh A and A*.
(i) If ‘ee is any B link in B and wWe have already
allocated z=(x,¢1)elA®B|, then allocate xe |A|

and ye |B|.

(iv) f Ame is any 3 link in B and we have already
allocated, z=(x,v)e |AsB], Then alhocate xe|A|
ond Y€ |B.

W If %5 15 any FST@® link in B and We have alrvady

allocoted z e [A@®B|, then if z=(ox), allocate
o2e Al but if z=(1,Y) then abandon the

exyerimen t.
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() I} Fes 1S Gny SN link in B and we have olready
OMocoted ze |A®B|, Hnen if z=0,y), allocate ye|B|
b‘Ut it z=(o) then, owandon the expenment.

2 \
EN
Vil If | AA BA is o - ‘ |
iy 1f Ato-n is any &proof box in 3. and we have
Qlready allocoted ze€|A&B| omd ue|A], then
if z=(o,n)  allocate xe|A| and u e |A| ond

if z=(ny), allocate ye 18] and ue|A|.

y\iﬁ) | -?A— s any D7 link in ond We hove alread
A y b Y
allocated ael?Al, Hhen if a=tx§ allocate xclAl,

but if a is hot o sSingleton then abandon th
expenment .

~

. A 7A - :

(™ |f A is am} C? link jn 3 oand we have
alveadb‘ chosenn acl?A], hen Oybi‘h/avi!/v] Choose @&
decompositonn o= a'va“ oand allocote a'el?Al

for the left premis and a"e |ZA| {for the vight
premis.

Q()Letm

il be any !-proof box in [3 and suppose

L1A-28.-.. -2By

we have already ollocated ael'!A] and by € 12B;]
]Cor A=1,..., k. Now a=%9&,...,xm\s fov SOme M >»o0.
For each j=i... .k , arbiNarily choose a detomposihon
by=bisu...0bm;. Then for each i=1,...m, alocate
Xie Al and Zi=(bi,..,bi) €|?Bi,..,7Bx|.

In pdditow to the Cifcumstances olveady specified, an
experiment is to be abondoned if at any stage in
the  allocaron process, we arrive gt an occurrence of o

formula: A Such that 1A= P ;5 jn parfoulo, if the proof
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Net Contains either T or Q.

An experiment  in p is completed  when, {ov each
occurrence of (v formmlo A in B, ot least one element
xelA| has been allocated.  If an experment is
obandoned then it Connot be (ompleted.

A Completed experiment in p is successful
iﬁ: 0 for each generalized axiow link in p,

Coone o —7am— oo

if (@,... @ Q. ... am, X, 1) has been allocated
e Gi=P fo i=1,...m and =K',  and
@ fo( eochh 1 oxiom box in P
Eﬂ—-?A.---- -?'Am—'
i]f (@ 0., ... am) has beew odlocated
then ai=@ for 1=1,.--, M.
(End of definiton 6-3-3)

fheorem 6:3-4 : (Givard [1981])

et B be a Froof net in PNIY and let C,... Ca be on
ovdered list of the termival formula occuwences of [
Write  Ci,...,Cn 0 T Then

=} welr l W is a basis for 0 successful experiment in Y .

Proof (sketch):

Suppose W € || i & basis ﬁ)r o successful expenment In
P This meams That whenever 3o 15 & genera,ljgeo! axion
link  With Comclusions _L"' ?Z,C.C ond Z € |,L“,?£,C,C*]
is one of the sequences allocattd on the basis of W,
we have z e pr. And likewise Whenavet p.is & 1 axiom
box. Sinte w is a basis for a successfidd expeiment in

Ll
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B, 1here can be no T axiom boxes in B. So W determines
Correct  sequences 1:0’ all the oxiom boxes In B- By
folloWing the Course OF these Sequences #woujlv the
top - olown ' incmehie dcfo’ru'h'ow of P* (via the
Opproprate T*, Where = N(T)) We sece that W e p*.

Conversely, if Wep* then it is immeodbate that
X 15 6 bosis for o Successfid experiment in P-
Note that if W ep* then PB'# P, hene B Cannct
Contain any T axiom boxes. When 3 does Contain a
T Wxiom box, thete ave no success fid expenvuents So
the set of all bases -Fy suctessﬁ,d expenmerds in 3 is
emply.

To ensure that We have idenhcal Swbqraphs of the web w(r)
and not just identical sets, we have to establish +that

{we|r| J W is a basis for a successful experiment in P‘)'

IS & coheent subset of ||, The result is proved,
]Cov Pm;(f nets B in PNO in Giravd [1987]) ( fheorem 3-[8>.
The diffioulhes ave concentoded in the mulhplicakve
Swbsystem s in comparison, the extension o PNl !
s fairly shaight fore wov d. .
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64 Normalizahon in PNI)

I What follows, we shall define a number (Huelve,
to be precise) of conversion schemes . We say [
Cohverts fo p!,  Writren B conp', iff the transition
fom p fo pr is an instance of one of these Sthemes.
Fhe definitons of the other terms oppropriate o fhe
discussion 0{3 normalizahon Carvy over 'ﬁ’oM Sechon 6-1.

For all but one of Hhe Conversion schemes, the size
of the resulhng proof net is shictly smoller thon
e size of e original. The toublesome Case is when
one premis A of o Ut link is Q Conclusion of o
| proof box and the other prenus 7A*  is the conclusion

of a C? link; the required Conversion prodmces om
exponenthal growthv n Size.

Definibon 64 -0:

We say o proof net B in PNIL is built fom boxes
O,..., 00 and formula occurvences A, ..., A by means
of the Unavy and binavy links iff (0 each 0O, i=1...,n,
is either an axiom box or a proof box which is hot
inside any other box, and 0. ... On is G exhaushve
list of all such boxes, and (2) each Aj, A=1,.-.\K,

5 the Conclusion of either a unary ov @ binary link
and 15 not inside any ono‘f box, owmd A,,..., A
s on exhomshve list of Such formulo occurrences.

( So the conclusions of o outemiost box ave not coun’red)

The size S(P) of a PVoof net B is deﬁned by
induchon on the louildfup Of /3 as —fol(OWS:
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(1) if & is built f(owv boxes ,....0, and forrrmla
occurrences A, ... Ax by means of the unavy ond
binary links, then |

s(p) = s()y-...-s(dn- 2%

iy if P s a (poof or axiom) box +then the size of 3

is defined as follows: .

* if Bis a Qeneralized axiom link with K+m+2.
Conclusions  (as in Definiton 6:2-4)
Then  s(p) = k+m+3;

* if pis a 4 oxXiom box With M+l conclusions
(as in Definiton 62-4) then (@)= me2;
if E is a T axiom box Withh m+| Conclusions
(as in Definibon 6-2:4) then S(p) = mr2;

o ,F J} S an &-—Pfoof box fovmcd ‘ﬁ/om PYoo-{:
nets Bo and gy fhen s(p)= s(pd+s(p)+];

« if B IS a !-proof box fovmed fiom a proof
net po then s(p)= s(Bo) + 1.

To distnguish beieen the different sorts of conclusions
of an axiom ov proof box, wWe say fhe font door (s)
of a generaiizeol axiom link, 1L oxiom box owd T
ARXiom box  are  -he atomic formuloe C ond €+, 1
Ongl T respechvely s all the other conclusions of Such
boxes are colled side doovs. Likewise, the font door
of an  &-proof box ( !-pvoof box) is A4B (!A)
and il the other conclusions arve called side doors
of the box.
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The Conversion schemes ave of three Kinds.
() Generalized axiom Conversion . his is pecformed any
time We have a CuT links both premises of whick e
f(ont doors  of generaiized axiom links. This is the
analogue of the scheme (AC) defined in 6°1-0.
@ Symmehic conversions. These Cover Cases wihere the
prem;ses of a CUT link Come by Jdual links,
(3) Commutatve Conversions. These ave reqw’red when
one of the premises of a Cut link is a sidle
door of either & T axiom box, an £—box ora i~
box. ( Side doors of generauzed axiom links and 1 axiom
boxes are dealt With in (2).) |

The Conversions v’eolw‘/w fof +the wodol COnnechves ave
such that reduchon in PNI! faj(s to have the

Chuvch- Rosser propesty.  The Property aﬁ pmsem‘nﬂ
semonthc gbjects, That s

if prop. then p¥=ps
is the ( not fo be scoffed at) Consolakon prize; a
onof net p n PNIL may reouce to dishnct novmal

fovm; Bo ond 3. but Since /3°*=[3.“, they do not
differ foo much.

We will use the ‘boﬂom—ufw' charactenzoabon of
[3“ to V'erifvl’ fOf Ssome but not all of the Convesion
Schemes, that if 5 con Peo then B =" For
the coses omitted, Consult the ongma,l: Givavd
[1a%7], Choptes 4.
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(1) Generalized axiom conversion (GAC):
3’ is obtained from P by replacing a configurahon of the fom

|-_1_"—?A—c——cJ Lc—c*—?r‘—.l:'* —]

cuT

Lo zac2r—c—cod
if s(p) = % (k+m+3)(3+n+3)
then S(B) = x(Kk+3+m+n+3)

We claim =~ p* = p*.

This is proved by induchon on the depth oF neshng of
boxes Containing the CUT |ink in queshon.

Base case: n=0., So the CUT link 15 in Tthe outermost
reqion Of >, ie it is not Contained in any box. Let
W be any basis for a successfd expenment in 3.
Suppese We have chosen xelc| and nelct| for the Cut
link iw I Since the experiment succeeds on the basis of
W W must ]Q:rce the allocation of zelc| far C in
the lef{ Oxjom box amd e |CH fov C* in The V/ghf:
oxiom box, OS Wed as ensuwring that @ s QSSigneot
to eoch A in ?2A and fo eock By in 7. (Hofe
that @ is alwows allocoted fo L Since [L]=t@3)
But in such a Case, W is also the basis of &
Succe ssful expenment in ', Hence pre B Convessely,
Suppose Z is A bosis for a successfd expenment i .
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Then z must force the allocaton of axelc| and xe|c*|
as Well as ensuring that alk the 7Ai and ?B5 ave assigned, &b
Now with vegavel fo the CuT link in [3, We are free to
Choose xelc| and necl|C*| for the premises C and C*
S0 z Is a basis for a successfid experiment in 3. Hence
Boe B
Inducton step: N>0. So the CLonvevsion tokes place within

a box OO, and 0O s replaced by 0O'. lf O is not the
Innermost proof box Contoining the CUT then Consider the
box Oo of depth one fades thap the odepth of O.
the Conversion replaces Do Wity OS5, and the induckon
hypotnesis gives us O =(02)* . Since the conversion

Tokes place inside Oo, it has no impact outside that

box; in parkculav, the (onshtuents of O other thoun
o ave +he same as the conshiuents of O° other than
Os . Hence O%= 0%,

Proof box containing the CuT
het o inside (1
[o With F‘:‘

IF O is the Innermost
then there is a proof
Such that the (Onve&sion replaces
By the base case of the induchan,
Fv* = (p)*  omd So O%=m'*.  Now p’is bult

fwm O in +the Same Way that [ is built fom
O, so We Must have pY = p'*.

The avgument fo/ the induchon step given above
ofphes qenerally  fo any Conversion.  So for the
mmajnin3 convessions, We nNeed only  considet the
base Case of dhe induchon, ie. we may assume
the convession oloes not take place within a4 box.
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The Conversion Scheme (QA(;) deals With the case

Whew, both premises of A Cut link are f}ont doors
of & qenealized oxiom link. If exactly one premis of

a CUT link is Such o font door Hhen, since 1t iS

i otomic formulev, the only wWow in general that the
dual atomic formulov can octur is oS & Side door

Of o T oxiom box. That class of» cuts is dealt With
in (3:1) below.

2 Symmenc Conversions

/(21) Mulkplicatve szmmefvic convevsiorn (@/%—SC\?

B ois obtained f/mw P IaUI veplacing o comfw‘guwa‘hbn of JHnez\faww

A B A.L B.I. b
A®B A% B 1
Curt

A A B BR*
CUT cut

If s(p) = x-2%  Ahen s(p) = x-2%

Inany expeiment in 3, We have to select a pair
(mq\el/\@B}ﬂA“s’B*l ten allocate e lA| and e |AH,
and YelB| and yelB*[. But this is jndishnquishable
fom an expeiment in B!, Whete e select xe(Al=|A%]
omd U|6)B)-'—'—)B‘[. Hence W is o basis {or asmessful
expeviment in . iff it is a basis for o Successfil

Expenment in 3L Heace B¥=p'*.
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(2-2) Mulkplicative Unit conversion (4 /1 —5sc)
B’ is obtained fom B by veplacing & Configuiation of the form

l—?l"— 11-' I-_L—_L"—'?A}— C— C*—J

cur .

-

by
L1 —2n-2a—c—c

|

If  s(p) = x(ne((ke)+m+3)
then  s(P) = x (k+n+m+3)

In P e have fo select @ € |L|=[L] bat this
Contributes noting to the success ov otheawise of an
expenment . What matters is the allocahon of elements
ai e]|7Ailin 71 by e|?Bsl in TA, xe lc] and xelct(,
Just Qs in an  expenment (n fs'_ Hence B* = p'*

(23) Additve symmetic conversion (& /FsT@ - sc)
I”' 5 obtouned f/om, P bb’ replacinﬁ o whf'ﬂwai\'ow oH*m, ‘Fonvv

@ (")
A<A’ *A-B A* by A AN K

— A—A&R— At® B+ cut
. cur

il s(p)= (X+y+D-22  dhen s(ph= %z
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Suppose that in an experiment in . we have z <|A|
ond We have to choose aw element in |ALB(=|A* @ B*|.
If we choosse (Ly)e |IALB| +hen, due To the FsT @ link,
the expenment Wik not succeed. So in successful
expeniments iw 3, on element (O,n) e | AEB| f§s Chosen

ond z,x is allocated to A A and «n is allocatect
to A", In an expeimunt in pt whee zelAl is
given, We have to choose an xe€|A|=]A*| then
aMocate z.x to A A ond * to A-. Hence p'=p'~.

(2‘4) Additve S\/';mme/ha'c conversjon ( £[]sSND® — SC\ -
the obvious mooh‘{»'cwh‘ow O‘F (£ | FsT @ — s,

(2-5) Additve wnit conversion (@/T - sc):

Atthough there is no link specifically for O, we allow
Constants 0s Well as literals +o be front doors of

generalized  axiom links.
' is obloined fom by replacing a confrguration of the forme

— ¥ —=7A—T- OJ I-T—z.
7Y ;

b
% [—T-—_L"— ?A- z:—]

lf s(p) = 2(k+m+3)(nt2)  then S(p') = x( Ktmen+2).

pr=pr=9.
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(2:6) Exponenhal symmeinc conversion (1/Th7 —sC):
This Conversion is required Whenever one premis of a Cut
hnk is a side door ZA of cither o generalized Axiom link
of o I oaxiom box. We State it for the |atter. )

' is obtained ]%nv p by replacing a Conf'gwah'on of the form

A
7A-A

?.gs-— 1A L? A= 70— @j

’ cut .

by

Loazroq

,f S(P): 2. (Y+)(m+3) then, s(p') = 2. (ntm+2)
for some ney.

n an expenment in [3, Suppose we have b c|7A| and
We need to select an ac |'Al=17AY . For the expenment
Yo Sutceed, We must choose a=@ . But if A= P thew we
must have by =@ i=1,... n, Whete b=(b,.. ba. Ths

f

s What s quw'rw( fo: & sSuccessfud expedment in B

(2'7) Exponentod symmetvic conversion ('/ D? —SC)
)3' 15 obtained ffom [ by veplating a conf%gwah'ou of the fo«,w

D | ()
Q At by ?2A-A A

== A ;oo
. Cut
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it s(p)= (442 Hhen s(p)= x-22

In an expenment in [} suppose We have be|7A| and
We need to select an  ac|'Al=17A*|. Due +o the D?
link, The exyer%meat Wil be abandoned wnless a=txy.”
Then We assign % to A and b x to 7A,A.(Since
A 5 o Singleton, We olont have to choose a decomposition
0‘: LY But this is Wwhat e do in any ex/:'en‘mznt

in P'.  Hence )’5*-*-)3""

(2-3) Exgon@nﬁ'ai Symmetvic Convession (!/C?’Sc):
,3' is obtained from 3 by replacing a Confquration of the form

"o
1 . 2n-A TA-A

A~
A A 7p— AL AT
cuT 74 cuT

-

The Owplicakon of the '.-onof‘ boX fesults in an exponental
3»’0\»]% n Size,
|f s(p) = (x+)).32
fhen s(p) = (x+)*.42.2"  phet n< (nis the
Nnumbes of fowmda oCtuyrences n ?A\,

(3) Commutahve Conversions.

To deal with the CaseS Wwhen one OF the premises of
a CUT link 1S Q Side door of A T aXiom box ov
an  &-box, We need -the concept of a Ghost boX.
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Let e be a CuT fink,in a given proof net [3,
Whichy 15 not inside any F/oof box. In this outer-
most Veﬁiow OF B, We Can teat he Conclusions of
any  proof box bordening the region as if they were
the concusions of an axiom box. So We can
56”9”0'/‘1 consider the %Pire, ebB of B. The -
;f‘ ronher of eB  Consists of B together Wit the
Conclusions of E Which belong to eB and the
premises of % links gnd C? links  Sudv thot the
other premis is pot In eB. Otherwise put, the
fontier of eB  Consists of those formula occutrences
in eB dhat become tevminal When We consider eB
as ( the Under‘lblmg set of) a pl’ooF net. Ljst
he f{onﬁa of( eB as A B. ‘The ghost boX of eB
IS 0n object of the form, ¥

— e e e e

For the proseS of' am, M'FS (wiﬁu'n ‘this oufer-most
egion of P), A /B behave like the conclusions of
an oxiom box. The matenplizaton of eB Consists
of replacing eB in b by the ghost box of eB.

Propositon 6-4-1: ( Giravd [19811)

lf[' Pisa Proof net in PNI! Qnd BCMBL IS a Cut
link: in 3 pot inside any proof box

Then e proof Shucture obtained flom the outer- most
fegion of B by materializing ¢B and eB* does
not admit any Shovt—"h’i’?S. [ |
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For the purposes of Conversion, ghost boxes give
US Much needed informaﬁow obout o Pfemis of a
Cut link. The formula octurvences n the fontiet of
eB, other than B itself,  ave those Which are boty
Connected With B, in The Sense that ‘ﬂneu’ lie tn
fhe interval [B*, Byle for each Mp &, and ave
linked Wwith the region outside eB.

(3-1) Zevo Commutatron, (T-cc)
hc Ik Contauns the COHf’gurGi\'Ow

Lr—r—al A

cuTt

Then first materialize eA*,

then Create }3' bt1 feplacing the above wmﬁ"gur'a!\'ow
by one of the form

Lr—r—a]

I s(p) = (nes)ocy  then  s(p)=(nrmez)-y
whee m< o,

BT =P = 2.



~210-

(5.‘2) Additve Commutahon (&-¢C):
If F" Contains the Comfxgumh'ow

DD
A-r-c B-r-C

_ A&B-n—c— ¢t
: . CuTt

then f»’o’s’c matevialize eC*

m m - 7" —
A-p-¢’ ‘g-pec’ | ! !

L — A4BR—[-C—! LCt=--.AJ
: : Cut .

then Create F' by mplac«'ng the above Cowﬁ'gwa*h'ow
by one of the form

I"““': T =1
o I e/C'l' _i eC,'l' :
¢’ Ltch--a Br-¢/ ¢ Al

T

AEZB—T"— A

-
- -

Mter ?erformimj this Conversion, he ghost boxes may
be erased.
)f S(F)=(7C+t1+l)'z-t then S(F'):(mz +t12+l)-t
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(3'3) E&onenf{al Commutahon (!*CC)

In the case when one premis oF a CUT link 1s o side
door of & !-proof box, ghost boxes are of no help. If
°Ct is one premis of a CUT  Fhew The ofher is 1C. If
'C is o side door of a T axiom box +hen use the
Stheme (T-CC)  and if 1C is o side door of on
& ~proof box then use the Scheme (§-cC). The only
V@M&zi-nénﬂ possibility is dhat !C is the font door of a
I - proof box.

P is obfained fom 3 by replacing o Con[\"guraﬁ'ow of

L 2a_red Logeopip
: CuT -

()
A —C m
~7A 10 \Pct 7 A

cw
——7a r-tA-

lf S(BY = (4N (y+1) 2 Fhew S(F')=((7L-(q+u))+l\-z.
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Theorem, 6:4-2: “he Small Normalizaton Theorem (Givard [l%ﬂ)

If ks Is any PVOOF net in PNI! which does not contain
o Confiquration of the fonw

thew ]’5 is STYonglu‘ novmalizable.

If B does not contain Hhe objéchonable configuration then
L(p) < s(p). ‘ |

For the Pr’oof’ of the Stong Novrmalizahow Theorem, {ar
PN2(and PNILY | Girard adagpts his fechnique of
' candidats de veduchbilite ! oviginaliy devised for the
System F, The CR5 afe Sets of proof nets whick
hove an underlying Shuchre similar fo that of facts
In the phase space semanhcs. “Those readers st
b/ea%hing are encowaged To fo'rst take o Iong Walk
ond then, suitably refveshed, Work through the
femaining  material 0w their own.




-2_'3-
Ayyendix A: A qguide 4o notation

Rel logics
Girard [1987] Seely [1484) Avron [1988] ggf ‘E“.ﬁff [3!986]
_“
implication A—B A—B A—>B A—B
neja‘l’iou A'L - A ~A -A
timesffusin | A@B A®B A<B A<B
1 I t t
*—
par [fission ‘l A%B AGB A+B A+B
! or AUB
L & f f
S
With /and A&B AxB ArB v
T 1 T T
-
Ptus/or A®B A+B AvB AvB
O 0 F F
“of course.” ! UA
duowe? | A ‘A oA
el 7A ?A SA QA




214

A]zpendix B,’ Two sided Sequent calculi

Let Ly be the collechon of formulae generated flom
propositonal letters and constants 1, L., T, @ by means
of the unary Connectve (-)'”, the binan,, connecthves
® 3, —~ & and &, and the unary Connechves ! and 7.

“The 4wo- sided Sequent Calcnlus -foy P/o';osifx‘onal lineav
logic, DLL , consists of the axiom schemes:

(dentng) A A
R1) F1 (L) L+
(RT) THT,A (LO) To A
(Rineg) A+ A** (Lreq) A A

angd the fo“owmg Yules of infevence :

5“6“’&1 rules: M '_A (EXCH) rlo ,""A)Ao A’r: '_AI (Cur)
o(r) - o(a) M- Ao A
where T and o are any
Pevmufah'ohs
negoakon rule: rNaAl-B a -
M oBE =AY A
additve rules : MAFRA (L&) rsFA (L£2)
" A&B - A M AR A

'FAA r-;_g‘,_\-(k&) NAEA T BFAqg)
M- A&B A MA®B I A

rEAA (RDY) r-es (R®2)

"F A®B. A "+ A®B A
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Mulh plicatve yules: NnkE=A (L1) r=A (RY)
RN "ELA
A B A ’(LQ) I:,l'f A Ay n+~B A, (R®)
" A®B - A 1 A®B, A, A,

E,‘A.}‘Ao n,BFA, (L%) '+ AB, A (R%)
5.1V A%B - Ao A, - Asg, A

r:’"'A,AO r:,B"AI (L"") F,A"‘B,A(R_o)
I, N, A=~B Ao, A, M- A-B,A

The lamﬁuage fcw inMiNonishe lineav }g@ic IS as above‘,
except that the Constomt L and He binary connechve B
ove omifted.  The sequent calculus for pvoposifional inkitionisie
lineav logic  |s obtained ‘ﬁom DLL by () omihng the
oxiom schemes (L L), (Rneq) and (L neq); (i) omiling the
inferemce vules  (VAR), (RL) (L%) and (R%5); and (i) $hpulating
that Sequ“ Contoun, at Most one {ovmum on the RHs.

The sequent Caleuus DLL! is obtained fiom DLL by
adjoining The following inference rules:

M= A rE=A

——— (LTh) e (RTRY)
MiAk A FE2A A

rAE A I'F ?A,A
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rA - A F-A A

(RD?)

(LDY)

F'AF A rE7A A

INAETA 1y P EATA gy
P 2A 2 A T A 7A
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